
 

  

Abstract—For the problem of predefined-time 

synchronization in nonlinear systems, a novel predefined-time 

sliding mode control scheme is proposed to enable rapid and 

stable synchronization of nonlinear systems within a predefined 

time. Initially, the control model of the nonlinear system is 

analyzed and established based on Lyapunov stability theory. 

Subsequently, a sliding mode surface and a predefined-time 

controller are designed, and a detailed analysis of the 

convergence properties of the controller within the predefined 

time is conducted to ensure that the system synchronization 

error converges within the predetermined timeframe. Finally, 

numerical simulations validate the proposed scheme, 

demonstrating a clear advantage in synchronization time over 

traditional finite-time control, fixed-time control, and 

conventional predefined-time control schemes, while also 

showcasing superior synchronization performance. 

 
Index Terms—Predefined-time control scheme, Sliding mode 

control, Uncertain parameter, Nonlinear system 

 

I. INTRODUCTION 

 n the field of control engineering, ensuring that a system 

achieves its expected performance or state within a specific 

timeframe is a core objective. This is particularly valuable in 

the synchronization control of nonlinear systems, where 

precise control over the system reaching a synchronized state 

within a predetermined time is highly desirable [1]-[4]. This 

paper introduces a novel predefined-time sliding mode 

control scheme aimed at effectively synchronizing nonlinear 

systems by integrating sliding mode control techniques with 

predefined-time control strategies [20]- [22]. 

Traditional sliding mode control methods are widely 
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utilized for controlling various uncertain and disturbed 

systems due to their robustness and precision. However, 

these methods typically rely on uncertainties in system 

response times and cannot guarantee that control objectives 

will be achieved within a precise, preset timeframe [11]- [16]. 

To overcome these limitations, researchers have introduced 

predefined-time control techniques, which allow control 

designers to directly set the maximum time for the system to 

reach a stable state. 

Predefined-time control offers advanced stability 

characteristics for controlled systems by allowing for easy 

determination of the stability upper bounds through the 

adjustment of predefined-time parameters, thus providing a 

high degree of certainty in system behavior. In reference [5], 

a novel predefined-time convergent continuous control 

algorithm was presented for stabilizing permanent-magnet 

synchronous motors (PMSMs) under various disturbances. 

Unlike previous methods that did not allow the convergence 

time to be predetermined, this approach set the stabilization 

time a priori, enhancing predictability and robustness. The 

algorithm addressed three scenarios: systems without 

disturbances, systems with deterministic disturbances 

adhering to a Lipschitz condition, and systems with both 

deterministic disturbances and stochastic noises. 

Demonstrated through numerical simulations, this 

methodology effectively maintained predefined-time 

convergence without requiring exact knowledge of initial 

conditions or suffering from exponential control growth. In 

reference [6], a novel controller was introduced for 

stabilizing second-order vector systems within a predefined 

time, enhancing control predictability and system robustness. 

The controller utilized a variable structure approach, initially 

guiding system trajectories to a linear manifold and 

subsequently to a non-smooth manifold, both within 

predefined times. This dual-phase approach effectively 

circumvented issues of differentiability typically encountered 

with high-order systems in finite-time stabilization. 

Demonstrated through numerical simulations, including an 

application to a two-link planar manipulator, the controller's 

efficacy was validated, showcasing its practical application 

in precise trajectory tracking of fully actuated mechanical 

systems. Furthermore, In reference [7], explored 

Lyapunov-like conditions for predefined-time stability in 

dynamical systems, providing a unified framework that 

included existing theorems and extended to ultimate 

boundedness in uncertain scenarios. It introduced methods to 

determine stabilization timing, facilitating robust controller 

design for systems to achieve stability within specified 

timeframes. In reference [8], a prescribed-time tracking 

control method was presented for MIMO nonlinear systems 
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with persistent uncertainties, extending the application of 

prescribed-time control to complex multi-input multi-output 

systems. This approach guaranteed precise tracking within a 

predetermined timeframe, regardless of initial conditions or 

parameter variations, significantly enhancing control 

robustness and predictability for critical applications such as 

missile interception and precision handling. In reference [9], 

a new predefined-time sliding mode control scheme was 

presented for achieving rapid synchronization of complex 

multi-wing chaotic systems. This method, proven through 

Lyapunov stability theory, enhanced the robustness of 

synchronization by enabling controller parameters and 

sliding mode surfaces to be set in advance, ensuring a shorter 

synchronization time compared to existing methods. It 

offered significant advancements in control predictability and 

efficiency. In reference [10], a predefined-time control 

approach was presented for distributed-order systems, 

extending fractional calculus to enable more precise 

modeling of complex phenomena. The control design 

guaranteed predefined-time convergence of solutions for 

distributed-order dynamical systems under any initial 

conditions. A robust controller and a predefined-time sliding 

mode design were developed to manage uncertainties within 

these systems. Numerical simulations validated the 

effectiveness of this method, demonstrating its ability to 

enforce rapid convergence and handle the slow dynamics 

typically associated with distributed-order systems. 

