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Improved Young and Cauchy-Schwarz Inequalities

Xuesha Wu

Abstract—This paper primarily investigates several inequal-
ities involving Young and Cauchy-Schwarz. Initially, we derive
two Young-type scalar inequalities by employing the definition
of the hyperbolic cosine function and its Taylor series expan-
sion. Building on these results, we further establish Young-
type inequalities for matrices and the Hilbert-Schmidt norm.
Additionally, by leveraging the convexity of a specific function,
we derive matrix Cauchy-Schwarz inequalities for unitarily
invariant norms, which improve the existing results.

Index Terms—Young-type inequality, Hilbert-Schmidt norm,
Cauchy-Schwarz inequality, unitarily invariant norm

I. INTRODUCTION

OUNG-TYPE inequalities have wide applications in
Y engineering, especially in fields such as signal pro-
cessing, control theory, image processing, optimization prob-
lems and system analysis. For example, in image denoising,
Young-type inequalities help derive the bounds for noise
and signals, which in turn facilitates the design of optimal
filters. Likewise, Cauchy-Schwarz inequalities are widely
applied in areas such as machine learning, data processing,
quantum mechanics, optimization theory, network communi-
cation and information theory. For instance, in information
theory, Cauchy-Schwarz inequalities are used to analyze
metrics such as signal-to-noise ratio and bit error rate in
the information transmission process, aiding in the design
of efficient encoding and decoding strategies. Therefore,
the investigation of Young-type inequalities and Cauchy-
Schwarz inequalities holds significant practical and theoret-
ical importance.

Throughout this paper, let M, ,, represent the space of
m X n complex matrices and M,, = M,, ,,. I stands for the
proper dimension identity matrix. Denote by ||-|| any unitarily
invariant norm on M, where |[UAV|| = ||4]|| holds for
all A € M, and for all unitary matrices U,V € M,. For
A = (ai;) € M,, the Hilbert-Schmidt (or Frobenius) norm
is expressed as

n n
A2 = (3 lai; )7 = (O s3(4))2
i,j=1 j=1
where s; (A) for j =1,2,---,n represents j-th largest sin-
gular value of A with s1 (4) > s2(A) > -+ > s, (A).
These singular values are equivalent to the eigenvalues of
the positive semidefinite matrix |A| = (AA*)2, which are
arranged in decreasing order and counted with their respec-
tive multiplicities. A* represents the conjugate transpose of
the matrix A.

It is clear that the Hilbert-Schmidt norm is unitarily

invariant.
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For positive semidefinite matrices A, B € M,, and 0 <
v < 1, the v—weighted geometric mean of matrices A and
B is given by

A#,B = A(A"TBA"2)"A?,

when v = %, the geometric mean is denoted by AfB.

If A, B € M, are positive definite, Kittaneh and Manasrah
[1] obtained

2g0(A+ B — 2A4B) + A8, B + A1, B
<A+B (1)
< 2ho(A+ B —2A4B) + A, B + At1_, B,
W}here 0<wv<1,go=min{v,1—v} and hy = max{v,1—
Vy.

Zou [2] established enhanced versions of inequalities (1)
as follows

290(A+ B — 2A4B) + A#,B + At,_,B

<A+B

(2
< a(v)(A+ B — 2A¢B) + Af,B + At,_,B
< 2ho(A+ B — 244B) + A, B + Ath_,B,

where a(v) = 2(1 — 2(v — v?)).
Subsequently, Liu and Yang [3] demonstrated stronger
versions of inequalities (2) as follows

2go(A+ B —2A4B) + At,B + At1_,B
<A+B
3)
< B(w)(A+ B —2A4B) + A4, B + At1_,B
< a(v)(A+ B —2A4B) + Af,B + At B,
where B(v) = 2 — 2(v —v?), a(v) = 2(1 — 2(v — v?)).
Recently, Hu and Liu [4] presented refined versions of
inequalities (3), which can be expressed as
290(A + B — 2A4B) + At,B + A#;_,B
<A+B
“4)
<~y(w)(A+ B —244B) + Af,B+ At B
< B(U)(A +B - 2AﬁB) + AﬁUB + Aﬁl—vBa

where v(v) = 2 — (v —v?), B(v) = 3 — 2(v — v?).
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Bhatia and Davis [5] obtained that if A, B, X € M,, such
that A and B are positive semidefinite, then

2/|A% X B?||
S ||A1)XBl—v _"_Al—'UXBU” (5)

<|[lAX + X B||,

where 0 < v < 1.

