
Discrete Fractional Alpha Mixed Difference and
Its Sums

Geethalakshmi S, Britto Antony Xavier G, Rexma Sherine V, Abisha M, Saraswathi D and Divya Bharathi S

Abstract—This paper investigates higher-order mixed alpha
operators within the framework of finite difference equations.
We developed theorems and corollaries for integer order (mth

order) anti-difference principle using the (q, h)α difference
operator. Furthermore, we have obtained theorems, supported
by appropriate examples. We lastly examine a GDP model
that is controlled by a fractional differential equation that
incorporates the mixed alpha difference operator.

Index Terms—Closed form, Summation form, Discrete
integration, Discrete Delta operator, Mixed alpha difference
operator, Fractional calculus, Fractional sum.

I. INTRODUCTION

D IFFERENCE equations are meant for discrete
process where as the differential equations deals

with continuous system. The discrete case methodology to
the continuous situation in order to identify closed-form
of fractional order continuous and discrete integration is
discussed in [1]. In [3], the author’s goal is to determine
the relationship between the two fractional operators as
well as q-analogue of the fractional calculus, which are
divisible as q-integrals and q-derivatives. [4] The author of
this paper examines the application of a forward hybrid
delta operator with shift value to obtain a generalized
infinite series of the fractional hybrid summation formula
and the numerical closed form solution of the fractional
order hybrid difference equation. The authors in [5] define
q-difference operator ∆q and give some important findings
on the inverse of the nth−order q-difference operator
using the second-kind Stirling number and the extended
polynomial factorial. Authors in [6] presents an equation
for a three-dimensional q-difference operator. Additionally,
they used the three-dimensional q-difference operator to
deduce other theorems. The authors introduce the operator
and its inverse in [7], from which the sequence and series
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of x-Fibonacci, together along with a number of findings
and theorems are obtained.

Since the authors in [8] were aware of the fundamental
general characteristics of linear difference equation solutions
and because each of these normal forms makes the
successive approximation approach easily applicable, they
have chosen to use the transforming substitution. The
q-symmetric variational calculus was introduced in [9]
which offers a fresh perspective on the study of quantum
calculus. For symmetric quantum variational problems, the
researchers established a sufficient optimality condition as
well as a required Euler-Lagrange type optimality condition.
In order to facilitate the explicit solution of discrete
equations using fractional difference operators on the left
and right, the authors in [10] proposed the contemporary
theory of fractional h-difference equations, the discrete case
methodology to the continuous situation in order to identify
closed-form of fractional order continuous and discrete
integration which is enhanced with practical tools. Also
authors in [2], [12] developed `-nabla integration of f and
discrete fractional integration for factorials and geometric
functions.
[11]Through the lens of discrete fractional calculus, the
author explains monotonicity and convexity. Additionally,
the nonlocal nature of the fractional difference produces
unexpected results regarding monotonicity and convexity
in an introductory calculus course. Moreover, the fractional
difference’s nonlocal character opens up intriguing
possibilities for biological modeling.

In [13], the researcher yields an extremely intriguing
q-constant. The fractional difference is defined in a new way
in [14]. Based on this concept, other qualities were defined,
such as the significant Leibniz rule and a broad exponential
law. Equations involving second-order linear differences are
then solved using those findings. [15] This work presents a
class of difference equations that can be solved in closed
form. The Asymptotic actions of their answers in a specific
example is studied using the obtained formulae for the
solutions.

