
 

  

Abstract— Nowadays, when the industrial sector and human 

habitation have expanded rapidly, causing more and more 

various pollutants to come out, water is considered one type of 

pollution that is contaminated by these community and 

industrial sources. When this toxic water seeps through the 

soil, it can contaminate groundwater sources. Groundwater 

contamination can affect the health of humans and other living 

things, both directly and indirectly. In some areas, 

groundwater contamination can cause the population to 

become sick with various diseases. Long-term groundwater 

quality investigations near landfill sites need the use of 

mathematical models. A one-dimensional advection-diffusion 

equation (ADE) was used to analyze the groundwater's quality 

by describing the amount of contamination present. The 

objectives are mathematical simulations that can be used to 

assess the quality of groundwater that becomes contaminated 

over a long period of time. This study proposes numerical 

simulations for a one-dimensional mathematical model for 

long-term measurement of groundwater pollution around 

landfills. The natural cubic spline method, the Crank-Nicolson 

method, the upwind explicit method, and the special A-D cubic 

spline method are approximated in the model solution. The 

exact and approximate solutions are compared in each case. 

The proposed upwind explicit method analysis provides close 

to exact and properly accurate solutions. In five to ten years, 

the proposed numerical model can simulate several scenarios. 

 
Index Terms—groundwater pollution, contamination, 

advection-diffusion equation, natural cubic spline method, the 

special A-D cubic spline method 

 

I. INTRODUCTION 

he most current groundwater pollution is caused by 

industry, agriculture, or improper waste disposal. 

Contamination of groundwater, which is a source of water 

for human consumption and consumption, will affect the 

health of humans and living things. It is the cause of people 

suffering from various diseases. Various mathematical 

models are employed to preserve the environment for 
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human use, including [1–5]. To estimate pollutant 

concentrations in terms of total nitrogen, organic nitrogen, 

ammonia, nitrite, and nitrate concentrations, we examine 

nitrogen pollutant models derived from the advection-

dispersion-reaction equation in [6]. In [7], two distinct 

models are used to perform a mathematical simulation of 

water quality over an extended period of flooding: the one-

dimensional shallow water equations, which provide the 

elevation and velocity of the water, and the one-dimensional 

advection-dispersion equation, which provides the 

concentrations of pollutants in the water after the sandbag 

dike has been destroyed. [8] In order to estimate the salt 

levels in the Lower Chao Phraya River, Thailand, this study 

aimed to create a numerical model of the one-dimensional 

advection-diffusion equation. 

Mathematical models for evaluating groundwater quality 

have been used in recent studies. The salinity in the 

groundwater at different flow velocities is simulated using 

the mathematical model [9–11]. Water injection station 

management is optimized using mathematical simulations to 

minimize costs associated with groundwater management in 

drought areas [12]. The explicit method, as explained in 

[13], is applied in the transient two-dimensional 

groundwater flow model and the transient two-dimensional 

advection diffusion equation. A measured nitrogen 

dispersion on total nitrogen transformation effects models 

have been described in [14]. Groundwater quality in rural 

areas is affected by landfill construction, as demonstrated by 

the mathematical models [15]. The one-dimensional 

groundwater pollution measurement near landfills through 

heterogeneous soil is explained in [16]. The groundwater 

contamination with chloride and related compounds has 

been explained by means of mathematical models in [17]. 

Groundwater quality assessment is approximated using two-

level explicit approaches and the Lax-Wendroff method 

[18]. The impact of pumping water to nearby settlements on 

groundwater flow and water quality has been proposed in 

[19]. For long-term groundwater quality investigations near 

waste sites, mathematical models are necessary in this 

instance. Studies on the environmental impacts of projects, 

including landfills, are based on the long-term expansion of 

groundwater quality. The amount of pollution in the 

groundwater was described using an advection-diffusion 

equation (ADE) in one dimension the groundwater quality 

analysis. Using the one-dimensional advection-diffusion 

equation (ADE), the concentration of pollutants in 

groundwater is expressed. 
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Natural cubic spline, special A-D cubic spline, FTCS, and 

Crank-Nicolson are the four numerical methods used to 

estimate the advection and diffusion components of the one-

dimensional advection-diffusion equations with constant 

coefficients in [20]. In [21], the Forward in Time, Center in 

Space (FTCS) finite difference approach was used to solve 

the three-dimensional advection-diffusion problem. In [22], 

Halley and Householder develop a variant of Newton's 

method with higher-order convergence for solving nonlinear 

equations utilizing iterative methods and the predictor-

corrector methodology. In this research, we studied the 

groundwater dispersion flow through an inhomogeneous soil 

model. The finite difference method, which is the natural 

cubic spline, is used to obtain the approximated solutions. 

