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Abstract—This paper primarily investigates several inequal-
ities involving Young and Cauchy-Schwarz. Initially, we derive
two Young-type scalar inequalities by employing the definition
of the hyperbolic cosine function and its Taylor series expan-
sion. Building on these results, we further establish Young-
type inequalities for matrices and the Hilbert-Schmidt norm.
Additionally, by leveraging the convexity of a specific function,
we derive matrix Cauchy-Schwarz inequalities for unitarily
invariant norms, which improve the existing results.

Index Terms—Young-type inequality, Hilbert-Schmidt norm,
Cauchy-Schwarz inequality, unitarily invariant norm

I. INTRODUCTION

YOUNG-TYPE inequalities have wide applications in
engineering, especially in fields such as signal pro-

cessing, control theory, image processing, optimization prob-
lems and system analysis. For example, in image denoising,
Young-type inequalities help derive the bounds for noise
and signals, which in turn facilitates the design of optimal
filters. Likewise, Cauchy-Schwarz inequalities are widely
applied in areas such as machine learning, data processing,
quantum mechanics, optimization theory, network communi-
cation and information theory. For instance, in information
theory, Cauchy-Schwarz inequalities are used to analyze
metrics such as signal-to-noise ratio and bit error rate in
the information transmission process, aiding in the design
of efficient encoding and decoding strategies. Therefore,
the investigation of Young-type inequalities and Cauchy-
Schwarz inequalities holds significant practical and theoret-
ical importance.

Throughout this paper, let Mm,n represent the space of
m× n complex matrices and Mn = Mn,n. I stands for the
proper dimension identity matrix. Denote by ∥·∥ any unitarily
invariant norm on Mn, where ||UAV || = ||A|| holds for
all A ∈ Mn and for all unitary matrices U, V ∈ Mn. For
A = (aij) ∈ Mn, the Hilbert-Schmidt (or Frobenius) norm
is expressed as

∥A∥2 = (

n∑
i,j=1

|aij |2)
1
2 = (

n∑
j=1

s2j (A))
1
2

where sj (A) for j = 1, 2, · · · , n represents j-th largest sin-
gular value of A with s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A).
These singular values are equivalent to the eigenvalues of
the positive semidefinite matrix |A| = (AA∗)

1
2 , which are

arranged in decreasing order and counted with their respec-
tive multiplicities. A∗ represents the conjugate transpose of
the matrix A.

It is clear that the Hilbert-Schmidt norm is unitarily
invariant.
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For positive semidefinite matrices A,B ∈ Mn and 0 ≤
v ≤ 1, the v−weighted geometric mean of matrices A and
B is given by

A♯vB = A
1
2 (A− 1

2BA− 1
2 )vA

1
2 ,

when v = 1
2 , the geometric mean is denoted by A♯B.

If A,B ∈Mn are positive definite, Kittaneh and Manasrah
[1] obtained

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ 2h0(A+B − 2A♯B) +A♯vB +A♯1−vB,

(1)

where 0 ≤ v ≤ 1, g0 = min{v, 1−v} and h0 = max{v, 1−
v}.

Zou [2] established enhanced versions of inequalities (1)
as follows

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ α(v)(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ 2h0(A+B − 2A♯B) +A♯vB +A♯1−vB,

(2)

where α(v) = 2(1− 2(v − v2)).

Subsequently, Liu and Yang [3] demonstrated stronger
versions of inequalities (2) as follows

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ β(v)(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ α(v)(A+B − 2A♯B) +A♯vB +A♯1−vB,

(3)

where β(v) = 3
2 − 2(v − v2), α(v) = 2(1− 2(v − v2)).