[16] The author distinguishes between two fundamentally
distinct scenarios based on whether or not all of the
characteristic equation’s roots are finite and distinct
from zero. The authors in [17] studied the derivation of
elementary difference operators (factorial polynomials) and
difference equations utilizing the operators ∆ and E. In
[18], the researcher used the Generalized infinite series of
fractional Fibonacci summation formula and the fractional
order Fibonacci difference equation which can be solved
numerically and in closed form using the forward Fibonacci
delta operator with many parameters and its inverse on real
valued functions. The goal of article [19] is to examine
whether complete function solutions with entire function
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coefficients exist for linear n-th order homogeneous and
non-homogeneous q-difference equations. If such solutions
do exist, then the characteristics of those solutions will
be examined in relation to the relationship between the
order apparent of the solutions and the coefficients. The
author in [20] is responsible for developing the analytic
theory of a q-difference system as well as the analytic
theory in the case where there are no restrictions on the
characteristic equation’s roots. The golden section and the
connections between the Fibonacci and Lucas numbers
are introduced by the author [21]. In [22], the author uses
difference operators to generate functions and approximate
summations with appropriate examples. Authors in [23]
discussed about a fundamental study of non-state-dependent
differential-difference equations for simulating the dynamics
of economic growth, including GDP evolution, was
presented by Benhabib and Rustichini (1991). In order to
better understand long-term GDP growth patterns, numerical
methods have been developed in response to subsequent
studies that have highlighted the complexity of solving
state-dependent models analytically, particularly in vintage
capital frameworks. [24] Fractional differential equations
with generalized derivatives have been studied recently for
modeling complicated dynamical systems, such as GDP and
population increase. Existence, uniqueness, and numerical
solutions have been successfully established using strategies
like fixed point theorems and iterative approaches like
Picard iteration.

II. PRELIMINARIES

The literature review study of this research is mostly
focused on [3]. The basic concepts of factorial polynomials,
the fractional sum of order ν > 0, difference and
anti-difference delta operators, and First-order principle of
anti-difference, each of which will be used in the subsequent
chapters are provided in this section.
The authors in [3] used the following definitions: For n ∈ N
and t ∈ R, The polynomial function of Factorial t(n) is
defined by

t(n) =
n−1∏
r=0

(t− r). (1)

Also, for ν ∈ (−∞,∞), the νth factorial polynomial is

defined by t(ν) =
Γ(1 + t)

Γ(1 + t− ν)
, 1 + t− ν and

1 + t /∈ −N0 = {0,−1,−2, · · · }. (2)

Defined at s, the νth fractional Taylor monomial is

hν(s, t) =
(t− s)(ν)

Γ(1 + ν)
, (3)

where (t− s)(ν) is obtained by changing t into t− s in (2).

Definition II.1. [3] Let q, h, n ∈ N and t ∈ R . The (q, h)

polynomial function of factorial k(n)q,h is described by

t
(n)
q,h = t

n−1∏
r=1

(t− (qr + rh)). (4)

Theorem II.2. [3] Let x, y : M q
h → R, m,n ∈ N, t ∈ R

and then the higher order anti-difference principle of (q, h)
difference operator is given by

−m
∆

(q,h)
x(t)−

m−1∑
d=0

n(d)

d!

−(m−d)
∆

(q,h)
x
((
t− h

n−1∑
j=0

qj
)/
qn
)

=

n−1∑
r=m−1

r(m−1)

(m− 1)!
x
((
t− h

r∑
s=0

qs
)/
qr+1

)
. (5)

Theorem II.3. [3] Let x, y : M q
h → R, h ∈ R − {0},

q ∈ R − {0, 1}, t ∈ N and s, ν ∈ R. Then the νth order
anti-difference principle of (q, h) difference equation in terms
of xt(ν, s, q/h) is obtained by

−ν
∆

(q,h)
x(s)− [xt+1(ν, s, q/h)]2

xt+1(ν, s, q/h)− xt+2(ν, s, q/h)
= xt(ν, s, q/h).