Addressing the predefined-time synchronization issue for 

nonlinear systems, the study first establishes a new sliding 

mode control framework through predefined-time stability 

theory, which not only maintains the high robustness 

characteristic of sliding mode control but also ensures that the 

nonlinear system achieves expected dynamic performance 

under strict time constraints. Subsequently, a corresponding 

sliding mode controller was designed, and its 

predefined-time stability was demonstrated using a 

Lyapunov function. Finally, through numerical simulation 

experiments, the proposed control scheme was compared 

with existing predefined-time, fixed-time, and finite-time 

control schemes, thereby validating the effectiveness and 

superiority of the proposed control strategy. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

A. System Description  

The general expression for a nonlinear 

multiple-input-multiple-output(MIMO) system of order n is 

as follows: 

1 1 1 1 1

2 2 2 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )n n n n n

x f x t g x t u d x t

x f x t g x t u d x t

x f x t g x t u d x t

y x

= + +


= + +


 = + +

 =

  (1) 

Where, 1 2[ , ,..., ]T

nx x x x= ,  1 2, , ,
T

nu u u u= are state 

variables and control input vectors respectively; ( )if x  

and ( ) 0ig x  , 1,2,i n=  are known smooth functions; In 

nonlinear system (1),  1 2, , ,
T

nd d d d=  represents the sum 

of all external disturbances and system uncertainties, And 

this vector d is satisfying assume 1. 

Assume 1: In the system (1), all perturbations and 

uncertainties are constrained within a bounded range, 

expressed as the inequality , 1,2, ,i id D i n = , where the 

upper bound , 1,2,iD i n=  is predetermined. 

The tracking error is defined as 
i i die x x= − , 1,2, ,i n=  

the described tracking problem is transformed into the 

stabilization problem of the nonlinear system corresponding 

to the tracking error in a predefined time [23]-[24]. 

( ) ( )i i i i die f x g x u d x= + + −       (2) 

B. Key Definitions and Lemmas 

Definition 1: Global finite-time stability[17] 

Assume that the origin of the system (2) is globally 

asymptotically stable, and that any solution 
0( , )e t e  in the 

system (2) can converge to the equilibrium point in a finite 

time. 

0 0( ) ( )
lim ( ) lim 0di

t T e t T e
e t x x

→ →
= − =   (3) 

The origin of the error system (2) is globally finite-time 

stable. That is, ( ) 0e t  , where  : 0nT +→  is called 

the settling time function; Then, the origin of system (2) has 

global finite-time stability. Therefore, system (1) can achieve 

global finite time synchronization. 

Definition 2: Fixed time stability[18] 

It is assumed that the origin of system (2) is globally finite 

time stable, and its settling time 
0( )T e  is globally bounded. 

That is, there is a constant 
max 0T   such that for all 

conditions
0

ne  , the settling time 
0 max( )T e T . Therefore, 

system (1) can achieve global fixed time synchronization. 

Definition 3: Predefined time stability[19] 

Assume that the origin of system (2) is fixed time stable, 

and its settling time
0( )T e satisfies

0( ) cT e T for all
0

ne  , 

where 0cT  is a constant related to the parameters of system 

(2), called predefined time. Therefore, the nonlinear system 

(1) is able to achieve globally predefined time 

synchronization. 

III. A NEW PRE-DEFINED TIME SLIDING MODE CONTROL 

SCHEME FOR SYNCHRONOUS NONLINEAR SYSTEMS IS 

PROPOSED 

A. A New Sufficient Condition for Predefined Time 

Synchronization Lyapunov Functions 

Theorem 1：  Given a constant 0cT  , if the system 

( ) ( , )x t t x=  has an unbounded Lyapunov function ( )V x , 

the following condition holds: 

1 11 1
( 4 )

c

V V V V
T

 



+ − − + +   (4) 

Therefore, the system ( ) ( , )x t t x=  is pre-defined time 

stable, where 0cT   is the pre-defined time, and ( )0,1   is 

the parameter that can be preset. The convergence time of the 

system can be flexibly adjusted according to actual 

requirements. It follows that
0( )T x T and 0sup ( )T T x= . 

