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Abstract—Rogue waves are characterized by
their unexpectedly large amplitudes and highly local-
ized displacements, originating from either an equi-
librium state or a relatively calm background. Ex-
treme wave events have attracted significant atten-
tion due to their potential hazards to oceanic and
optical systems. In this study, we utilize the bilinear
Kadomtsev-Petviashvili (KP) reduction method and
the W-treatment, to systematically investigate rogue
wave solutions of the nonlinear Schrödinger (NLS)
equation. Furthermore, we explore the evolution of
rogue waves as parameters change. This approach al-
lows for a robust derivation and thorough analysis of
accurate rogue wave solutions, providing greater un-
derstanding of their formation and evolutionary pro-
cesses.

Keywords: the NLS equation, rogue waves, bilinear

KP method, W-treatment

1 Introduction
The investigation of integrable properties and the for-

mulation of exact solutions for nonlinear evolution equa-
tions (NLEEs) are crucial to our understanding nonlin-
ear phenomena [1–4] in physics and mathematics. Rogue
waves, alternatively termed as freak, monster, killer, ex-
treme, or abnormal waves, are emerging as a significant
focus within the physics community. Derived from the
discipline of oceanography, this term delineates the oc-
currence of extensive, unpredictable waves on the ocean
surface that arise suddenly and pose substantial risks to
sea-faring vessels, including large ships and ocean liners.
These impressive waves are not only indicative of ocean-
ic anomalies, but they also parallel extreme phenomena
observed in optical fibers [5–7]. Recently, rogue waves
have drawn considerable interest in physics and nonlin-
ear wave research, leading to a wealth of research.

The pursuit of comprehending and forecasting these
waves has resulted in the derivation of analytical expres-
sions for rogue waves within a plethora of integrable non-
linear wave equations. Of particular significance is the
NLS equation [8, 9], which has played a crucial role in
rogue wave studies. Furthermore, the derivative NLS e-
quation [10,11], the three-wave interaction equation [12],
and the Davey-Stewartson equations [13,14] have signif-
icantly contributed to our understanding of these waves.
In addition to these, a myriad of other equations [15–17]
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have enriched the growing body of knowledge on rogue
waves, each providing distinct insights and augmenting
the collective comprehension of these enigmatic natural
phenomena.

In this study, we examine rogue waves within the con-
text of the focusing NLS equation (1.1).

iut − uxx − 2|u|2u = 0. (1.1)

Upon applying the variable transformation u → ue−2it,
the NLS equation (1.1) morphs into

iut − uxx − 2(|u|2 − 1)u = 0. (1.2)

where
u = u(x, t)→ 1, x, t→ ±∞. (1.3)

To present the rational solutions in the NLS equation,
we introduce Schur polynomial Sn(t) through a generat-
ing function in the following manner.

∞∑
n=0

Sn(t)ξn = exp(

∞∑
k=1

tkξ
k),

where t = (t1, t2, . . .).
Utilizing the subsequent transformation,

u =
g

f
, (1.4)

the NLS equation (1.2) is initially converted into a bilin-
ear form, {

(D2
x + 2)f · f − 2|g|2 = 0,

(D2
x − iDt)g · f = 0,

(1.5)

where f is a real variable and g is a complex variable, D
corresponds to the Hirota bilinear operator [18], defined
as follows:

Dm
x D

n
y f ·g = (

∂

∂x
− ∂

∂x′
)m(

∂

∂y
− ∂

∂y′
)nf(x, y)g(x′, y′)|x′=x,y′=y.

(1.6)
Subsequently, we examine a (2 + 1)-dimensional gen-

eralization of Eq.(1.5),{
(DxDy + 2)f · f − 2gh = 0,

(D2
x − iDt)g · f = 0,

(1.7)

where h represents an additional complex variable.
The rogue waves of Eq.(1.1) have been thoroughly ex-

amined using the KP reduction method [13]. In this
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study, we address the resolution of rogue waves within
Eq.(1.1) by synergistically integrating the KP reduction
method with the treatment in Ref. [19]. This integrated
approach presents a solution that is both coherent and
articulate.

This paper proceeds as follows: we get two conclusion-
s regarding the higher-order rogue waves of Eq.(1.2) in
section 2. The specific proofs are provided in section 3.
In section 4, we examine the dynamics of two types of
rogue waves as parameters change. In conclusion, section
5 encapsulates the principal discoveries of this study and
deliberates on their prospective implications for future
research endeavors.