(6)

Theorem II.4. [3] Let x, y : M q
h → R, s, α ∈ R, m, t ∈ N

Then the higher order of (q, h)α difference operator is given
by

−m
∆

(q,h)α

x(s)− [xt+1(m, s, (q/h)α)]2

xt+1(m, s, (q/h)α)− xt+2(m, s, (q/h)α)

=
t∑

r=0

xr(m, s, (q/h)α). (7)

Definition II.5. [3] Let x, y : M q
h → R be a function and

α ∈ R. Then the difference operator (q, h)α is defined as

∆
(q,h)α

x(t) = (tq + h)x− αx(t), t ∈ R. (8)

III. ANTI-DIFFERENCE PRINCIPLE OF ALPHA MIXED
OPERATOR

In this, we develop some theorems and corallaries for
integer order summation formula using the (q, h)α mixed
alpha difference operator.

Theorem III.1. Let x, y : M q
h → R, k ∈ R, n ∈ N,

and q > 1, h > 0 then the first order anti-difference
principle of (q, h)α mixed alpha difference operator is given

by
−1
∆

(q,h)α

x(t)−
−1
∆

(q,h)α

αnx
((
t− h

n−1∑
j=0

qj
)/
qn
)

=
n−1∑
r=0

αrx
((
t− h

r∑
s=0

qs
)/
qr+1

)
. (9)

Proof: The proof follows from the definition

x(t) = y(tq + h)− y(t) (10)

and

y(t) = x((t− h)/q) + x
(
(t− h

1∑
r=0

qr)/q2
)

+ x
(
(t− h

2∑
r=0

qr)/q3
)

+ x
(
(t− h

3∑
r=0

qr)/q4
)

+x
(
(t−h

4∑
r=0

qr)/q5
)
+. . .+x

(
(t−h

n−1∑
r=0

qr)/qn
)

(11)
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From the relations (10) and (11), we get

y(t) = x((t− h)/q) + αx
(
(t− h

1∑
r=0

qr)/q2
)

+α2x
(
(t− h

2∑
r=0

qr)/q3
)

+ α3x
(
(t− h

3∑
r=0

qr)/q4
)

+α4x
(
(t− h

4∑
r=0

qr)/q5
)
+ . . .+ αn−1x

(
(t− h

n−1∑
r=0

qr)/qn
)

+ αng
(
(t− h

n−1∑
r=0

qr)/qn
)
. (12)

Since
−1
∆

(q,h)α

x(t) = y(t), then (12) becomes

−1
∆

(q,h)α

x(t)− αn
−1
∆

(q,h)α

x
(
(t− h

n−1∑
r=0

qr)/qn
)

= x((t− h)/q) + αx
(
(t− h

1∑
r=0

qr)/q2
)

+α2x
(
(t− h

2∑
r=0

qr)/q3
)

+ . . .

+αn−1x
(
(t− h

n−1∑
r=0

qr)/qn
)

which completes the proof.

Corollary III.2. Let x, y : M q
h → R, q ∈ R−{0, 1} , n ∈ N,

t, α ∈ R,and q > 1 > 0 then the first order anti-difference
principle of (q, h)α alpha q-difference operator is given by

−1
∆

(q,0)α

x(t)−
−1
∆

(q,0)α

αnx(t/qn) =
n−1∑
r=0

αrx(t/qr+1). (13)

Proof: The Proof follows by Substituting h = 0 in the
equation (9) and we get equation (13).

Corollary III.3. Let x, y : M q
h → R, h ∈ R− {0}, n ∈ N,

t, α ∈ R, and q > 1 > 0 then the first order anti-difference
principle of (q, h)α alpha h-difference operator is given by

−1
∆

(1,h)α

x(t)−
−1
∆

(1,h)α

αnx(t− nh) =
n−1∑
r=0

αrx(t− (r + 1)h).

(14)

Proof: The Proof follows by Substituting q = 1 in the
equation (9) and we get equation (14).

Remark III.4. The operators
−1
∆

(q,0)α

and
−1
∆

(1,h)α

are denoted

as Iq(α) and ∆−1h(α) operators.