Recently, Hu and Liu [4] presented refined versions of
inequalities (3), which can be expressed as

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ γ(v)(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ β(v)(A+B − 2A♯B) +A♯vB +A♯1−vB,

(4)

where γ(v) = 5
4 − (v − v2), β(v) = 3

2 − 2(v − v2).
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Bhatia and Davis [5] obtained that if A,B,X ∈Mn such
that A and B are positive semidefinite, then

2||A 1
2XB

1
2 ||

≤ ||AvXB1−v +A1−vXBv||

≤ ||AX +XB||,

(5)

where 0 ≤ v ≤ 1.
The second inequality of (5) is commonly referred to as

Heinz inequality.
Kittaneh and Manasrah [1], He and Zou [6] respectively

obtained that if A,B,X ∈ Mn such that A and B are
positive semidefinite, then

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+2h0||AX −XB||22,

(6)

where 0 ≤ v ≤ 1, h0 = max{v, 1− v}.
Zou [2] demonstrated an improvement version of inequal-

ity (6) as follows

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+α(v)||AX −XB||22,

(7)

where α(v) = 2(1− 2(v − v2)).
Liu and Yang [3] established a stronger version of inequal-

ity (7) as follows

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+β(v)||AX −XB||22,

(8)

where β(v) = 3
2 − 2(v − v2).

Hu and Liu [4] provided a refinement version of inequality
(8) as follows

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+γ(v)||AX −XB||22,

(9)

where γ(v) = 5
4 − (v − v2).

Kittaneh and Manasrah [7] showed that if A,B,X ∈Mn

such that A and B are positive semidefinite, then

||AvXB1−v +A1−vXBv||22

+2g0||AX −XB||22

≤ ||AX +XB||22,

(10)

where 0 ≤ v ≤ 1 and g0 = min{v, 1− v}, inequality (10) is
the inverse of inequality (6).

Horn and Mathias [8, 9] derived that if A,B ∈ Mn and
any real number r > 0, then

|||A∗B|r||2 ≤ ||(AA∗)r|| · ||(BB∗)r||, (11)

which is a matrix Cauchy-Schwarz inequality for unitarily
invariant norms.

For A,B,X ∈ Mn and r > 0, Bhatia and Davis [10]
achieved an enhanced version of inequality (11) in the
following form

|||A∗XB|r||2 ≤ |||AA∗X|r|| · |||XBB∗|r||. (12)

If A,B,X ∈ Mn such that A and B are positive semidefi-
nite, (12) is equivalent to

|||A 1
2XB

1
2 |r||2 ≤ |||AX|r|| · |||XB|r||. (13)

Let A,B,X ∈ Mn such that A and B are positive
semidefinite. Then, for any real number r > 0, the function

ψ(ν) = |||AνXB1−ν |r|| · |||A1−νXBν |r||

is convex on [0, 1] and achieves its minimum at ν = 1
2 .

As a result, ψ (ν) is decreasing on
[
0, 12

]
and increasing

on
[
1
2 , 1

]
, moreover, ψ(ν) = ψ(1 − ν) for ν ∈ [0, 1] (See

[11]). Leveraging the convexity of the function ψ (ν), Hiai
and Zhan [11] provided an enhanced version of inequality
(13) in the following form

|||A 1
2XB

1
2 |r||2

≤ |||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ |||AX|r|| · |||XB|r||.

(14)

Hu [12] employed the convexity of ψ(ν) to derive an
enhancement of the second inequality presented in (14)

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ 2ν0|||A
1
2XB

1
2 |r||2

+(1− 2ν0)|||AX|r|| · |||XB|r||,

(15)

where 0 ≤ ν ≤ 1, ν0 = min{ν, 1− ν}.
Recently, using the convexity of ψ(ν), He et al. [13] gave

refinements of inequality (15), which can be expressed as
(I) if ν ∈ [0, 14 ] ∪ [ 34 , 1], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ 4ν0|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(1− 4ν0)|||AX|r|| · |||XB|r||,

(16)

(II) if ν ∈ [ 14 ,
3
4 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ 2(1− 2ν0)|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(4ν0 − 1)||A 1
2XB

1
2 |r||2,

(17)

where ν0 = min{ν, 1− ν}.
For more papers on Young and Cauchy-Schwarz inequali-

ties, please refer to references [14-17] and their correspond-
ing bibliographies. For article on improving inequalities of
matrix unitarily invariant norms by utilizing the convex
functions, see reference [18].
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This note, building upon the previous discussions, aims
to enhance inequalities involving both Young and Cauchy-
Schwarz. The structure of the note is organized as follows:
Section 2 introduces four Young-type scalar inequalities.
In Section 3, using Young-type scalar inequalities obtained
in the second section, we derive the matrix and Hilbert-
Schmidt norm forms of Young-type inequalities, which lead
to improvements of inequalities (4) and (9). Section 4 focuses
on refining inequalities (16) and (17) by means of convexity
properties. Finally, the conclusion of this paper is given in
Section 5.