The second inequality of (5) is commonly referred to as
Heinz inequality.

Kittaneh and Manasrah [1], He and Zou [6] respectively
obtained that if A,B,X € M, such that A and B are
positive semidefinite, then

||AX + X B||3
<||A"XB'"U 4+ AU XBY|[3 (6)

+2ho||AX — XB||3,

where 0 < v < 1, hg = max{v,1 — v}.
Zou [2] demonstrated an improvement version of inequal-
ity (6) as follows

||[AX + XB|[3
< ||A*XB'"™" + A"V X BY||3 @)

+a(v)||AX - X B3,

where a(v) = 2(1 — 2(v — v?)).
Liu and Yang [3] established a stronger version of inequal-
ity (7) as follows

||AX + X B||3
< ||A*XB'"™" + A"V X BY||3 (8)

+B(v)[|[AX — X BI|3,

where B(v) = 2 — 2(v — v?).
Hu and Liu [4] provided a refinement version of inequality
(8) as follows

||[AX + XB||3
<||A"XB'"" + A" XB"||3 )

+y(v)||[AX — X B|]3,
where v(v) = 2 — (v —v?).
Kittaneh and Manasrah [7] showed that if A, B, X € M,
such that A and B are positive semidefinite, then

||A1)XBl—v+A1—vXBng

+2g0||AX — X BJ|3 (10)

< [|AX + X BI|3,

where 0 < v <1 and g9 = min{v, 1 — v}, inequality (10) is
the inverse of inequality (6).

Horn and Mathias [8, 9] derived that if A, B € M,, and
any real number r > 0, then

I14*BI"[[* < [|(AA")"[| - [[(BB*)"]] (1)

which is a matrix Cauchy-Schwarz inequality for unitarily
invariant norms.

For A,B,X € M, and r > 0, Bhatia and Davis [10]
achieved an enhanced version of inequality (11) in the
following form

A XBI"||* < lAAX]"|| - IXBB"|l. - (12)

If A, B, X € M, such that A and B are positive semidefi-
nite, (12) is equivalent to

IIAZXB=|"|)2 < [[[AX]"[|-|IXBI"|l.  (13)

Let A,B,X € M, such that A and B are positive
semidefinite. Then, for any real number r > 0, the function

Y(v) = [[[A"XB]| - AV X BT |

is convex on [0,1] and achieves its minimum at v = 1.
As a result, ¢ (v) is decreasing on [0, 3] and increasing
on [3,1], moreover, 1 (v) = (1 — v) for v € [0,1] (See
[11]). Leveraging the convexity of the function v (v), Hiai
and Zhan [11] provided an enhanced version of inequality

(13) in the following form
I|A2 X B2 |"||?

< [[JA"X BV [[[AV X BT (14)

< [[lAX}- X Bl

Hu [12] employed the convexity of ¢(v) to derive an
enhancement of the second inequality presented in (14)

11A"XB=|7|| - A= X BY["||

< 2u||| A X B3| (15)

(L= 2w [[[AXT] - X B[],

where 0 < v <1, vy = min{r,1 — v}.

Recently, using the convexity of 1(v), He et al. [13] gave
refinements of inequality (15), which can be expressed as
@ if v € [0, 4] U [3,1], then

114" X B ||| - [[|AT X B[]

< Aw|[|ASXBA[|| - [[ASXBE["|| (16)
+(1 = 4wo)|[|AX ||| - || X BI|,
(D if v € [1, 3], then
I1A¥ X B ||| - || A X B¥["||
<2(1—2w)||ATXBH["|| - [JATX B A7)

(4 — 1)||AZX BE[|?,

where vy = min{v,1 — v}.

For more papers on Young and Cauchy-Schwarz inequali-
ties, please refer to references [14-17] and their correspond-
ing bibliographies. For article on improving inequalities of
matrix unitarily invariant norms by utilizing the convex
functions, see reference [18].
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This note, building upon the previous discussions, aims
to enhance inequalities involving both Young and Cauchy-
Schwarz. The structure of the note is organized as follows:
Section 2 introduces four Young-type scalar inequalities.
In Section 3, using Young-type scalar inequalities obtained
in the second section, we derive the matrix and Hilbert-
Schmidt norm forms of Young-type inequalities, which lead
to improvements of inequalities (4) and (9). Section 4 focuses
on refining inequalities (16) and (17) by means of convexity
properties. Finally, the conclusion of this paper is given in
Section 5.