Remark III.5. The operators
−1
∆

(q,0)α

and
−1
∆

(1,h)α

are the first

order q(α) and h(α) difference operators respectively. That

is,
−1
∆

(q,0)α

=
−1
∆
q(α)

and
−1
∆

(1,h)α

=
−1
∆
h(α)

.

IV. HIGHER ORDER ALPHA MIXED FINITE DIFFERENCE
EQUATIONS

In this section, we developed theorems and corollaries for
integer order (mth order) anti-difference principle using the
(q, h)α difference operator.

Theorem IV.1. Let x, y : M q
h → R, t ∈ R, n,m ∈ N Then

the higher order anti-difference principle of (q, h)α mixed
alpha difference operator is given by

−m
∆

(q,h)α

x(t)−
m−1∑
d=0

n(d)

d!
αn−d

−(m−d)
∆

(q,h)α

x
((
t−h

n−1∑
j=0

qj
)
/qn
)

=

n−1∑
r=m−1

r(m−1)

(m− 1)!
αr−(m−1)x

((
t− h

r∑
s=0

qs
)
/qr+m

)
.

(15)
Proof: The similar proof in Theorem II.2 is applying in the
−1
∆

(q,h)α

operator repeatedly on both sides of equation (9).

Corollary IV.2. Let x, y : M q
h → R, t, α ∈ R, q ∈ R−{0},

m,n ∈ N Then the higher order anti-difference principle
of (q, h)α mixed alpha difference operator is given by
−m
∆

(q,0)α

x(t)−
x−1∑
r=0

n(d)

d!
αn−d

−(m−d)
∆

(q,0)α

x(t/qn)

=
n−1∑

r=m−1

r(m−1)

(m− 1)!
αr−(m−1)x(t/qr+1). (16)

Proof: The Proof follows by substituting h = 0 in the
equation (15) then we have (16).

Corollary IV.3. Let x, y : M q
h → R, t, α ∈ R, h ∈ R−{0},

m,n ∈ N Then the higher order anti-difference principle
of (q, h)α mixed alpha difference operator is given by
−x
∆

(1,h)α

x(t)−
m−1∑
d=0

n(d)

d!
αn−d

−(m−d)
∆

(1,h)α

x(t− nh)

=
n−1∑

r=m−1

r(m−1)

(m− 1)!
αr−(m−1)x(t− (r + 1)h). (17)

Proof The Proof follows by substituting q = 1 in the equation
(15) then we get (17).

Corollary IV.4. Consider the conditions given in Theorem
IV.1. Then the m-th order of (q, h)α mixed alpha difference
equation is given by

−m
∆

(q,h)α

x(t) −
n−1∑

r=n−m

n(r−n+m)αn−r

(r − n+m)!

−(n−r)
∆

(q,h)α

x
((
t− h

n−1∑
j=0

qj
)/
qn
)

=

n−m∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
αr−(m−1)

x
((
t− h

m+r−1∑
s=0

qs
)/
qm+r

)
. (18)

Proof: The proof is finished by substitution
m−1∑
d=0

(n(d)/d!)αn−d
−(m−d)

∆
(q,h)α

x
((
t− h

n−1∑
j=0

qj
)/
qn
)

by
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n−1∑
r=n−m

(n(r−n+m)/(r − n+m)!)αn−r

−(n−r)
∆

(q,h)α

x
((
t− h

n−1∑
j=0

qj
)/
qn
)

and

n−1∑
r=m−1

(r(m−1)/(m− 1)!)αr−(m−1)

x
((
t− h

r∑
s=0

qs
)/
qr+1

)
by

n−m∑
r=0

((m+ r − 1)(m−1)/(m− 1)!)αr−(m−1)

x
((
t− h

m+r−1∑
s=0

qs
)/
qm+r

)
in equation (15).