II. YOUNG-TYPE SCALAR INEQUALITIES

Now we present the first theorem of this note.
Theorem 1. Let a, b > 0, 0 ≤ v ≤ 1. Then

a+ b ≤ avb1−v + a1−vbv + η(v)(
√
a−

√
b)2, (18)

where η(v) = 13
12 − 1

3 (v − v2).
Proof. To establish inequality (18), it is sufficient to demon-
strate that the following inequality holds

(1− η(v))(a+ b) + 2η(v)
√
ab ≤ avb1−v + a1−vbv.

Taking a = ex, b = ey , by the definition of the hyperbolic
cosine function, it follows that

(
1

3
(v − v2)− 1

12
)cosh(

x− y

2
)

+(
13

12
− 1

3
(v − v2))

≤ cosh((1− 2v)(
x− y

2
)).

(19)

Taking w = x−y
2 , by the Taylor series expansion of coshw,

it follows that inequality (19) is equivalent to

(
1

3
(v − v2)− 1

12
)(1 +

w2

2!
+
w4

4!
+ · · ·)

+(
13

12
− 1

3
(v − v2))

≤ 1 +
(1− 2v)2w2

2!
+

(1− 2v)4w4

4!
+ · · · .

(20)

Since 0 ≤ v ≤ 1, we have

1

3
(v − v2)− 1

12
∈ [− 1

12
, 0].

Therefore, inequality (20) clearly holds.
This completes the proof.
Corollary 1. Let a, b > 0, 0 ≤ v ≤ 1. Then

(a+ b)2 ≤ (avb1−v + a1−vbv)2 + η(v)(a− b)2, (21)

where η(v) = 13
12 − 1

3 (v − v2).
Proof. Inequality (18) leads to the conclusion that

(
√
a+

√
b)2 − (a

v
2 b

1−v
2 + a

1−v
2 b

v
2 )2

= a+ b− (avb1−v + a1−vbv)

≤ (
13

12
− 1

3
(v − v2))(

√
a−

√
b)2.

Thus

(a+ b)2 ≤ (avb1−v +a1−vbv)2+(
13

12
− 1

3
(v− v2))(a− b)2.

This completes the proof.
Below, we will present improvements of Theorem 1 and

Corollary 1.
Theorem 2. Let a, b > 0, 0 ≤ v ≤ 1. Then

a+ b ≤ avb1−v + a1−vbv + ζ(v)(
√
a−

√
b)2, (22)

where ζ(v) = 21
20 − 1

5 (v − v2).
Proof. The proof is similar to Theorem 1. We leave it to
the readers.
Remark 1. Theorem 2 is more precise than Theorem 1.

It follows that

η(v)− ζ(v)

=
13

12
− 1

3
(v − v2)− 21

20
+

1

5
(v − v2)

=
1

30
(2v − 1)2

≥ 0.

(23)

Corollary 2. Let a, b > 0, 0 ≤ v ≤ 1. Then

(a+ b)2 ≤ (avb1−v + a1−vbv)2 + ζ(v)(a− b)2, (24)

where ζ(v) = 21
20 − 1

5 (v − v2).
Proof. The proof is similar to Corollary 1. We leave it to
the readers.
Remark 2. Corollary 2 is clearly more precise than Corol-
lary 1, by (23).