An analytical solution is provided to test the accuracy of the 

anticipated numerical approaches. 

II. GOVERNING EQUATION 

A. Dispersion flow of groundwater pollution utilizing an 

inhomogeneous soil model 

A groundwater efficiency model is governed by a one-

dimensional advection-diffusion partial differential 

equation, as illustrated in [23]; 

                       ( ) ( ), , ,
C C

D x t u x t C
t x x

   
= − 

   
          (1) 

for all ( )    , 0, 0, ,x t L T   C  is the groundwater 

pollutant's dispersion concentration at point x  along the 

longitudinal direction at time .t  D  is the dispersion 

coefficient for the pollutant technique, u  is a constant flow 

velocity, L  is the distance measured from the polluting 

source to the endpoint of the region under consideration and 

T  is the rate of change simulation time. The groundwater 

flow velocity varies due to the soil's heterogeneity. An 

growing nature variation has been proposed by Kumar et al. 

[23]. Additionally, they thought that functions were assigned 

to the velocity parameters ( )1 ,g x t  and ( )2 , .g x t It is 

possible to rewrite Eq. (1) as [24]; 

                   ( ) ( )0 1 0 2, , ,
C C

D g x t u g x t C
t x x

   
= − 

   
     (2) 

Eq. (2) can be expressed as follows; 

                   

( )
( ) ( )

2
1

0 0 2 0 1 2

,
, ,

g x tC C
D u g x t C D g x t

t x x x

   
= − + 

    

 

                                
( )2

0

,
.

g x t
u C

x


−


                               (3) 

In the equation above, 
0D  and 

0u  are constants, the 

dimensions of which depend on the expression ( )1 ,g x t  and 

( )2 , .g x t  The inhomogeneity of the soil allows the rate of 

flow to differ. A difference in the growing dispersion of 

groundwater contaminants in heterogeneous soil has been 

considered by Kumar et al. [24]. The dispersion parameter is 

often believed to be proportional to the velocity square. 

Consequently, Eq. (2) is becoming; 

 

           ( ) ( )
2

1 , 1 ,g x t ax= +  and ( )2 , 1 ,g x t ax= +        (4) 

the parameter a  is the parameter accounting for the 

inhomogeneity of the medium ( )
1

length
−

, Eq. (3) is 

becoming; 

( )( ) ( )
2

2

0 0 0 02
1 2 1 ,

C C C
ax aD u D ax u aC

t x x

  
= + − + + −    

 

                                                                                            (5) 

                     ( ) ( )
2

2
.

C C C
p x q x KC

t x x

  
= + −

  
               (6) 

where 

                           ( ) ( )( )0 01 2 ,p x ax aD u= + −                 (7) 

                              ( ) ( )
2

0 1 ,q x D ax= +                          (8) 

                                      
0 ,K au=                                       (9) 

                                    ( ) ,p x− =                                  (10) 

                                       ( ).q x =                                   (11) 

 

B. Initial and boundary conditions  

The initial condition suggested by the soil's free state of 

concentration, which was initially contaminated by 

groundwater, is as follows: 

                ( ) ( ),0 , 0 , 0.C x s x x L t=   =            (12) 

where ( )s x  is a given initially measured groundwater 

pollutant function. The concentration gradient at the end 

point is established by the average chance rate of 

groundwater pollutant concentration surrounding them, 

which is established by the following boundary conditions. 

The concentration of groundwater pollutants is introduced at 

the origin by a continuous input: 

                            ( ) 0, ,C x t C=  0, 0,x t=                  (13) 

                   
( ),

,s

C x t
C

x


=


 ,x L=  0.t                (14) 

where 
0C  is a given average groundwater pollutant 

concentration at the considered landfill, and 
sC  is the 

pollutant concentration change rate in the vicinity of the far 

field monitoring station. 

  

III. NUMERICAL TECHNIQUES 

Next, we divide the interval to discretize the domain 

 0, L  into M  subintervals such that M x L =  and the 

time interval  0,T  into N  subintervals such that 

.N t T =  The grid points ( ),i nx t  are defined by 

ix i x=   for all 0,1,2,...,i M=  and 
nt n t=   for all 

0,1,2,...,n N=  in which M  and N  are positive integers. 