Theorem IV.5. Let x, y : M q
h → R, q ∈ R − {0, 1}, h ∈

R − {0}, m ∈ N and t, α ∈ R. Then for the infinite series
of mth order mixed alpha difference operator principle is,

−m
∆

(q,h)α

x(t) =
∞∑

r=m−1

r(m−1)

(m− 1)!
αr−(m−1)

x
((
t− h

r∑
j=0

qj
)/
qr+m

)
. (19)

Proof: Taking lim
n→∞

in (15) and consider
−m
∆

(q,h)α

x(0) = 0,

we arrive (19).

V. MIXED ALPHA GEOMETRIC FACTORIALS AND ITS
DIFFERENCE EQUATIONS

In this section, we develop the mth order difference
equation for (q, h)α mixed alpha difference operator using
the factorial coefficient functions.

Definition V.1. Let s, q, h, t, α ∈ R, m ∈ N such that

s − h
t∑

j=0

qj/qt+m ∈ M q
h and x : Tq → R be a function.

Then the factorial-coefficient of x at t on (m, s, (q/h)α) is
defined as

xt(m, s, (q/h)α) = αt
(t+m− 1)(m−1)

(m− 1)!

x
((
s− h

t∑
j=0

qj
)/
qt+m

)
. (20)

Corollary V.2. Let x, y : M q
h → R, s, α ∈ R, t ∈ N,

where h > 0, q > 1 and
∞∑

r=t+1
αrx

((
s − h

r∑
j=0

qj
)/
qr+1

)
is convergent. Then

−1
∆

(q,h)α

x(s)−
∞∑

r=t+1

xr(1, s, (q/h)α) =
t∑

r=0

xr(1, s, (q/h)α).

(21)

Proof: Assuming
−1
∆

(q,h)α

x(0) = 0 and Taking lim
n→∞

in

equation (12) , then
−1
∆

(q,h)α

x(t) = x((t− h)/q) + αx
(
(t− h

1∑
r=0

qr)/q2
)

+ α2x
(
(t− h

2∑
r=0

qr)/q3
)

+ . . .+ αrx
(
(t− h

r∑
p=0

qp)/qr+1
)

+ αr+1x
(
(t− h

r+1∑
p=0

qp)/qr+2
)

+ · · · (22)

Replacing ′t′ by ′s′ and ′r′ by ′t′ in (22), we obtain

−1
∆

(q,h)α

x(s) = x
(
(s− h)/q

)
+ αx

(
(s− h

1∑
r=0

qr)/q2
)

+α2x
(
(s− h

2∑
r=0

qr)/q3
)

+ . . .+ αtx
(
(s− h

t∑
r=0

qr)/qt+1
)

+ αt+1x
(
(s− h

t+1∑
r=0

qr)/qt+2
)

+ · · · ,

Hence the proof completes.

Lemma V.3. Let s ∈ R, t ∈ N, α, h ∈ R > 0, q ∈ R−{0, 1}
and the infinite series
∞∑

r=t+1
αru

((
s − h

r∑
j=0

qj
)/
qr+1

)
is convergent. Then

the Alpha (q, h) geometric function is defined as
∞∑

r=t+1
xr(m, s, (q/h)α) =

[xt+1(m, s, (q/h)α)]2

xt+1(m, s, (q/h)α)− xt+2(m, s, (q/h)α)
. (23)

The following Theorem V.4 is the higher order finite series
formula for the (q, h)α difference operator.

Theorem V.4. Consider the conditions given in Corollary
V.2. Then, the first order anti-difference principle of (q, h)α
difference operator is given by

−1
∆

(q,h)α

x(s)− [xt+1(1, s, (q/h)α)]2

xt+1(1, s, (q/h)α)− xt+2(1, s, (q/h)α)

=
t∑

r=0

xr(1, s, (q/h)α) (24)

Proof: The proof completes by substituting the equation (23)
in (21).