II. YOUNG-TYPE SCALAR INEQUALITIES

Now we present the first theorem of this note.
Theorem 1. Let a,b >0, 0 <wv < 1. Then

a+b<a’ " +a " +n(v)(Va— Vb2 o (18)

where n(v) = 13 — (v —v?).
Proof. To establish inequality (18), it is sufficient to demon-
strate that the following inequality holds

(1 —n(v))(a+b) + 2n(w)Vab < a’b' " + o' ~b".

Taking a = e*,b = €Y, by the definition of the hyperbolic
cosine function, it follows that

(50 —07) — 7)eosh(*5 )
13 1
(5*5(7)*”2)) (19)

Taking w = *5¥, by the Taylor series expansion of coshw,

it follows that inequality (19) is equivalent to

1 9 1 w? wl
Z(y — (1 —
G- =)ttt
13 1 9
— — —(v— 20
g — 30 =) (20)
(1—2v)%w? (1 -20v)%w?!
<1+ 51 + 1 +
Since 0 < v < 1, we have
1 9 1 1
—(v— - — € |-—,0].
=)~ 5 €l-35,0
Therefore, inequality (20) clearly holds.
This completes the proof.
Corollary 1. Let a,b> 0,0 < v < 1. Then
(a+ b)2 S (avbl—v +a1—1;bv>2 +n(v)(a _ b)2, (2])
where n(v) = 13 — L (v —v?).

Proof. Inequality (18) leads to the conclusion that
(Va+ V)2 = (a3b 7 +a 7 b%)>2
—a+b— (avblfv +alfvbv)

< (35 - 50— N - Vi,

Thus
1 1
(a+b)? < (a®b' " +a' Vb)) + (1—2 - §(U —v?))(a—0b)2.

This completes the proof.
Below, we will present improvements of Theorem 1 and

Corollary 1.
Theorem 2. Let a,b >0, 0 <wv < 1. Then

a4+b<a’ Y +ar U + C(v)(Va — \/5)27

where ((v) = Z — 1(v—v?).

Proof. The proof is similar to Theorem 1. We leave it to
the readers.
Remark 1. Theorem 2 is more precise than Theorem 1.

It follows that

(22)

n(v) —¢(v)
131 o 21 1 )
BT LA TR Gl
(23)
30
> 0.
Corollary 2. Let a,b> 0,0 <wv < 1. Then
(a+0)* < (a0 +a'0")? + ((v)(a = b)?,  (24)

where ((v) = 2 — 1 (v —v?).

Proof. The proof is similar to Corollary 1. We leave it to
the readers.

Remark 2. Corollary 2 is clearly more precise than Corol-

lary 1, by (23).

III. YOUNG-TYPE INEQUALITIES FOR MATRICES

In the following, we will apply Theorem 1 to derive
Young-type inequalities for matrices, which provide im-
proved versions of inequalities (4).

Theorem 3. Let A, B € M, be positive definite. Then

290(A + B — 2A4B) + A4, B + Ath_,B

<A+ B
(25
<n)(A+ B —2A4B) + At,B + Af1_,B
<v(v)(A+ B —2A4B) + A, B + Af1-, B,
where v € [0,1], go = min{v, 1 —v},n(v) = 1 — (v —0?)

and y(v) = 2 — (v —v?).
Proof. From inequalities (1), it can be concluded that the
first inequality in (25) is satisfied. For the second inequality
in (25), given that P € M, is positive definite, by the spectral
decomposition theorem, there exists a unitary matrix U €
M,, such that

P=UGU",

where G = diag(A1, A2, -, An), \i > 0,1 < i < n. For
a > 0 and b = 1, inequality (18) implies that we obtain

a+1<a’+a 7" +n)(Va—1)2
and so

G+I<G +G " +n@)(G: —D%  (26)
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Multiplying both sides of inequality (26) by U and U*, we
obtain

P+1<P’+P"" 4q)(P? —I)

Let P = A~2 BA~ 2, and thus the second inequality in (25)
is satisfied.

Next, we prove that the third inequality in (25) holds.

It is straightforward to observe that for 0 < v < 1, the
following holds

1) = (o)
_O oy B L e
=2 - - 5=

(27
2, _La
- 3)
> 0.

Therefore, the third inequality in (25) holds.
This completes the proof.
Remark 3. Obviously, Theorem 3 is a refinement of the
inequalities (4).