This satisfies the condition for pre-defined time 

synchronization in definition 2.3, so equation (4) can be 
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considered a sufficient condition for the new pre-defined 

time Lyapunov. 

Derived and calculated from equation (4), the result is 

obtained 

0 1 1

1 1
( )

4 4c

dV
T x

T V V V  + −
 −

+ +
 

0
1 2

1 1

( 4 4)

fVt

V
c

dV

T V V V   −
= −

+ +  

0

2 2

2

1 1 2

4 4

fVt

V
c

V dV

T V V

 

 
= −

+ +  

0

1 1

2 2
cT

V 

 
= − 

+ 
     

cT
                                                                                     (5) 

Where, 
0( )T x T and

0sup ( )T T x= . 

Remark 1: Theorem 1 satisfies the predefined-time 

synchronization conditions outlined in definition 3 and 

introduces a new Lyapunov function. If the system is 

replaced with error system (2), the nonlinear system can 

achieve synchronization within the predefined time
cT . 

B. Design A New Sliding Surface 

To stabilize the error system (3) within a predefined time, 

the sliding surface can be designed as follows: 
1 2 1 2

3 2
0 0

( ) ( )
t t

i i i i i is e sign e e d sign e e d
 

   
− +

= + +   

4 1
0 0

( )
t t

i isign e d e d   + +                                                 (6) 

Where, (0,1)  , 1

1

1 2

cT



=  ,

1

2

1

1 1 1

2cT






+

 
=  

 
,

1

3

1

1 4 1

2cT






−

 
=  

 
,

4 0  . 

Theorem 2：  If the error system utilizes sliding surface (6), 

it will converge to zero on the sliding surface within the 

predefined time. 

When the error system (2) is on the sliding surface, its 

motion will be constrained to the surface defined 

by  ( ) | ( ) 0i i iS t e s e= = , with ( ) 0s e = being satisfied. 

Therefore 
1 2

1 2 4( ) ( )i i i i is e e sign e e sign e


  
+

= + + +
 

1 2

3 ( )i isign e e



−

+
 

0=                                                                                        (7) 

By manipulating the formula, the following result can be 

derived: 
1 2 1 2

1 2 3( ) ( )i i i i i ie e sign e e sign e e
 

  
+ −= − + +


 

4 ( )isign e+
                                                                         (8) 

If  

21

2
iV e=  

Then 

i iV e e=  

1 2 1 2

1 2 3( ) ( )i i i i i ie e sign e e sign e e
 

  
+ −= − + +


 

4 ( )isign e+  

( )2 2 2 22

1 2 3 4i i i ie e e e
 

   
+ −

= − + + +  

( )2 2 2 22

1 2 3i i ie e e
 

  
+ −

 − + +   

( )1 11 1
4 4

c

V V V
T

 



+ − − + +                                                 (9) 

This satisfies theorem 1. Therefore, when the error system 

is on the sliding mode surface, it will converge to zero within 

the predefined time; hence, the nonlinear system will 

synchronize within the predetermined time 
1cT . 

C. A Novel Controller Design Has Been developed 

To synchronize the nonlinear system within a predefined 

time, equation (6) has been selected as the sliding surface. 

Subsequently, the control input can be designed as 



1 2 1 2

1 2 3

1 2

4 5 6

1 2

7 8

1
( ) ( )

( )

( ( ) ( )

( )) ( ( )

( ) ( ))

i i i i di

i

i i i i i

i i i i

i i i

u f x D sign s x
g x

e sign e e sign e e

sign e s sign s s

sign s s sign s

 





  

  

 

+ −

+

−

= − − +

− + +

+ − +

+ +


  (10) 

Where, (0,1)  ， 1

1

1 2

cT



= ，

1

3

1

1 4 1

2cT






−

 
=  

 
，

4 0  ，

5

2

1 2

cT



= ，

1

6

2

1 1 1

2cT






+

 
=  

 
，

1

7

2

1 4 1

2cT






−

 
=  

 
，

8 0  . 

Theorem 3：  If the error system employs controller (10), 

it will reach the sliding surface within the predefined time. 