VI. ALPHA MIXED GAMMA GEOMETRIC FACTORIALS IN
FRACTIONAL ORDER DIFFERENCE

In this part, we elaborate on the fractional order
anti-difference principle, building upon the foundation laid
out in the Lemma V.3 for integer order. using this, we are
able to establish the fundamental theorems for alpha mixed
fractional difference equations.

Definition VI.1. Let s, q, t, ν, α ∈ R such that

(s − h
t∑

j=0

qj)
/
qt+ν ∈ M q

h and x : M q
h → R be a

function. Then the Gamma factorial-coefficient of x at t on
(ν, s, (q/h)α) is defined as

xt(ν, s, (q/h)α) = αt
Γ(t+ ν)

Γ(t+ 1)Γ(ν)
x
((
s−h

t∑
j=0

qj
)/
qt+ν

)
.

(25)
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Definition VI.2. Let s, q, t, ν, α ∈ R such that

s−h
t∑

j=0

qj/qt+ν ∈M q
h and xt(ν, s, (q/h)α) given in (25).

Then the (q/h)α-Geometric factorial function is defined as
∞∑

r=t+1
xr(ν, s, (q/h)α)

=
[xt+1(ν, s, (q/h)α)]2

xt+1(ν, s, (q/h)α)− xt+2(ν, s, (q/h)α)
. (26)

Theorem VI.3. Let x, y : M q
h → R, h 6= 0 ∈ R,

q ∈ R − {0, 1}, t, ν, α ∈ R and n ∈ N. Then the νth order
of (q, h)α difference equation is given by

−ν
∆

(q,h)α

x(t)−
n−1∑

d=n−ν

Γ(n+ 1)αn−d

Γ(2n− d− ν + 1)Γ(d− n+ ν − 1)

−(n−d)
∆

(q,h)α

x
((
t− h

n−1∑
j=0

qj
)/
qn
)

=
n−ν∑
r=0

Γ(ν + r)

Γ(ν)Γ(r + 1)
αr−(ν−1)x

((
t− h

ν+r−1∑
s=0

qs
)/
qν+r

)
.

(27)
Proof: The proof follows by applying the Corollary IV.4 and
by equation (2) using the (q, h)α difference operator.

Theorem VI.4. Let x, y : M q
h → R, q ∈ R − {0, 1}, h ∈

R− {0}, α, s ∈ R, t ∈ N and ν ∈ R. Then the νth order of
(q, h)α difference operator is given by

−ν
∆

(q,h)α

x(s)− [xt+1(ν, s, (q/h)α)]2

xt+1(ν, s, (q/h)α)− xt+2(ν, s, (q/h))α

= xt(ν, s, (q/h)α). (28)

where A = Γ(t+ ν + 1)/Γ(ν)Γ(t+ 2) and
B = Γ(t+ ν + 2)/Γ(ν)Γ(t+ 3).
Proof: The proof follows from Theorem II.4, Theorem II.3
and by (2).

Theorem VI.5. Let x, y : M q
h → R, α, ν, t ∈ R, q > 0,

h > 0, (ν + r− 1)/2 ∈ N and (ν + r− 3)/2 ∈ N. Then the
νth of (q, h)α difference operator for infinite series is given
by

−ν
∆

(q,h)α

x(t) =
∞∑
r=0

Γ(r + ν)

Γ(ν)Γ(r + 1)
αr−ν+1

x
((
t−h

(ν+r−1)/2∑
s=0

q2r(1 + q)
)/
qν+r

)
, (29)

and
−ν
∆

(q,h)α

x(t) =
∞∑
r=0

Γ(r + ν)

Γ(ν)Γ(r + 1)
αr−ν+1

x
((
t−h

(ν+r−3)/2∑
s=0

q2r(1+q)+qν+r−1
)/
qν+r

)
.

(30)
Proof: The proof completes by generalizing the Theorem IV.5
to any real order (ν ∈ R) using (2).