Next, we will use Corollary 1 to obtain a matrix Young-
type inequality for the Hilbert-Schmidt norm.
Theorem 4. Let A, B, X € M, such that A, B are positive
semidefinite. Then

||AX + X B||3

<||A'X B + AU X B3 (28)

+n(v)||AX - X B3,

where v € [0,1] and n(v) = 13 — £ (v —v?).

Proof. We first prove that when A, B € M,, are positive
definite, by the spectral decomposition theorem, there exist
unitary matrices U, @ € M,, such that

A= UGIU*7B = QGQQ*a
where
Gl = diag()\la A27 Tty A77.)7 G2 = diag(#hp@v e

Aiy g > 0,1 <2 < n.
Let D =U*XQ = (d;;), then

AUXBl—v 4 Al—vXBv

7.un)7

—_ (UGlU*)vX(QGQQ*)lfv
+(UG1U*)1—UX(QG2Q*)1)
=UGI(U"XQ)G, " Q" + UG (U XQ)G5Q"

= U(GYDG3 ™" + Gy 7" DG3)Q,
hence
|A"X B + A"V X BY|[3

=[|GIDGy™" + Gi " DG3 I3

n
T+ AT ) i .

4,5=1

Similarly, we have
IAX + XBlI3 = > (N + p)°|di |

ij=1

and
n

IAX = XBIE = (A —py)*ldy*.
i,j=1
From inequality (21), we derive
S O A )

ij=1

n

+n(0) > (N = )i

ij=1

> (N4 ) Nyl
ij=1
If A, B € M, are positive semidefinite. Define A, = A+
el, B. = B-+¢l, where € is an arbitrary positive real number.
Consequently, A. and B, are positive definite matrices,

|A:X + X Bc|]3
v 1—v 1—v v||2
S HAEXBE +As XB5||2

+n(v)||A:X — X Be[[3.

Let € — 0. Therefore, inequality (28) holds.
This completes the proof.
Remark 4. Theorem 4 is sharper than inequality (9), by
27).

Next, we will use Theorem 2 and Corollary 2 to present
improvements of Theorem 3 and Theorem 4.
Theorem 5. Let A, B € M,, be positive definite. Then

2g0(A + B — 2A4B) + A, B + A1, B
<A+B
<((v)(A+ B —2A4B) + A4, B + Ath -, B

<n(v)(A+ B~ 2A4B) + A, B+ Af1_, B,
where v € [0,1], go = min{v, 1 —v},{(v) = 25 — L (v—0?)
and n(v) = 13 — (v —v?).

Proof. The proof of Theorem 5 is similar to Theorem 3.
We leave it to the readers.

Theorem 6. Let A, B, X € M,, such that A, B are positive
semidefinite. Then

||AX + X B||3
< ||A*XB'"™" + A"V X BY||3

+C()||AX — X B3,

where v € [0,1] and ((v) = 35 — L(v —0?).

Proof. The proof of Theorem 6 is similar to Theorem 4.
We leave it to the readers.

Remark 5. Theorem 6 is clearly more precise than Theorem
4, by (23).
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IV. CAUCHY-SCHWARZ INEQUALITIES FOR MATRICES

In this section, we utilize the convexity of 1)() to establish
matrix Cauchy-Schwarz inequalities for unitarily invariant
norms, which lead to improved forms of inequalities (16)
and (17). To initiate our discussion, we first introduce the
following lemma.

Lemma 1 ([12]). Let g be a real valued convex function
on the interval [a,b] which contains (x1,22). Then for
1 < x < x9, We have

g(x2) —g(@1) w19 (x2) — w29 (1)

g(x) < T .
To — I T2 — 1

Theorem 7. Let A, B, X € M, such that A and B are
positive semidefinite. We have
(M if v € [0, 1] U [£,1], then

147X B (| A4S X B |

< (1—8w)|l|AX"[| - [[| X BI"]| (29)
+8uo||| A5 XBF ||| - [[[ASX B3|,
(D if v € [§, 3] U2, Z], then
1A X B ||| - ||| A X B ||
< (2 8u)[[|[ASXBE"|| - |||AZ X B[] (30)
+(8vo — V||| ATXBA|"|| - [[[ATX B[],
(1) if v € [§, 3] U [2, 2], then
I|A“X B ||| - ||| A= X B |")]
< (3-8w)|l|ATXBi[|| - |||AT X B[] 31)
+(8vo — 2)|||AF X B3 ||| - [[[ASX BE |||,
V) if v € [2, 2], then
[|A“X B ||| ||| A= X B*|"]]
< (4—8w)||AFXBR"|| - [|ARXBE"| (32)