We can then approximate ( ),i nC x t  by ,n

iC  value of the 

difference approximation of ( ),C x t  at point x i x=   and 

,t n t=   where 0 i M   and 0 .n N   The forward 

time central space finite difference scheme (FTCS) will be 

utilized in the solution of Eq. (2). 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2459-2465

 
______________________________________________________________________________________ 



 

A. The Natural Cubic Spline Method 

The "natural" cubic spline is defined for this study as 

follows: 

(i) The interpolating spline segments are cubic 

polynomial functions on each sub-interval 

 1, , 1,2,..., ,k kx x k N+ = and the segments agree with 

the function values at the grid-points; 

(ii) The cubic spline segments' first and second 

derivatives are continuous at the internal positions; 

(iii) At the first and last grid points, the second 

derivatives of the cubic spline segments are zero. 

The following are satisfied by the cubic spline method's 

approximation of the governing equation: 

           ( ) ( ) ,n n

k k

C
p x P q x Q KC

t


= + −


         (15) 

                 ( ) ( )
1

,
n n

n n nk k
k k k

C C
p x P q x Q KC

t

+ −
= + −


        (16) 

for 1,2,..., 1; 0,1,2,...k N n= + =  where 
n

kP  is the first 

derivative and 
n

kQ  the second derivative of the cubic spline 

function at the point 
kx  at time .n t  Eq. (16) can be 

written in the explicit form:  

 ( ) ( ) ( )1 1 ,n n n n

k k k kC t p x P t q x Q t K C+ =   +   + −     (17) 

The values of the slopes 
n

kP  is produced by solving the set 

of simultaneous equations that follows (which are derived 

by manipulating the equations that come from the continuity 

conditions for the spline segments; for further information 

on algebraic working, see [26]): 

1 1

2 2 2 2

3 3 3 3

1 1

1 1

2 1 0 0 0 . . . 0 0 0

2 0 0 . . . 0 0 0

0 2 0 . . . 0 0 0

. . . . .
,

. . . . .

. . . . .

0 0 0 0 0 . . . 2

0 0 0 0 0 . . . 0 1 2

n n

n n

n n

n n

N N N N

n n

N N

P d

P d

P d

P d

P d

 

 

 − −

+ +

    
    
    
    
    
     =
    
    
    
    
    
         

                                                                                          (18) 

where  

2 1
1

2 1

3 ,
n n

n C C
d

x x

 −
=  

− 

 

( ) ( )1 1

1

3 3 ,n n n n nk k
k k k k k

k k

d C C C C
h h

 
+ −

+

= − + − for 2,3,..., ,k N=  

     1
1

1

3 ,
n n

n N N
N

N N

C C
d

x x

+
+

+

 −
=  

− 

 

and where 
( ) ( )

1

1 1

, 1 ,k k
k k k

k k k k

h h

h h h h
  +

+ +

= = − =
+ +

 

1 1k k kh x x+ += −  and 
1.k k kh x x −= −   

The values of 
n

kQ  are the second derivatives of cubic spline 

at points 
kx  for 2,3,..., ,k N=  at time .n t  For the natural 

cubic spline it is assumed that 

 ( ) ( ) ( )1 1 1 1 10 . . 0 .n n

n n Ns x s x i e Q Q+ +
 = = = =  Then we 

have:  

( )
1 1

2

1 11

6 4 2
n n n n

n k k k k
k

k k k kk k

C C P P
Q

x x x xx x

+ +

+ ++

−
= − −

− −−
      (19) 

for 2,3,..., .k N=  

The finite difference method's stability condition is used in 

this study.   