VII. RESULTS AND DISCUSSION

This section covers the value analysis of the difference
operators (q, h)α. For instance, by taking the values s = 8.3
and t = 50 in Theorem VI.4, then Figure: 1, 2 shows that
the values of the (q, h)α difference operator gradually climb
and then eventually decline, indicating that it will converge,
if the ν and α values increase.

As shown in figures: 1, 2, the values of the (q, h)
difference operator are decreasing with time for every ν >
0 ∈ R, suggesting that it will converge.

Fig. 1: Solution for Theorem VI.4 with ν values 0.2 and 1.3,
where q varies from 10 to 100, h varies from 5 to 10 and α
varies from 1× 10−2 to 0.1.

The general solution from the Theorem VI.4 and Figures:
1, 2 provides the values for q and h for any genuine q.
Consequently, the value stability for (q, h)α operators may
be predicted with ease.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2474-2481

 
______________________________________________________________________________________ 



Fig. 2: Solution for Theorem VI.4 with ν values 2.7 and 3.9,
where q varies from 10 to 100, h varies from 5 to 10 and α
varies from 1× 10−2 to 0.1.

VIII. GDP GROWTH USING MIXED ALPHA DIFFERENCE
OPERATOR

In this section we discuss about the GDP growth
application that uses discrete time increments and a
difference equation model to show how a nation’s GDP
changes over time. This kind of model is often used in
economics to simulate and forecast GDP dynamics.
A mixed alpha difference equation-based GDP growth
application is a more advanced theoretical framework that
is commonly utilized in fractional or memory-dependent
dynamic systems. A fractional difference equation, which is
a generalization of normal difference equations, is commonly
referred to as a ”mixed alpha difference equation” because
the order of the difference is a fractional value α ∈ (0, 1)
rather than a whole integer.

This method adds memory effects to GDP modeling, which
makes current GDP more realistic for economic processes
by relying on a weighted sum of historical GDP values
rather than just the previous value.
In contemporary economic theory, modeling GDP
growth with mixed difference operators especially those
incorporating fractional (non-integer) order differences
has become a potent tool. Mixed or fractional difference
equations enable the inclusion of historical memory and
long-range dependence in the dynamics of economic growth,
in contrast to classic difference equations that assume GDP
increases in discrete, memoryless stages.
The late 20th and early 21st centuries saw a rise in the use
of fractional calculus in economic modeling. Among the first
to explicitly introduce long-memory processes in economic
time series analysis were Granger and Joyeux (1980) and
Hosking (1981). They showed that persistent temporal
dependencies in data, like GDP growth and inflation, may
be modeled using fractional differencing.
In order to improve on conventional growth models, the
idea of mixed alpha difference equations where the order
of differencing falls between 0 and 1 has gained popularity.
These models are particularly helpful in examining GDP
evolution in uncertain, slowly adapting environments
because they use fractional memory kernels, which reflect
both short-term dynamics and long-term dependencies.

The following Theorem follows from the Theorem III.1

Theorem VIII.1. Let GDP (n) = GDP0(1 + r)n, GDP of
a Country at time n, where GDP0 is the initial GDP and r
is a constant growth rate.

∆
(q,h)α

GDP (n) =
∞∑
k=0

αk

GDP

n− h

k∑
j=0

qj

qk+1



− GDP


n− h

k−1∑
j=0

qj

qk


 (31)

Proof: Let GDP0 = 1000 (initial GDP),
r = 0.05(5% growth rate), h = 1, q = 1.1, n = 5, α = 1.
Step:1 Calculate GDP at different Time Periods,

GDP (0) = 1000
GDP (1) = 1000(1 + 0.05)1 = 1050
GDP (2) = 1000(1 + 0.05)2 = 1102.5
GDP (3) = 1000(1 + 0.05)3 = 1157.625
GDP (4) = 1000(1 + 0.05)4 = 1215.50625
GDP (5) = 1000(1 + 0.05)5 = 1276.28256

Step:2 Applying the Mixed Alpha Difference Operator

∆
(1,1)