2 High-order rogue wave solutions
The general rogue waves of the NLS equation (1.2) are

delineated by Theorem 1 and Theorem 2.

Theorem 1 The NLS equation, represented as equation
(1.2) under the boundary conditions of equation (1.3),
accepts N−th order rational and nonsingular rogue wave
solutions

u =
τ1
τ0
. (2.1)

where

τn = det
1≤k,l≤N

(mn
2k−1,2l−1). (2.2)

the matrix elements are delineated by

mn
kl =

k∑
i=0

l∑
j=0

ai
(k − i)!

a∗j
(l − j)!

(f(µ)∂µ)k−i(f(ν)∂ν)l−j

× (
1

µ+ ν
(−µ

ν
)ne(µ+ν)x−(µ

2−ν2)it)|µ=ν=1, (2.3)

with

f(µ) = µ, f(ν) = ν, (2.4)

”∗” denotes complex conjugation, ak represents the com-
plex constants.

In Theorem 1, mkl is articulated utilizing derivatives
in relation to the auxiliary parameters µ and ν. Alter-
natively, matrix elements can be depicted solely through
algebraic means by leveraging elementary Schur polyno-
mials. Specifically, the matrix element mn

k,l referred to
in Eq.(2.3) can be articulated as shown below.

Theorem 2 The matrix element mkl in Eq.(2.3) can be
articulated through the purely algebraic expression

mn
kl =

min(k,l)∑
v=0

ΦkvΨlv, (2.5)

where

Φkv = (
1

2
)v
k−v∑
i=0

aiSk−v−i(x
+ + r + vs),

Ψlv = (
1

2
)v

l−v∑
j=0

a∗jSl−v−j(x
− + r + vs), (2.6)

and vectors x± = (x±1 , x
±
2 , . . .), r = (r1, r2, . . .), s =

(s1, s2, . . .) are defined by

x±l =
x∓ 2lit

l!
,

∞∑
l=1

rlξ
l = − ln(e

ξ
2 cos

ξ

2
),

∞∑
l=1

slξ
l = ln

2

ξ
tanh

ξ

2
. (2.7)

3 Derivation and proof of of rogue-wave
solutions

In this section, the proof of Theorems 1 and 2 as de-
scribed. Our approach is based on the Hirota’s bilinear
representation of integrable equations [18]. We have also
taken into consideration the frequent occurrence of such
bilinear equations within the KP hierarchy [20]. There-
fore, when specific reduction constraints are applied to
the solutions of the KP hierarchy, they furnish solutions
for the pristine integrable system. The method yields
the determinant-type solutions. It is remarkable that it
helps in constructing solutions of higher-dimensional in-
tegrable equations much more easily than those of lower-
dimensional ones.

The derivation will be presented as follows. In order to
get solutions to the Eq.(1.5), our consideration extend-
s to a (2 + 1)-dimensional generalization Eq.(1.7). We
commence by formulating a broad category of algebraic
solutions of Eq.(1.7) using Gram determinants. Follow-
ing this, we narrow down these solutions to ensure they
meet the dimension-reduction condition.

fx − fy = C1f, (3.1)

and

h = g∗, f : real, (3.2)

where C1 is some constant. In this scenario, the higher-
dimensional bilinear equation (1.7) is simplified to

{
(D2

x + 2)f · f − 2gh = 0,

(D2
x − iDt)g · f = 0.

(3.3)

Then, we apply the condition (3.2) to the algebraic so-
lution. Upon further analysis, the bilinear system (3.3)
is reducible to the bilinear NLS equation (1.5). Conse-
quently, Eq. (1.7) provides the general high-order rogue
wave solutions to the NLS equation (1.2).

Next, we shall adhere to the aforementioned frame-
work to deduce general rogue wave solutions for the NL-
S equation (1.2). First, we deduce algebraic solutions
for the higher-dimensional bilinear equation (1.7). Ac-
cording to Lemma 1 in Ref. [13], we understand that the

function m
(n)
kl , δ

(n)
k , φ

(n)
l is functions of x1, x2, x−1 fulfill-
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ing the differential and difference relations as follows

m
(n)
kl,x1

= δ
(n)
k φ

(n)
l ,

m
(n)
kl,x2

= δ
(n+1)
k φ

(n)
l + δ

(n)
k φ

(n−1)
l ,

m
(n)
kl,x−1

= −δ(n−1)k φ
(n+1)
l ,

m
(n+1)
kl = m

(n)
kl + δ

(n)
k φ

(n+1)
l ,

δ
(n)
k,xi

= δ
(n+i)
k , φ

(n)
l,xi

= −φ(n−i)l , (i = 1, 2,−1). (3.4)