 

B. The Crank-Nicolson Method 

Analyse the following discretizations of the Crank-

Nicolson scheme for the advection-diffusion equation:   

                          
( )1

,

n n

k kC CC

t t

+ −


 
                         (20) 

                           
( )1 1

1
,

n n

k kC CC

x x

+ +

−−


 
                     (21) 

                  
( )

( )

1 1 12
1 1

22

2
,

n n n

k k kC C CC

x x

+ + +

+ −− +


 
             (22) 

Using Crank-Nicolson Method approach, the governing 

equation's approximate solution satisfies: 

( ) ( ) ( )1 1 1

1 12 ,n n n n

k k k kC C C C       + + +

− +− + − + − = −

 for 1,2,...,k N= and 0,1,2,...,n M=  

 

C. The Upwind Explicit Method  

Analyze the following discretizations to examine the 

upwind explicit scheme for the advection-diffusion 

equation: 

                          
( )1

,

n n

k kC CC

t t

+ −


 
                         (23) 

                           
( )1

,

n n

k kC CC

x x

−−


 
                       (24) 

                    
( )

( )

2
1 1

22

2
,

n n n

k k kC C CC

x x

+ −− +


 
             (25) 

Using the upwind explicit approach, the governing 

equation's approximate solution satisfies:   

( ) ( )1

1 1

2
,n n n n

k k k kC C C C
      

  

+

− +

− − − +
= + +   

                                                                                       (26)                                                                                                    

for 1,2,...,k N= and 0,1,2,...,n M=  

 

D. The Special A-D Cubic Spline method  

From equation (16) ( )ku g x=  and ( )kD h x=  we have,  

                      
1

,
n n

n n nk k
k k k

C C
uP DQ KC

t

+ −
= + −


             (27) 

for 1,2,..., 1; 0,1,2,...k N n= + =  where 
n

kP  is the first 

derivative and 
n

kQ  the second derivative of the cubic spline 

function at the point 
kx  at time .n t  Eq. (16) can be 

written in the explicit form:  

         ( )1 1 ,n n n n

k k k kC t uP t DQ t K C+ =   +   + −          (28) 
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In this method we present a cubic spline interpolation 

scheme that satisfies the condition (19) with the requirement 

that 
1 1

n nuP DQ=  and 
1 1.

n n

N NuP DQ+ +=  These imply that 

1 1

n nu
Q P

D
=  and 

1 1

n n

N N

u
Q P

D
+ +=  (compare with natural 

cubic spline where 
1 10 ; 0n n

NQ Q += = ). The values of 

n

jP can then be calculated from the following system:  

                                       ,AP d=                                     (29) 

where 

( )

( )

2 1

2 2

3 3

1 1

1

2 1 0 0 0 . . . 0 0 0
2

2 0 0 . . . 0 0 0

0 2 0 . . . 0 0 0

. .
,

. .

. .

0 0 0 0 0 . . . 2

4
0 0 0 0 0 . . . 0 1

2

n n

N N

u x x

D

D u x x

D

 

 

 − −

+

− 
+ 

 
 
 
 
 
 
 
 
 
 
 − −
 
 

                                                                                          (30) 

P and d are column vectors,  

1 2 3 1, , ,..., ,
T

n n n n n

N NP P P P P P +
 =  

 

and 

1 2 3 1, , ,..., , ,
T

n n n n n

N Nd d d d d d +
 =  

 

2 1
1

2 1

3 ,
n n

n C C
d

x x

 −
=  

− 

 

( ) ( )1 1

1

3 3 ,n n n n nk k
i k k k k

k k

d C C C C
h h

 
+ −

+

= − + −  for 2,3,..., ,k N=  

1
1

1

3 ,
n n

n N N
N

N N

C C
d

x x

+
+

+

 −
=  
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and where 
( ) ( )

1

1 1

, 1 .k k
k k k

k k k k

h h

h h h h
  +

+ +

= = − =
+ +

 For 

this case , 2,3,...,n

kQ k N= can be obtained from 

( )
1 1

2

1 11

6 4 2 ,
n n n n

n k k k k
k

k k k kk k

C C P P
Q

x x x xx x

+ +

+ ++

−
= − −

− −−
     (31) 

while 
1

nQ  and 
1

n

NQ +
 are calculated directly using the 

formulae already given above. The stability condition of the 

FTCS approach is used in this study. 

IV. NUMERICAL EXPERIMENTS 

The measured concentration of groundwater pollutants 

beneath a landfill and in the area around it. The examined 

region is 1.0 km long overall, which is in line with the 

longitudinal distance. Leachate from a landfill is released 

into the earth as a source of pollution. The parameters for 

pollutants at the dump under consideration are 
2

0 0 00.71 / , 1.0 / , 0.60 /D km year C kg l u km year−= = =

 and 11 .a km−=  The numerical experiment discretizes time 

and space by 0.1x km =  and 0.0001t =  year, 

respectively. The Special A-D Cubic Spline approach, the 

Crank-Nicolson method, the upwind explicit method, and 

the natural cubic spline method are used to approximate the 

groundwater concentration. An analytical solution to the 

ideal advection-diffusion problem, as suggested in [27], is 

obtained. 