Let the Lyapunov function be 
21

2
iV s= . Deriving this 

yields: 

1 2

1 2

1 2

3 4

1

1 2 1 2

2 3 4

1 2

5 6

1 2

7

( ( )

( ) ( ))

( ( ) ( )

( ) ( ) ( ))

( ( ) ( ( )

( )

i i

i i i i i

i i i

i i i i di i

i i i i i

i i i i i i i

i i

V s s

s e e sign e e

sign e e sign e

s f x g x u d x e

sign e e sign e e sign e

s d D sign s s sign s s

sign s s





 





 

 



  

 

 

+

−

+ −

+

−

=

= + +

+ +

= + + − +

+ + +

= − − +

+ + 8

2 22

5 6

2 2

7 8

1 1

2

( )))

(

)

1 1
(4 )

i

i i i i i i

i i

c

sign s

s d D s s s

s s

V V V
T





 

 

 



+

−

+ −

= − − +

+ +

 − + +

  (11) 

This satisfies theorem 1. Therefore, the error system will 

reach the sliding surface within the predefined time 2cT . 

Remark 2: If the system is replaced with error system (2), 

the nonlinear system can achieve synchronization within the 

predefined time cT . 

Combining theorem 1 and utilizing sliding surface (6) 

along with controller (10), the system error (3) converges to 

zero within the predefined time. This describes the 

custom-time sliding mode control scheme proposed in this 

paper. Subsequently, the superiority of the scheme was 

demonstrated through simulation experiments. 
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The flowchart of the predefined-time sliding mode control 

scheme is shown in Fig. 1. 

 
Fig. 1.  Flow chart of predefined time sliding mode control scheme. 

IV. NUMERICAL SIMULATION 

To verify the effectiveness of the predefined-time sliding 

mode control method designed in this paper, the following 

nonlinear system is considered: 

1 1 1 1

2 2 1 2 2 2

sin( )

cos( ) 2sin( )

x x u d

x x x x u d

y x

= + +


= + − + +
 =

  (12) 

Where, 
1 1( , ) sin( )f x t x= ,

1( , ) 1g x t = ，

2 2 1 2( , ) cos( ) 2sin( )f x t x x x= + − ,
2 ( , ) 1g x t = . 1 sin( )d t=

、 2 sin( )d t=  represents a bounded external disturbance. 

The initial state of the system is 

1 4.2x = ,
2 2.1x = , 2

1 2 (1 )
4

t

d dx x e
 −= = − . 

A. Comparative experiments of different stabilization time 

schemes 

The purpose of this experiment is to compare three 

different stabilization time sliding mode synchronization 

schemes, highlighting the advantages of the predefined time 

scheme. All schemes are applied to the nonlinear system (12).  

Experimental group 1 employs the sliding mode surface 

(13) and controller (14) as the finite-time sliding mode 

synchronization scheme. [25] 

( )1 2
0

si ( )
t

i i i is e e gn e d  = + +   (13) 



( ) ( )1 2 3 4

1
( ) ( )

( )

( ) ( )

i i i dii
i

i i i i

u f x D sign s x
g x

e sign e s sign s   

= − − +

− + − + 

  (14) 

Where, 
1 ,

2 ,
3 ,

4 0  .(Fig. 2) 

Experimental group 2 employs sliding mode surface (15) 

and controller (16) as the fixed-time sliding mode 

synchronization scheme. [26]  

( )1 2
0

si ( ) si ( )
t

i i i i i is e e gn e e gn e d
 

  = + +   (15) 

 (

) ( )

1

2 3 4

1
( ) ( ) si ( )

( )

si ( ) si ( ) si ( )

i i i di i ii
i

i i i i i i

u f x D sign s x e gn e
g x

e gn e s gn s s gn s



  



  

= − − + −

+ − +


  (16) 

Where, 0 1 r   ，
1 ,

2 ,
3 ,

4 0  .(Fig. 3) 

The control group employs sliding mode surface (6) and 

controller (10) as the predefined-time sliding mode 

synchronization scheme, as proposed in this paper. (Fig. 4) 

To ensure the effectiveness of the comparative 

experiments, we strive to standardize the parameters of 

similar projects. Given the ability to define predefined time 

schemes in advance, we aim to achieve synchronization 

within 0.2s. Parameters 0.1cT T= = , 0.5 = = , and 

1.5 =  are set accordingly, and the approximation terms for 

the three schemes are determined as 

1 1 3 5 10   = = = = , 4 3

1 2 3 6 40 2   = = = = ，

2 3 4 7
4 5

40

2
   = = = = ，

2 4 4 8 5   = = = = . 