III. YOUNG-TYPE INEQUALITIES FOR MATRICES

In the following, we will apply Theorem 1 to derive
Young-type inequalities for matrices, which provide im-
proved versions of inequalities (4).
Theorem 3. Let A,B ∈Mn be positive definite. Then

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ η(v)(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ γ(v)(A+B − 2A♯B) +A♯vB +A♯1−vB,

(25)

where v ∈ [0, 1], g0 = min{v, 1−v}, η(v) = 13
12 −

1
3 (v−v

2)
and γ(v) = 5

4 − (v − v2).
Proof. From inequalities (1), it can be concluded that the
first inequality in (25) is satisfied. For the second inequality
in (25), given that P ∈Mn is positive definite, by the spectral
decomposition theorem, there exists a unitary matrix U ∈
Mn such that

P = UGU∗,

where G = diag(λ1, λ2, · · · , λn), λi > 0, 1 ≤ i ≤ n. For
a > 0 and b = 1, inequality (18) implies that we obtain

a+ 1 ≤ av + a1−v + η(v)(
√
a− 1)2,

and so

G+ I ≤ Gv +G1−v + η(v)(G
1
2 − I)2. (26)
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Multiplying both sides of inequality (26) by U and U∗, we
obtain

P + I ≤ P v + P 1−v + η(v)(P
1
2 − I)2.

Let P = A− 1
2BA− 1

2 , and thus the second inequality in (25)
is satisfied.

Next, we prove that the third inequality in (25) holds.
It is straightforward to observe that for 0 ≤ v ≤ 1, the

following holds

γ(v)− η(v)

=
5

4
− (v − v2)− 13

12
+

1

3
(v − v2)

=
2

3
(v − 1

2
)2

≥ 0.

(27)

Therefore, the third inequality in (25) holds.
This completes the proof.
Remark 3. Obviously, Theorem 3 is a refinement of the
inequalities (4).

Next, we will use Corollary 1 to obtain a matrix Young-
type inequality for the Hilbert-Schmidt norm.
Theorem 4. Let A,B,X ∈Mn such that A,B are positive
semidefinite. Then

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+η(v)||AX −XB||22,

(28)

where v ∈ [0, 1] and η(v) = 13
12 − 1

3 (v − v2).
Proof. We first prove that when A,B ∈ Mn are positive
definite, by the spectral decomposition theorem, there exist
unitary matrices U,Q ∈Mn such that

A = UG1U
∗, B = QG2Q

∗,

where

G1 = diag(λ1, λ2, · · · , λn), G2 = diag(µ1, µ2, · · · , µn),

λi, µi > 0, 1 ≤ i ≤ n.
Let D = U∗XQ = (dij), then

AvXB1−v +A1−vXBv

= (UG1U
∗)vX(QG2Q

∗)1−v

+(UG1U
∗)1−vX(QG2Q

∗)v

= UGv
1(U

∗XQ)G1−v
2 Q∗ + UG1−v

1 (U∗XQ)Gv
2Q

∗

= U(Gv
1DG

1−v
2 +G1−v

1 DGv
2)Q

∗,

hence

||AvXB1−v +A1−vXBv||22

= ||Gv
1DG

1−v
2 +G1−v

1 DGv
2||22

=

n∑
i,j=1

(λvi µ
1−v
j + λ1−v

i µv
j )

2|dij |2.

Similarly, we have

||AX +XB||22 =
n∑

i,j=1

(λi + µj)
2|dij |2

and

||AX −XB||22 =

n∑
i,j=1

(λi − µj)
2|dij |2.

From inequality (21), we derive
n∑

i,j=1

(λvi µ
1−v
j + λ1−v

i µv
j )

2|dij |2

+η(v)

n∑
i,j=1

(λi − µj)
2|dij |2

≥
n∑

i,j=1

(λi + µj)
2|dij |2.

If A,B ∈Mn are positive semidefinite. Define Aε = A+
εI , Bε = B+εI , where ε is an arbitrary positive real number.
Consequently, Aε and Bε are positive definite matrices,

||AεX +XBε||22

≤ ||Av
εXB

1−v
ε +A1−v

ε XBv
ε ||22

+η(v)||AεX −XBε||22.

Let ε→ 0. Therefore, inequality (28) holds.
This completes the proof.
Remark 4. Theorem 4 is sharper than inequality (9), by
(27).