It can be inferred that the determinant

τn = det
1≤k,l≤N

(m
(n)
kl ) (3.5)

adheres to the following bilinear equations{
(Dx1

Dx−1
− 2)τn · τn + 2τn+1τn−1 = 0,

(D2
x1
−Dx2

)τn+1 · τn = 0.
(3.6)

Functions m(n), δ(n), φ(n) are introduced for the pur-
pose of this study,

m(n) =
1

µ+ ν
(−µ

ν
)neζ+η,

δ(n) = µneζ ,

φ(n) = (−ν)neη, (3.7)

where

ζ =
1

µ
x−1 + µx1 + µ2x2,

η =
1

ν
x−1 + νx1 + ν2x2. (3.8)

These functions can be readily confirmed to comply with
both differential and difference relations

m(n)
x1

= δ(n)φ(n),

m(n)
x2

= δ(n+1)φ(n) + δ(n)φ(n−1),

m(n)
x−1

= −δ(n−1)φ(n+1),

m(n+1) = m(n) + δ(n)φ(n+1),

δ(n)xi = δ(n+i), φ(n)xi = −φ(n−i), (i = 1, 2,−1). (3.9)

Therefore, be defining

m
(n)
kl = AkBlm

(n),

δ
(n)
k = Akδ

(n),

φ
(n)
l = Blφ

(n), (3.10)

where Ak, Bl are differential operators with respect to µ
and ν respectively as

Ak =
k∑
i=0

ai
(k − i)!

[f1(µ)∂µ]k−i,

Bl =
l∑

j=0

bj
(l − j)!

[f2(ν)∂ν ]l−j ,

f1(µ) and f2(ν) are the arbitrary functions of µ
and ν, ai, bj are the complex constants, thus these

m
(n)
kl , δ

(n)
k , φ

(n)
l satisfy the differential and difference rela-

tions since Ak, Bl commute with differentials ∂xk . Lem-
ma 1 in Ref. [13] shows that for an arbitrary indices
sequence (k1, k2, . . . , kN ; l1, l2, . . . , lN ), the determinant

τn = det
1≤u,v≤N

(m
(n)
kv,lu

). (3.11)

conforms to to the higher-dimensional bilinear equation.
The aforementioned results represent a comprehensive

and highly adaptable category of algebraic solutions to
the bilinear equation, characterized by a significant de-
gree of freedom. Nevertheless, only a select few of these
solutions can simultaneously meet both the dimension
reduction and reality conditions. In the next step, we
add constraints to the solutions to force them to satisfy
the reality condition and the dimension reduction condi-
tion.

We commence with a general dimension reduction con-
dition

τn,x1 + βτn,x−1 = C1τn, (3.12)

where β and C1 are undetermined constants. To com-
pute the left-hand side of Eq.(3.12), we observe from the

defining relations in Eq.(3.7) and (3.10) of m(n) and m
(n)
kl

that

m
(n)
kl,x1

+ βm
(n)
kl,x−1

= AkBl(Q1(µ) +Q2(ν))m(n), (3.13)

where

Q1(µ) = µ+
β

µ
Q2(ν) = ν +

β

ν
. (3.14)

Moving forward, we propose the adoption of novel vari-
ables W1 and W2 through

Q1(µ) = W1(µ) +
1

W1(µ)
,

Q2(ν) = W2(ν) +
1

W2(ν)
. (3.15)

With respect to these novel variables, we redefine func-
tions f1(µ), f2(ν) in differential operators Ak, Bl are

f1(µ) =
W1(µ)

W ′1(µ)
, f2(ν) =

W2(ν)

W ′2(ν)
, (3.16)

under the definition

f1(µ)∂µ =
W1(µ)

W ′1(µ)
∂µ = W1(µ)∂W1(µ), (3.17)

thus

AkQ1(µ)m(n)

= (
k∑
i=0

ai
(k − i)!