+(8uo — 3)|||A2 X BE|||2,

where ¥(v) = |||[A¥XB=V|"|| - |||AY=* X B|"||, » > 0 and
vo = min{v,1 — v}
Proof. If 0 < v < %, by Lemma 1 and the convexity of

¥(v), we obtain

which is equal to

V() < (1= 80)(0) + 8 )

Thus - -
[[A"XB¥["[| - [[[A" " X B"["]|

< (L =8u)[[JAX]"|] - [IIXBI"]]

+8u|||[AS X BE[T|| - [[[AF X BF||],

that is
I[AY X B=¥|"|| - [||A"Y X BY|"||

< (1= 8wo)[[|AXT"|] - [ X BI"]| (33)

+8u|||ASX B3 ["|| - [|[AZ X B3 |"].

If % < v <1, by Lemma 1 and the convexity of ¢ (v), we
obtain

(1) — (%)

P(v) < —

0]~y

¥(1) —¥(§)
1—

V= )

7
8

which is equal to

Y() < (8= 8)(L) + (v — (1),

Thus
14X B ||| - || A" X B[
< (8= 8[| ASX B3| - [[|[AS X B3|
+@8v = DIIAX]| - [IX B,
that is

1|4 X B[] - |||A** X B|"]]
< (1 - 8w)[[|AX]"|| - [[| X B"]] (34)
+8u|||ASX B3 ||| - ||[AS X B3 |"].

If £ <v <4, by Lemma 1 and the convexity of 1(v), we
obtain

¥V(3) —¥(2) 0(3) — 10 (3)
b(v) < 4l_l81/_8 41_1 8/
1 8 4 8
which is equal to
1
Y(r) < (2= 80)0(g) + (Br = Du(y):
Thus
[ A¥XB'=*|"|| - [||A'~" X B"|"||
< (2 - 8v)|||[ASXBE["|| - ||| ASX B3 "]
+(8v — 1)|||ATX B[] - [||ATXBH|"|],
that is

I|A"X B ||| - ||| A X BY|"|
< (2 8vo)|||[ASXBE|"|| - ||| AS X B3| (35)
+(8vo — 1)|||ATX BR[| [[[ATX BT|"]].

If2<y< %, by Lemma 1 and the convexity of ¢ (v), we
obtain

which is equal to

Y0 < (7= 80)0() + (8 — 6)u(L).
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Thus
[[A"X B ||| - ||[|A* X B"|"|
< (T—8v)|[|[ATXB3["|| - [|[ AT X B3]
+(8v — 6)[[[AFXBE|[| - ||[A* X BE|"]],
that is

I|A"X B ||| - ||| A7 X B[]
1 7 7 1
< (2 —8w)|[[AsXBs|"|| - [[|A® X B=["]|

+(8uo — [ ATX BR[| - ||| AT X BT|"]].
If 1 <v <2, similarly, we obtain

v(E) - vG) v

3 _
8

el

P(v) <

~—
|
ENTE L] (%)
=
—
=
~—

ool
I

1
1
which is equal to

Y < (3= 8)(3) + (B —2u(2).

Thus
14" X B' ||| - ||| A" X B
< B8 ATX B[ - ||| AT X BA[]
+(81/ - 2)|||A%XB§|T|| . |||A%XB%‘TH,
that is

I|A¥ X B ||| - ||| A~ X B[]
< (3 8w)|[|ATXBi|||-|||AT X Bi["]]

3 5, 5 3.
+(8rg — 2)|[|[AS X BE["|[ - |[|AS X B="||.
If2<v< %, similarly, we obtain

W3 —v(E), 590 — 1Y)
8

oolot

P(v) <

3 _5 3
4 8 4

which is equal to

5 3
() < (6 80)e(Z) + (8 — 5)u(Y).
Thus
[[A"X B ||| - [[|A* " X B
< (6 8v)[[|[ASXBE["|| - [|[ASX BE|"]|
+(8v = 5)||ATX BA[|| - [|ATX B[],
that is

I|A"X B[] - ||| A X B[]
1 3 3 1
< (3 —8w)|[[ATXB|"|| - [[|AT X B3["]|

+(8uo — 2)|[[ASX BR[| - ||| A3 X BE|"]].