GDP (5) =
∞∑
k=0

αk

GDP


5− 1
k∑
j=0

1.1j

1.1k+1



− GDP


5− 1

k−1∑
j=0

1.1j

1.1k



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Taking k = 0

GDP

(
5− 1.1

1.11

)
−GDP (4) = GDP (5)−GDP (4)

= 1276.2815625− 1215.50625
= 60.7753125

Taking k = 1

GDP

(
5− 1.1

1.12

)
−GDP (4) = GDP (5)−GDP (4)

= 1276.2815625− 1215.50625
= 60.7753125

Similarly, find the other values of k.
After calculating a few terms, we can derive the overall

change in GDP over time based on the discrete fractional
approach. Each term in the sum represents a form of
accleration or deceleration of GDP growth relative to prior
values influenced by the parameters h and q.

The theorem illustrates how the GDP growth dynamics
could be analyzed using mixed alpha difference operators,
allowing for the representation of varying growth rates over
time. By expanding on this theorem, more complex economic
models could utilize fractional differences to capture changes
in economic indicators like GDP, leading to forecasting and
policy-making strategies.

The following Theorem follows from the Theorem IV.1.

Theorem VIII.2. Let GDP (n) = GDP0(1+r)n, represents
the GDP at time n, where GDP0 is the initial GDP and r
is a constant growth rate.

∆
(q,h)α

GDP (n) =
m−1∑
d=0

n(n− 1) · · · (n− d+ 1)

d!

× ∆
(q,h)α

GDP


n− h

d−1∑
j=0

qj

qd

 (32)

Proof: Let GDP0 = 1000 (initial GDP), r = 0.05 (5%
growth rate), h = 1, q = 1.1, n = 5, m = 3, α = 1
Step:1 Calculate GDP at different Time Periods

GDP (0) = 1000
GDP (1) = 1000(1 + 0.05)1 = 1050
GDP (2) = 1000(1 + 0.05)2 = 1102.5
GDP (3) = 1000(1 + 0.05)3 = 1157.625
GDP (4) = 1000(1 + 0.05)4 = 1215.50625
GDP (5) = 1000(1 + 0.05)5 = 1276.28256

Step:2 Applying m = 3 in equation (32) we get

∆
(1,1)

GDP (5) =
2∑
d=0

5(4)(3)(2)

d!
× ∆

(1,1)
GDP


5− 1

d−1∑
j=0

1j

1.1d


Calculating d = 0, 1, 2, · · ·
For d = 0⇒

∆
(1,1)

GDP

(
5− 1(0)

1.10

)
= ∆

(1,1)
GDP (5)

= GDP (5)−GDP (4)

= 1276.2815625− 1215.50625

= 60.7753125

For d = 1⇒

∆
(1,1)

GDP

(
5− 1(1.10)

1.11

)
= ∆

(1,1)
GDP (4.5454)

= 1000(1 + 0.05)4.5454

= 1215.50625

Next calculate the difference ∆
(1,1)

GDP (4.5454) requires

steps similar to above.

Similarly, Compute ∆
(1,1)

GDP

(
5− 1(1.10 + 1.11)

1.12

)
calculate as above for GDP .

Each term from d = 0, 1, 2 contributes to the
comprehensive growth profile that takes into account
previous growth trajectories and shifts.

This theorem demonstrates how the higher order
anti-difference can be utilized to derive insights into GDP
growth by incorporating past values and assesing their
influence on current performance.

IX. CONCLUSION

The factorial-coefficient and gamma geometric factorial
methods were used to construct the mixed alpha’s difference
operator with integer and fractional order theorems. We
examined the stability for alpha mixed difference operator.
Lastly, real-world systems like population growth and gross
domestic product models can be effectively analyzed by
using the mixed alpha difference operator, which improves
fractional differential equation modeling capabilities and
more precisely captures complicated dynamics.
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