(W1∂W1)k−i)(W1 +
1

W1
)m(n)

=
k∑
i=0

1

i!
(W1(µ) + (−1)i

1

W1(µ)
)Ak−im

(n), (3.18)
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BlQ2(ν)m(n)

=
l∑

j=0

1

j!
(W2(ν) + (−1)j

1

W2(ν)
)Bl−jm

(n), (3.19)

m
(n)
kl,x1

+ βm
(n)
kl,x−1

=
k∑
i=0

1

i!
(W1(µ) + (−1)i

1

W1(µ)
)mn

(k−i)l

+
l∑

j=0

1

j!
(W2(ν) + (−1)j

1

W2(ν)
)mn

k(l−j). (3.20)

The selected values for µ and ν are represented as µ0

and ν0. Given that the treatment for both µ0 and ν0
is identical, we will focus solely on the consideration of
µ0 in subsequent discussions. Let W1(µ0) = 1, ensuring
that the odd-i terms in the aforementioned summation
are effectively eliminated. Then Q1(µ0) = 2. Differen-
tiating Q1(µ) = W1(µ) + 1

W1(µ)
with respect of µ, we

get

W ′1(µ) =
Q′1(µ)

1−W−21 (µ)
. (3.21)

From the constraints Q1(µ0) = 2, Q′1(µ0) = 0, we can
derive µ0 = 1, β = 1, An analogous treatment of ν0 lead
to ν0 = 1.

Given the aforementioned selections for µ and ν, E-
q.(3.20) can be simplified to

m
(n)
kl,x1

+m
(n)
kl,x−1

|µ=1,ν=1

= 2
k∑

i=0,i:even

1

i!
m

(n)
(k−i)l|µ=1,ν=1

+ 2
l∑

j=0,j:even

1

j!
m

(n)
k(l−j)|µ=1,ν=1, (3.22)

This key identity demonstrates that at the selected (µ, ν)

values, m
(n)
kl,x1

+m
(n)
kl,x−1

can be expressed as linear com-

binations of m
(n)
kl and other m

(n)

k̂l̂
terms of lower row/-

column indices with differences of 2. Under the struc-
tural relation, the determinant (3.11) with index selec-
tions (k1, k2, . . . , kN ; l1, l2, . . . , lN ) satisfies

τn = det
1≤k,l≤N

(m
(n)
(2k−1)(2l−1)), (3.23)

following the computational methodology presented in
Ref. [13], it would demonstrate that the function τn ad-
heres to the dimension reduction property

τn,x1
+ τn,x−1

= 4Nτn. (3.24)

Upon substituting the dimension reduction condition
into the higher-dimensional bilinear equation (3.6), we
obtain{

(D2
x1

+ 2)τn · τn + 2τn+1τn−1 = 0,

(D2
x1
−Dx2

)τn+1 · τn = 0.
(3.25)

Now, we aim to get more explicit representations of
f1(µ) and f2(ν) as shown in Eq.(3.16). Form Eq.(3.15),
we can infer that

(W1(µ)− 1

W1(µ)
)2 = Q2

1(µ)− 4. (3.26)

Differentiating the first equation in (3.15) with respect
to µ, we derive

W ′1(µ)

W1(µ)
(W1(µ)− 1

W1(µ)
) = Q′1(µ). (3.27)

By applying these two equations, as well as the definition
of f1(µ), we obtain

f1(µ) = µ.

In a similar computational approach, the function f2(ν)
can also be get as follows.

f2(ν) = ν.

Then, we define

x1 = x,

x2 = −it, (3.28)

and let x−1 = 0. In addition, the complexity of conjugacy
and regularity of solutions are attributable to Ref. [13].
The NLS Equation Eq.(1.2) with boundary conditions
(1.3), accepts rational and nonsingular rogue wave solu-
tions of the N−th order

q =
τ1
τ0
, (3.29)

where
τn = det

1≤k,l≤N
(mn

(2k−1)(2l−1)), (3.30)

the elements of the matrix are determined by

mn
kl =

k∑
i=0

l∑
j=0

ai
(k − i)!

a∗j
(l − j)!

(µ∂µ)k−i(ν∂ν)l−j

× (
1

µ+ ν
(−µ

ν
)ne(µ+ν)x−(µ

2−ν2)it)|µ=ν=1. (3.31)

In light of the preceding results, Theorem 1 has been
established.

Subsequently, we develop a rigorous demonstration of
Theorem 2 through careful simplification of the rogue
wave solutions. We develop the generator G for the dif-
ferential operators (µ∂µ)i(ν∂ν)j as follows.

G =
∞∑
i=0

∞∑
j=0

εi

i!

ξj

j!
(µ∂µ)i(ν∂ν)j , (3.32)

and utilizing Eq.(3.17), we get

G =
∞∑
i=0

∞∑
j=0

εi

i!