   
( )

( )
( )

( )
( )

1

0

0
0

0

0

ln 1
1

2
, .

2 ln 1
1

2

ax
ax erfc t

a D tC
C x t

ax
ax erfc t

a D t







−
  +
 + − 

   
=  

 + 
+ + +    

  

%  (33) 

where  

                              ( )2

0 0 0 ,au a D = −                           (34) 

                   
2

0 0 0
0 02

0 0

,
4 2

u aD
au

a D D




+
= + =               (35) 

                                           0

0

.
u

aD
 =                               (36) 

If we employ the natural cubic spline method, in Eqs. 

(15)-(19), we obtain the estimated groundwater pollution 

along the examined area for a period of one year, as 

indicated in Table I and Figs. 1 and 2. We use the Crank-

Nicolson method, in Eqs. (20)-(22), the estimated 

concentration of groundwater pollutants along the 

longitudinal area under consideration is obtained in Table II 

and Figs. 3 and 4. Utilizing the upwind explicit scheme, we 

get the estimated concentration of groundwater pollutants in 

Figs. 5 and 6 as well as Table III using Eqs. (23)-(25). We 

derive the estimated groundwater pollutant concentration in 

Figs. 7 and 8 and Table IV using the special A-D cubic 

spline method, which is expressed in Eqs. (27)–(31). The 

comparison of analytical solution, the natural cubic spline, 

the Crank-Nicolson method, the upwind explicit method and 

the Special A-D Cubic Spline method at 0.5 year, as shown 

in Figs. 9.  
 
 

TABLE I  

ESTIMATED GROUNDWATER POLLUTANT CONCENTRATION 

OVER A CONSIDERED AREA BETWEEN 0.1-1.0 YEARS USING THE 

NATURAL CUBIC SPLINE METHOD 

 

( ),C x t  

        x  

t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7936 0.6175 0.4762 0.3664 0.2841 

0.3 1.0000 0.8930 0.8024 0.7297 0.6727 0.6293 

0.5 1.0000 0.9310 0.8737 0.8287 0.7939 0.7678 

0.7 1.0000 0.9463 0.9025 0.8686 0.8428 0.8236 

1.0 1.0000 0.9540 0.9170 0.8887 0.8675 0.8518 

 

        x  

t  0.6 0.7 0.8 0.9 1.0  

0.1 0.2252 0.1859 0.1629 0.1535 0.1532  

0.3 0.5978 0.5765 0.5639 0.5587 0.5586  

0.5 0.7489 0.7363 0.7288 0.7258 0.7257  

0.7 0.8099 0.8007 0.7954 0.7932 0.7931  

1.0 0.8406 0.8332 0.8289 0.8271 0.8271  

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2459-2465

 
______________________________________________________________________________________ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.  Groundwater pollutant by using the natural cubic spline method at 

0.1, 0.3, 0.5, 0.7 and 1.0 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 2. The surface plot of groundwater pollutant by using the natural cubic 

spline method. 

 
TABLE II  

ESTIMATED GROUNDWATER POLLUTANT CONCENTRATION 

OVER A CONSIDERED AREA BETWEEN 0.1-1.0 YEARS USING THE 

CRANK-NICOLSON  METHOD 

 

( ),C x t  

        x  

t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7788 0.5972 0.4526 0.3399 0.2538 

0.3 1.0000 0.8569 0.7367 0.6354 0.5498 0.4773 

0.5 1.0000 0.8783 0.7746 0.6901 0.6163 0.5529 

0.7 1.0000 0.8884 0.7951 0.7161 0.6485 0.5901 

1.0 1.0000 0.8960 0.8094 0.7362 0.6736 0.6194 

        x  

t  0.6 0.7 0.8 0.9 1.0  

0.1 0.1888 0.1404 0.1046 0.0786 0.0598  

0.3 0.4157 0.3633 0.3186 0.2804 0.2477  

0.5 0.4980 0.4502 0.4084 0.3717 0.3394  

0.7 0.5393 0.4948 0.4556 0.4208 0.3899  

1.0 0.5722 0.5307 0.4940 0.4614 0.4321  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.  Groundwater pollutant by using the Crank-Nicolson method at 0.1, 

0.3, 0.5, 0.7 and 1.0 years. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig 4. The surface plot of groundwater pollutant by using Crank-Nicolson 

method. 