If 2 <v < 1, similarly, we obtain
O3 —v(E) () —3v(2)
¢(V)§ 2;_581/_8 21_5 87
278 278

(36)

(37

(38)

which is equivalent to

Y < (1= 80)0(3) + (80 - B)u().

Thus
IAYX B ||| - (|4 X BY|"]|
< (4-8)|||AFXB3|"|| - [[[ASX BR[|
+(8v - 3)|||A2 X B> ||,
that is

I|AY X B*=|"|| - ||| A" X B*|"||
< (4 - 8w)|[|[AZXBE|"|| - ||| A3 X BR[|

+(8uo — 3)|||A2 X BE|"[|2.

If % <rv< g, similarly, we obtain
5Y) _ 1 1.,05Y _ 5,(1
ooy < MRV, ) - )
8 2 8 2

Thus
I1A” XB' = ||| - [[[ A= X B"|"||
< (5—8v)|||AZXB3["|?
+(8v — )| ARXBR ||| - [||AF X B[],
that is

A" X B (| AT X B |
3 5 5 3
< (4-8w) 1A X B AR X B

+(8uo — 3)|||A2 X BE |||

(39)

(40)

It follows from (33)-(40) and r > 0, v = min{y,1 — v}

that Theorem 7 holds.
This completes the proof.

Corollary 3. Theorem 7 is sharper than inequalities (16)

and (17).

Proof. By the convexity of ¥(v) and (16), (17), if v €

[0, Ju

, 3] U[£,1], then

YO) < (1 800)(0) + S0y (5)

1 1

IN

274 2

(1= 400} (0) + 4 ;).
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Ifveli 2JU[3, 1], then

) S (2= Sm)ulg) + (0 - U(p)
< @-8m)(5U(7) + 30 (0)
8o~ D9(3)

= (1 —419)¥(0) + 41/01/1(%)-

Ifvelf, 2]Ul3,2], then

) < B S+ (S0 - ()
< B8y
B - 2)(50(3) + 59(3)
= 20— 2p({) + (4o — D3
If v € [2, 2], then
0) S (A= 8)u(3) + (0~ 3U(3))
< - 80)(GU(5) + 50(})
B~ 3)9(3)
1 1
= 201- 2V0)¢(1) + (4w — 1)¢(§)~

Consequently, Theorem 7 is a refinement of inequalities (16)
and (17).
This completes the proof.

Based on inequalities (14) and (29)-(32), we obtain the
following refinements of inequality (14).
Corollary 4. Let A, B, X € M, such that A and B are
positive semidefinite. We have
(M if v € [0, 1] U [£,1], then

I|A"X B ||| - ||| A X B[]
< (1 — 8wo)|[JAX]"|| - [l X B|"||
1 7 7 1.
+8u|||ASX BE|"|| - [||AS X B3 ||
<|lAX ||| - || X BI"]|,
D if v € [§, 3] U [2, %], then

1| A" X B ||| - ||| A" X B[]

< (2 - 8w)|||AS X BE ||| - [|[AZ X BE|"||
+(8uo — V|| ATXBA||| - |||AT X BT[]

< [lAXT(|- X B,

(I if v € [§,3]U[2, 3], then
1| AV X B ||| - ||| A X B[]
< (3 8w)|[|[ATXBA|"|| - |||AT X BT|"||
+(8vo — 2)|||ASXBE|"|| - ||[ARX BE|||
+(8uo — 1)|||ATXBE|"|| - [||[AT X BT|||
< ||AX ||| - [[|X BI"]|,
V) if v € [2, 2], then

147X B 7| [|AY X B |

< (4—8wo)|[|AF X BE["|| - [||[AF X BR[|

+(8vo — 3)|||A X BE|"||?
+(8uo — 1)|||ATXBE|"|| - [||[AT X BT|||

< [[lAXT"}- X B,

where 9 (v) = |||A¥ X B*=V|"|| - |||A** X B¥|"||, r > 0 and
vo = min{r, 1 — v}.

V. CONCLUSION

This paper primarily explores some inequalities involving
Young and Cauchy-Schwarz. We begin by deriving two
Young-type scalar inequalities, employing coshw and its
Taylor series expansion. Based on the obtained inequalities
(18), (21), (22) and (23), we then present Young-type in-
equalities for matrices and Hilbert-Schmidt norm. Further-
more, by leveraging the convexity of (), we establish
Cauchy-Schwarz inequalities for unitarily invariant norms of
matrices, which enhance inequalities (16) and (17). At the
same time, we present a corollary of Theorem 7. These topics
will be further investigated in future studies.
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