Next, we will use Theorem 2 and Corollary 2 to present
improvements of Theorem 3 and Theorem 4.
Theorem 5. Let A,B ∈Mn be positive definite. Then

2g0(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ A+B

≤ ζ(v)(A+B − 2A♯B) +A♯vB +A♯1−vB

≤ η(v)(A+B − 2A♯B) +A♯vB +A♯1−vB,

where v ∈ [0, 1], g0 = min{v, 1−v}, ζ(v) = 21
20 −

1
5 (v−v

2)
and η(v) = 13

12 − 1
3 (v − v2).

Proof. The proof of Theorem 5 is similar to Theorem 3.
We leave it to the readers.
Theorem 6. Let A,B,X ∈Mn such that A,B are positive
semidefinite. Then

||AX +XB||22

≤ ||AvXB1−v +A1−vXBv||22

+ζ(v)||AX −XB||22,

where v ∈ [0, 1] and ζ(v) = 21
20 − 1

5 (v − v2).
Proof. The proof of Theorem 6 is similar to Theorem 4.
We leave it to the readers.
Remark 5. Theorem 6 is clearly more precise than Theorem
4, by (23).
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IV. CAUCHY-SCHWARZ INEQUALITIES FOR MATRICES

In this section, we utilize the convexity of ψ(ν) to establish
matrix Cauchy-Schwarz inequalities for unitarily invariant
norms, which lead to improved forms of inequalities (16)
and (17). To initiate our discussion, we first introduce the
following lemma.
Lemma 1 ([12]). Let g be a real valued convex function
on the interval [a, b] which contains (x1, x2). Then for
x1 ≤ x ≤ x2, we have

g (x) ≤ g (x2)− g (x1)

x2 − x1
x− x1g (x2)− x2g (x1)

x2 − x1
.

Theorem 7. Let A,B,X ∈ Mn such that A and B are
positive semidefinite. We have
(I) if ν ∈ [0, 18 ] ∪ [ 78 , 1], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (1− 8ν0)|||AX|r|| · |||XB|r||

+8ν0|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||,

(29)

(II) if ν ∈ [ 18 ,
1
4 ] ∪ [ 34 ,

7
8 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (2− 8ν0)|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||,

(30)

(III) if ν ∈ [ 14 ,
3
8 ] ∪ [ 58 ,

3
4 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (3− 8ν0)|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(8ν0 − 2)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||,

(31)

(IV) if ν ∈ [ 38 ,
5
8 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (4− 8ν0)|||A
3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν0 − 3)|||A 1
2XB

1
2 |r||2,

(32)

where ψ(ν) = |||AνXB1−ν |r|| · |||A1−νXBν |r||, r > 0 and
ν0 = min{ν, 1− ν} .
Proof. If 0 ≤ ν ≤ 1

8 , by Lemma 1 and the convexity of
ψ(ν), we obtain

ψ(ν) ≤
ψ( 18 )− ψ(0)

1
8 − 0

ν −
0ψ( 18 )−

1
8ψ(0)

1
8 − 0

,

which is equal to

ψ(ν) ≤ (1− 8ν)ψ(0) + 8νψ(
1

8
).

Thus
|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (1− 8ν)|||AX|r|| · |||XB|r||

+8ν|||A 1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (1− 8ν0)|||AX|r|| · |||XB|r||

+8ν0|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||.

(33)

If 7
8 ≤ ν ≤ 1, by Lemma 1 and the convexity of ψ(ν), we

obtain

ψ(ν) ≤
ψ(1)− ψ( 78 )

1− 7
8

ν −
7
8ψ(1)− ψ( 78 )

1− 7
8

,

which is equal to

ψ(ν) ≤ (8− 8ν)ψ(
7

8
) + (8ν − 7)ψ(1).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (8− 8ν)|||A 7
8XB

1
8 |r|| · |||A 1

8XB
7
8 |r||

+(8ν − 7)|||AX|r|| · |||XB|r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (1− 8ν0)|||AX|r|| · |||XB|r||

+8ν0|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||.