ξj

j!
(∂lnW1

)i(∂lnW2
)j

= exp(ε∂lnW1
+ ξ∂lnW2

). (3.33)
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Therefore, for any function F (W1,W2), the following
holds true[27]

GF (W1,W2) = F (eεW1, e
ξW2). (3.34)

Then, we implement the generator on m(0). Following
the dimensional reduction (x−1 = 0) and the establish-
ment of variable relations(3.28), the term m(0) is simpli-
fied from its initial form in (3.7) to

m(0) =
1

µ+ ν
e(µ+ν)x−(µ

2−ν2)it. (3.35)

For effective application of Eq.(3.34), we reformulate the
parameters µ and ν in m(0) as functional combinations
of W1 and W2 as follows.

µ+
1

µ
= W1 +

1

W1
,

ν +
1

ν
= W2 +

1

W2
, (3.36)

then, we derive

µ(W1) = W1,

ν(W2) = W2. (3.37)

Now, implementing Eq.(3.34) on the function m(0)

yields

Gm(0) =
1

µ(eεW1) + ν(eξW2)
exp((µ(eεW1) + ν(eξW2))x

− (µ2(eεW1)− ν2(eξW2))it). (3.38)

Due to our earlier results µ = ν = 1, we have W1 =
W2 = 1, thus

1

m(0)
Gm(0) =

2

µ(eε) + ν(eξ)
exp((µ(eε) + ν(eξ)− 2)x

− (µ2(eε)− ν2(eξ))it). (3.39)

Furthermore, we develop the right-hand side as a bi-
variate Taylor series in the parameters ε and ξ. To ex-
pand the fraction in front of the exponential term, we
observe f(ε) and g(ξ),

2

f(ε) + g(ξ)
= exp(− ln

(f(ε) + g(0))(g(ξ) + f(0))

2(f(0) + g(0))
)

×
∞∑
v=0

(
f(ε)− f(0)

f(ε) + g(0)

g(ξ)− g(0)

g(ξ) + f(0)
)v. (3.40)

Therefore, when we substitute

f(ε) = µ(eε) = eε, g(ξ) = ν(eξ) = eξ

into the equation above, we obtain the following result,

exp(− ln
(f(ε) + g(0))(g(ξ) + f(0))

2(f(0) + g(0))
)

= exp(− ln
eε + 1

2
− ln

eξ + 1

2
)

= exp(− ln(e
ε
2 cosh

ε

2
)− ln(e

ξ
2 cosh

ξ

2
))

= exp(
∞∑
k=0

γk(εk + ξk)), (3.41)

where − ln(e
ξ
2 cosh ξ

2 ) =
∞∑
k=1

γkξ
k.

∞∑
v=0

(
f(ε)− f(0)

f(ε) + g(0)

g(ξ)− g(0)

g(ξ) + f(0)
)v

=
∞∑
v=0

(
eε − 1

eε + 1

eξ − 1

eξ + 1
)v

=
∞∑
v=0

(
εξ

4
)v exp(v ln

2 tanh ε
2

ε
+ v ln

2 tanh ξ
2

ξ
)

=
∞∑
v=0

(
εξ

4
)v exp(v

∞∑
k=0

Sk(εk + ξk)), (3.42)

where

ln(
2

ξ
tanh

ξ

2
) =

∞∑
k=1

Skξ
k.

In relation to the exponential term in Eq.(3.39), we find
that

exp((µ(eε) + ν(eξ)− 2)x− (µ2(eε)− ν2(eξ))it)

= exp((eε + eξ − 2)x− (e2ε − e2ξ)it)

= exp(
∞∑
k=1

εk

k!
(x− 2kit) +

∞∑
k=1

ξk

k!
(x+ 2kit)). (3.43)

Combining all these results, Eq.(3.39) is simplified to

1

m(0)
Gm(0) =

∞∑
v=0

(
εξ

4
)v exp(

∞∑
k=1

(rk + x+k + vSk)εk

+
∞∑
k=1

(rk + x−k + vSk)ξk), (3.44)

where x±k = x∓2kit
k! . Subsequently, by equating the coef-

ficients of εkξl on both sides, we arrive at the following
derivation.

1

m(0)

1

k!l!
(f1(µ)∂µ)k(f2(ν)∂ν)lm(0)|µ=ν=1

=

min(k,l)∑
v=0

(
1

4
)vSk−v(x

+ + rk + vsk)Sl−v(x
− + rk + vsk).