 

TABLE III 

ESTIMATED GROUNDWATER POLLUTANT CONCENTRATION 

OVER A CONSIDERED AREA BETWEEN 0.1-1.0 YEARS USING THE 

UPWIND EXPLICIT  METHOD 

 

( ),C x t  

        x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7857 0.6081 0.4651 0.3524 0.2651 

0.3 1.0000 0.8607 0.7427 0.6424 0.5570 0.4840 

0.5 1.0000 0.8812 0.7808 0.6952 0.6215 0.5577 

0.7 1.0000 0.8909 0.7989 0.7205 0.6530 0.5943 

1.0 1.0000 0.8983 0.8129 0.7402 0.6776 0.6232 

        x  
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.1983 0.1477 0.1095 0.0810 0.0598  

0.3 0.4215 0.3679 0.3218 0.2820 0.2477  

0.5 0.5021 0.4535 0.4107 0.3729 0.3394  

0.7 0.5429 0.4979 0.4575 0.4218 0.3899  

1.0 0.5755 0.5333 0.4958 0.4623 0.4321  
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Fig 5.  Groundwater pollutant by using the upwind explicit method at 0.1, 

0.3, 0.5, 0.7 and 1.0 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 6. The surface plot of groundwater pollutant by using the upwind 

explicit method. 

 

 

TABLE IV 

ESTIMATED GROUNDWATER POLLUTANT CONCENTRATION 

OVER A CONSIDERED AREA BETWEEN 0.1-1.0 YEARS USING THE 

SPECIAL A-D CUBIC SPLINE METHOD 

 

( ),C x t  

        x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7936 0.6176 0.4763 0.3666 0.2844 

0.3 1.0000 0.8931 0.8027 0.7300 0.6731 0.6298 

0.5 1.0000 0.9311 0.8740 0.8291 0.7944 0.7684 

0.7 1.0000 0.9465 0.9028 0.8691 0.8434 0.8243 

1.0 1.0000 0.9542 0.9173 0.8892 0.8681 0.8525 

        x  
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.2255 0.1862 0.1634 0.1541 0.1539  

0.3 0.5984 0.5772 0.5647 0.5597 0.5596  

0.5 0.7497 0.7371 0.7298 0.7268 0.7268  

0.7 0.8107 0.8017 0.7964 0.7943 0.7943  

1.0 0.8415 0.8342 0.8299 0.8283 0.8283  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.  Groundwater pollutant by using the special A-D cubic spline method 

at 0.1, 0.3, 0.5, 0.7 and 1.0 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 8. The surface plot of groundwater pollutant by using the special A-D 

cubic spline method. 

 
Fig 9.  The comparison of analytical solution, the natural cubic spline, the 

Crank-Nicolson method, the upwind explicit method and the Special A-D 

cubic spline method at 0.5 year. 

V. DISCUSSION 

The natural cubic spline method, the Crank-Nicolson 

method, the upwind explicit method, and the special A-D 

cubic spline method give good agreement for approximated 

groundwater pollutant concentration in an ideal case, as 

shown in Figs. 1, 3, 5, and Fig. 7. The groundwater pollution 
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measurement is simulated over a long time span, 

approximately 0-1.0 years, as Tables I–IV demonstrate.  The 

surface plot of groundwater pollutants is shown in Figs. 2, 4, 

6, and 8. The comparison of the analytical solution, the 

natural cubic spline, the Crank-Nicolson method, the 

upwind explicit method, and the Special A-D cubic spline 

method at 0.5 years is shown in Figs. 9.  

VI. CONCLUSION 

A one-dimensional groundwater pollutant concentration 

model is introduced. The techniques of the initial condition 

and boundary conditions of the groundwater pollutant 

concentration model are proposed. The numerical solutions 

of pollutants in groundwater are estimated using the natural 

cubic spline, the Crank-Nicolson method, the upwind 

explicit method, and the Special A-D cubic spline method 

approach. The upwind explicit method is closest to the 

analytical solution. The simulation that is being shown can 

be used to evaluate the quality of groundwater that has been 

contaminated for more than ten years. The proposed upwind 

explicit method analysis provides close to exact and 

properly accurate solutions. The suggested numerical model 

can simulate multiple scenarios in five to ten years.  
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