(34)

If 1
8 ≤ ν ≤ 1

4 , by Lemma 1 and the convexity of ψ(ν), we
obtain

ψ(ν) ≤
ψ( 14 )− ψ( 18 )

1
4 − 1

8

ν −
1
8ψ(

1
4 )−

1
4ψ(

1
8 )

1
4 − 1

8

,

which is equal to

ψ(ν) ≤ (2− 8ν)ψ(
1

8
) + (8ν − 1)ψ(

1

4
).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (2− 8ν)|||A 1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

+(8ν − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (2− 8ν0)|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||.

(35)

If 3
4 ≤ ν ≤ 7

8 , by Lemma 1 and the convexity of ψ(ν), we
obtain

ψ(ν) ≤
ψ( 78 )− ψ( 34 )

7
8 − 3

4

ν −
3
4ψ(

7
8 )−

7
8ψ(

3
4 )

7
8 − 3

4

,

which is equal to

ψ(ν) ≤ (7− 8ν)ψ(
3

4
) + (8ν − 6)ψ(

7

8
).
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Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (7− 8ν)|||A 3
4XB

1
4 |r|| · |||A 1

4XB
3
4 |r||

+(8ν − 6)|||A 7
8XB

1
8 |r|| · |||A 1

8XB
7
8 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (2− 8ν0)|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||.

(36)

If 1
4 ≤ ν ≤ 3

8 , similarly, we obtain

ψ(ν) ≤
ψ( 38 )− ψ( 14 )

3
8 − 1

4

ν −
1
4ψ(

3
8 )−

3
8ψ(

1
4 )

3
8 − 1

4

,

which is equal to

ψ(ν) ≤ (3− 8ν)ψ(
1

4
) + (8ν − 2)ψ(

3

8
).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (3− 8ν)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(8ν − 2)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (3− 8ν0)|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(8ν0 − 2)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||.

(37)

If 5
8 ≤ ν ≤ 3

4 , similarly, we obtain

ψ(ν) ≤
ψ( 34 )− ψ( 58 )

3
4 − 5

8

ν −
5
8ψ(

3
4 )−

3
4ψ(

5
8 )

3
4 − 5

8

,

which is equal to

ψ(ν) ≤ (6− 8ν)ψ(
5

8
) + (8ν − 5)ψ(

3

4
).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (6− 8ν)|||A 5
8XB

3
8 |r|| · |||A 3

8XB
5
8 |r||

+(8ν − 5)|||A 3
4XB

1
4 |r|| · |||A 1

4XB
3
4 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (3− 8ν0)|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(8ν0 − 2)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||.

(38)

If 3
8 ≤ ν ≤ 1

2 , similarly, we obtain

ψ(ν) ≤
ψ( 12 )− ψ( 38 )

1
2 − 3

8

ν −
3
8ψ(

1
2 )−

1
2ψ(

3
8 )

1
2 − 3

8

,

which is equivalent to

ψ(ν) ≤ (4− 8ν)ψ(
3

8
) + (8ν − 3)ψ(

1

2
).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (4− 8ν)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν − 3)|||A 1
2XB

1
2 |r||2,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (4− 8ν0)|||A
3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν0 − 3)|||A 1
2XB

1
2 |r||2.

(39)

If 1
2 ≤ ν ≤ 5

8 , similarly, we obtain

ψ(ν) ≤
ψ( 58 )− ψ( 12 )

5
8 − 1

2

ν −
1
2ψ(

5
8 )−

5
8ψ(

1
2 )

5
8 − 1

2

,

which is equal to

ψ(ν) ≤ (5− 8ν)ψ(
1

2
) + (8ν − 4)ψ(

5

8
).

Thus

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (5− 8ν)|||A 1
2XB

1
2 |r||2

+(8ν − 4)|||A 5
8XB

3
8 |r|| · |||A 3

8XB
5
8 |r||,

that is

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (4− 8ν0)|||A
3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν0 − 3)|||A 1
2XB

1
2 |r||2.