(3.45)

Thus, we get

1

m(0)
AkBlm

(0)|µ=ν=1

=
k∑
i=0

l∑
j=0

aia
∗
j

min(k−i,l−j)∑
v=0

[
1

4v
Sk−i−v(x

+
i + ri + vsi)·

Sl−j−v(x
−
i + ri + vsi)]

=

min(k,l)∑
v=0

1

4v

k−v∑
i=0

l−v∑
j=0

[aia
∗
jSk−i−v(x

+
i + ri + vsi)·

Sl−j−v(x
−
i + ri + vsi)]

=

min(k,l)∑
v=0

ΦkvΨlv, (3.46)
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Figure 1: The three-dimensional structure when a1 = 0.

where

Φkv = (
1

2
)v
k−v∑
i=0

aiSk−v−i((x)+ + r + vs),

Ψlν = (
1

2
)v

l−v∑
j=0

a∗jSl−v−j((x)− + r + νs). (3.47)

Theorem 2 is proved.

4 Analysis of rogue waves
In the section, we explore the dynamical properties of

the obtained rogue wave solutions. The first-order rogue
wave emerges when we set N = 1 and a1 = 0 in Theorem
2, yielding

u(x, t) =
m

(1)
11

m
(0)
11

=
(x− 2it+ 1

2 )(x+ 2it− 3
2 ) + 1

4

(x− 2it− 1
2 )(x+ 2it− 1

2 ) + 1
4

. (4.1)

Fig.1 illustrates the three-dimensional structure and
Fig.2 shows the density profile of the rogue wave when
a1 = 0. The corresponding density profiles are depicted
in Fig. 3-4 for values of a1 = −5 and a1 = 5, respec-
tively. It is readily apparent that the symmetry center
of the rogue wave shifts as the parameter a1 varies.

To get the second-order rogue wave, we set N =
2, a1 = a2 = 0 in Theorem 2, when a3 = 1,

u(x, t) = 1 +
Λ

∆
, (4.2)

where

Λ = −216x− 144x2 + 96x3 − 48x4 − 1152t2 + 1152xt2

− 1152x2t2 − 3840t4 + 24it(128t4 + 64x2t2 + 8x4 + 12x

− 64xt2 − 16x3 + 32t2 − 12) + 144 + 1152ixt− 576it,

(4.3)

Figure 2: The density profiles when a1 = 0.

Figure 3: The density profiles when a1 = −5.

∆ = 153− 36x+ 216x2 − 168x3 + 72x4 − 48x5 + 16x6

+ 96t2(2x4 − 4x3 + 3x+ 3) + 384t4(2x2 − 2x+ 5)

+ 1024t6 + 1152xt2 − 576t2.

(4.4)

The second-order rogue wave solution can be similarly
captured by varying the parameter a3. Figures 5-7 illus-
trate the three-dimensional wave structures correspond-
ing to a3 values of 1, 2i, and -2i, respectively. In all
cases, the solution manifests as three distinct intensity
peaks that emerge at different spatial and/or temporal
locations. Each peak essentially represents a first-order
Peregrine rogue wave. The results presented above can
be extrapolated to encompass higher order rogue waves.
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Figure 4: The density profiles when a1 = 5.

Figure 5: The three-dimensional structure when a3 = 1.

Through special selection of the free parameters, ak, it is
possible to generate more complex spatio-temporal pat-
terns. However, due to spatial limitations, we have not
included this in our current discussion.

5 Conclusions
In this research, we explore the intriguing phenomenon

of rogue waves, utilizing the advanced mathematical
methodologies of the bilinear KP reduction approach and
the W-technique. In the course of our research, we have
broadened Yang et al.’s framework [13] by generalizing
the matrix elements mn

ij . The original parameters µ and
ν were substituted with universal functions f(µ) and
f(ν) of µ and ν, effectively widening the scope of ap-
plication. Our study provides not only explicit analyti-

Figure 6: The three-dimensional structure when a3 = 2i.

Figure 7: The three-dimensional structure when a3 =
−2i.

cal expressions for the rogue waves but also insight into
their inherent structural characteristics. These findings
elucidate the rogue wave dynamics in nonlinear disper-
sive systems, potentially enhancing wave prediction and
mitigation techniques. Using this method, solutions for
other types of nonlinear integrable systems remain to be
explored. The solutions for other types of nonlinear inte-
grable systems using the method presented in this work
remain to be explored.
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