 
Fig. 2.  Sliding mode surface in finite-time control scheme 

 

 
Fig. 3.  Sliding mode surface in fixed-time control scheme 
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Fig. 4.  Sliding mode surface in predefined-time control scheme 
 

 
Fig. 5.  Error in finite-time control scheme 

 

 
Fig. 6.  Error in fixed-time control scheme 

 

The experimental results are shown in Fig. 5, 6, and 7. The 

finite-time sliding mode control scheme proposed by 

experimental group 1 achieves a convergence time of 

1 0.3085T s= , while the fixed-time sliding mode control 

scheme proposed by experimental group 2 achieves a 

convergence time of 
2 0.1386T s= . The predefined-time 

sliding mode control scheme proposed by the control group 

achieves a convergence time of 
3 0.0695T s= . These results 

indicate that the predefined-time sliding mode control 

scheme proposed in this paper exhibits a faster convergence 

speed. 

Combining the results from the three experimental groups, 

the composition of synchronization errors is analyzed as 

shown in Fig. 8. 

 

Fig. 7.  Error in predefined-time control scheme 
 

 

 
Fig. 8.  Evolution of error systems under different control schemes 

B. Comparative test of different predetermined time 

schemes 

The experiment compared the traditional predefined-time 

sliding mode synchronization scheme with the new 

predefined-time sliding mode synchronization scheme. 

Theorem 4： [27]Given a constant 0T  , if the system 

( ) ( , )x t t x=  has an unbounded Lyapunov function ( )V x , 

the following condition holds:  

1 1
2 2( )V V V

T

 




− +

 − +             (17) 

Therefore, the system ( ) ( , )x t t x=  is pre-defined time 

stable, where 0T   is the pre-defined time, ( )0,1  . 

The experimental group used sliding mode surface (18) 

and controller (19) as the traditional predefined-time sliding 

mode synchronization scheme. 

( )1 1

1 2 3
0

( ) ( )
t

i i i i i i is e d e d sign e e d sign e e
 − +

= + + +   (18) 



( )
( )

1 1

1 2 3

1 1

5 6 7

1
( ) ( )

( )

( ) ( )

( ) ( )

i i i dii
i

i i i i i

i i i i i

u f x D sign s x
g x

d e d sign e e d sign e e

d s d sign s s d sign s s

 

 

− +

− +

= − − +

− + +

− + +


  (19) 
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Where, 
1 5, 0d d  ，

1

2
1

22d

d

T





−

= ，

2

6
1

22d

d

T





−

= ，

1

3
1

22d

d

T





+

= ，

2

7
1

22d

d

T





+

= ， ( )0,1  . 

Remark 3: Since sliding surface (18) meets the conditions 

of theorem 4, it is defined as the traditional predefined-time 

sliding surface. Additionally, system (1) is operating on this 

sliding surface, ( ) 0s e = , therefore, 

( )1 1

1 2 3
0

( ) ( )
t

i i i i i ie d e d sign e e d sign e e d
 


− +

= − + +   (20) 

If 
21

2
iV e= , 

( )

( )

1 1

1 2 3

1 12 22 2 2
1 2 3
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 (21) 

In the aforementioned experiments, the parameters for 

each approximation term were kept consistent. The 

predefined time was maintained at 0.2s, 
1 2 0.1d dT T s= = , 

0.5s = = .  
The coefficients for each approximation term will also be 

determined:   

1 1 5 5 10d d = = = = , 4 3

2 2 6 6 40 2d d = = = = ,

3 3 7 7
4 5

40

2
d d = = = = ，

4 8 5d d= = . 

Fig. 9 illustrates the evolution of the synchronization error 

system. As shown in Fig. 9, the predefined-time sliding mode 

control scheme proposed in this paper performs optimally 

while maintaining consistency in system parameters. 

 
Fig. 9.  Comparison of error between traditional predefined-time control 

scheme and proposed predefined control scheme 
 

V. CONCLUSION 

Based on Lyapunov stability theory and pre-defined time 

stability theory, the fast synchronization problem of 

nonlinear systems under sliding mode control studied. First, 

the sufficient conditions for Lyapunov function to guarantee 

the stability of state variables in a predefined time are 

presented. Secondly, according to a new sliding mode 

variable structure control strategy, a new sliding mode 

controller is designed to ensure that the state variables 

converge quickly to the sliding surface and ensure the 

pre-defined time stability. Finally, numerical simulation 

results show that the proposed control strategy can achieve 

rapid convergence of state variables and ensure the 

pre-defined time stability.  
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