(40)

It follows from (33)-(40) and r > 0, ν0 = min{ν, 1 − ν}
that Theorem 7 holds.
This completes the proof.
Corollary 3. Theorem 7 is sharper than inequalities (16)
and (17).
Proof. By the convexity of ψ(ν) and (16), (17), if ν ∈
[0, 18 ] ∪ [ 78 , 1], then

ψ(ν) ≤ (1− 8ν0)ψ(0) + 8ν0ψ(
1

8
)

≤ (1− 8ν0)ψ(0) + 8ν0(
1

2
ψ(

1

4
) +

1

2
ψ(0))

= (1− 4ν0)ψ(0) + 4ν0ψ(
1

4
).
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If ν ∈ [ 18 ,
1
4 ] ∪ [ 34 ,

7
8 ], then

ψ(ν) ≤ (2− 8ν0)ψ(
1

8
) + (8ν0 − 1)ψ(

1

4
)

≤ (2− 8ν0)(
1

2
ψ(

1

4
) +

1

2
ψ(0))

+(8ν0 − 1)ψ(
1

4
)

= (1− 4ν0)ψ(0) + 4ν0ψ(
1

4
).

If ν ∈ [ 14 ,
3
8 ] ∪ [ 58 ,

3
4 ], then

ψ(ν) ≤ (3− 8ν0)ψ(
1

4
) + (8ν0 − 2)ψ(

3

8
)

≤ (3− 8ν0)ψ(
1

4
)

+(8ν0 − 2)(
1

2
ψ(

1

2
) +

1

2
ψ(

1

4
))

= 2(1− 2ν0)ψ(
1

4
) + (4ν0 − 1)ψ(

1

2
).

If ν ∈ [ 38 ,
5
8 ], then

ψ(ν) ≤ (4− 8ν0)ψ(
3

8
) + (8ν0 − 3)ψ(

1

2
))

≤ (4− 8ν0)(
1

2
ψ(

1

2
) +

1

2
ψ(

1

4
))

+(8ν0 − 3)ψ(
1

2
)

= 2(1− 2ν0)ψ(
1

4
) + (4ν0 − 1)ψ(

1

2
).

Consequently, Theorem 7 is a refinement of inequalities (16)
and (17).
This completes the proof.

Based on inequalities (14) and (29)-(32), we obtain the
following refinements of inequality (14).
Corollary 4. Let A,B,X ∈ Mn such that A and B are
positive semidefinite. We have
(I) if ν ∈ [0, 18 ] ∪ [ 78 , 1], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (1− 8ν0)|||AX|r|| · |||XB|r||

+8ν0|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

≤ |||AX|r|| · |||XB|r||,

(II) if ν ∈ [ 18 ,
1
4 ] ∪ [ 34 ,

7
8 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (2− 8ν0)|||A
1
8XB

7
8 |r|| · |||A 7

8XB
1
8 |r||

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

≤ |||AX|r|| · |||XB|r||,

(III) if ν ∈ [ 14 ,
3
8 ] ∪ [ 58 ,

3
4 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (3− 8ν0)|||A
1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

+(8ν0 − 2)|||A 3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

≤ |||AX|r|| · |||XB|r||,

(IV) if ν ∈ [ 38 ,
5
8 ], then

|||AνXB1−ν |r|| · |||A1−νXBν |r||

≤ (4− 8ν0)|||A
3
8XB

5
8 |r|| · |||A 5

8XB
3
8 |r||

+(8ν0 − 3)|||A 1
2XB

1
2 |r||2

+(8ν0 − 1)|||A 1
4XB

3
4 |r|| · |||A 3

4XB
1
4 |r||

≤ |||AX|r|| · |||XB|r||,

where ψ(ν) = |||AνXB1−ν |r|| · |||A1−νXBν |r||, r > 0 and
ν0 = min{ν, 1− ν}.

V. CONCLUSION

This paper primarily explores some inequalities involving
Young and Cauchy-Schwarz. We begin by deriving two
Young-type scalar inequalities, employing coshw and its
Taylor series expansion. Based on the obtained inequalities
(18), (21), (22) and (23), we then present Young-type in-
equalities for matrices and Hilbert-Schmidt norm. Further-
more, by leveraging the convexity of ψ(ν), we establish
Cauchy-Schwarz inequalities for unitarily invariant norms of
matrices, which enhance inequalities (16) and (17). At the
same time, we present a corollary of Theorem 7. These topics
will be further investigated in future studies.
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