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Abstract—This study introduces an innovative approach 

within the sparse regularization framework, replacing the 

traditional total variation (TV) regularization with a non-convex 

regularizer based on the arctangent (Atan) function. The 

Atan-based regularization improves sparse representation and 

edge preservation through its non-convex properties, effectively 

overcoming the limitations of convex regularizers in detail 

reconstruction and artifact suppression. The model ensures 

overall convexity with careful parameter selection, thus 

maintaining guaranteed convergence during optimization. The 

alternating direction method of multipliers (ADMM) algorithm 

is employed to address the optimization challenges of the 

non-convex regularizer, demonstrating robust computational 

efficiency. Extensive experiments on image deblurring tasks 

show that the proposed method significantly outperforms 

traditional TV-based approaches in quantitative metrics and 

visual quality. 

 
Index Terms—Image restoration, Non-convex functions, 

Regularization, Sparse model 

I. INTRODUCTION 

PARSE regularization technology, a widely employed 

methodology in image processing, optimizes data 

representation and computational efficiency by exploiting the 

inherent sparsity of natural images. The fundamental principle 

of sparsity theory is based on approximating signal 

representations by minimizing non-zero coefficients in 

appropriate transform domains. This approach has established 

itself as a cornerstone technique with extensive applications 

across compressive sensing, signal reconstruction, and data 

compression [1]–[6]. In digital image processing, sparse 

approximation techniques have demonstrated remarkable 

success in critical tasks, including image compression, noise 

reduction, and restoration. By decomposing images into 
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sparse linear combinations of basis functions within 

transformed domains, these techniques enable efficient 

processing and transmission while maintaining perceptual 

quality. Notably, sparse representation-based compression 

techniques achieve substantial file size reduction without 

compromising visual fidelity, effectively balancing storage 

efficiency and reconstruction accuracy. The image restoration 

problem under sparsity constraints can be mathematically 

formulated as an underdetermined linear system: 

 : ,y AX e                                           (1) 

 where X is the original image, A represents a linear operator, 

y   is the observed image, and e   represents noise. Generally 

speaking, the problem (1) is an ill-posed problem that poses 

difficulties in solving. The concept of total variation (TV) 

regularization was first introduced by Rudin, Osher, and 

Fatemi in their seminal work published in [7]. This model has 

since become a cornerstone in image processing and computer 

vision, typically expressed as 

2min ,
1

2X
TVAX y X ‖ ‖ ‖ ‖                       (2) 

where represents the 2-norm, 
TV

X represents the total 

variation norm of X , and 0   is the regularization 

parameter. The basic idea of this model is to utilize the 

differences between pixels or edge information in the image 

to perform image denoising and preserve edges. T. Chan and 

J. Shen [8] proposed a mathematical model for image 

inpainting. In the TV model, the total variation of the image is 

used as a regularization term to promote fewer smooth 

regions and more edge information in the restored image. 

Both the data fitting and regularization terms in this model are 

convex functions, making the problem a convex optimization 

problem. Methods such as the primal-dual algorithm [9], split 

Bregman method [10-12], and alternating direction method of 

multipliers (ADMM) [13-15] can effectively solve these 

problems. Consequently, this model has gained widespread 

attention and application since its proposal. 

Although TV regularization models excel in edge 

preservation, they may produce an unnatural "block effect" in 

smooth regions, also called the "stair casing effect." This 

effect renders areas that should transition smoothly into 

layered and discontinuous planes, resembling stairs. 

Non-convex models have garnered significant attention in 

recent years for their versatility in capturing diverse image 

features and circumventing issues such as stair effects in TV 

models. For instance, the nonlocal means (NLM) model, as 

proposed by K. Han  [16] and Y. Liu [17], removes noise by 

computing the mean of local image regions, effectively 

preserving edge information and being adept at handling 
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Gaussian and salt-and-pepper noise. In sparse representation 

models [18], images can be efficiently represented through 

linear combinations of a few essential elements. These 

models are extensively utilized in image compression, 

denoising, and super-resolution domains [19-22]. Low-rank 

models [23-25] posit that an image or sequence of images can 

be constituted by a limited number of fundamental images 

approximated by low-rank matrices. These models are 

extensively employed in background modeling and image 

completion [26-29]. L. Xu [30] introduced non-convex 

regularization terms, enhancing the TV model's ability to 

preserve details and mitigate stair effects. This category of 

models is delineated as follows 

x 2min ( ),
1

2X
AX y P X ‖ ‖ .                      (3) 

where ( )P X is a non-convex function serves as an alternative 

to the TV norm. Non-convex functions, including the 
pl norm 

[31-32], smoothly clipped absolute deviation (SCAD) 

[33-34], and minimax concave penalty (MCP) [35-36], serve 

as alternatives to the TV norm. These functions can more 

effectively accommodate the specific properties or structures 

of data. Consequently, these methods have emerged as a focal 

point in research, replacing traditional TV regularization 

terms [37]. 

This article further explores the application of non-convex 

regularization techniques in image processing. We introduce 

the arctangent (Atan) function as a replacement for the TV 

norm, resulting in the following model: 

2
tann

2
mi .

1

X
A TVAX y X ‖ ‖ ‖ ‖                       (4) 

The notation
tanA TV

X denotes a non-convex regularization 

term crafted with the Atan function, as detailed in Section 2. 

The Atan function preserves the overall convexity of the 

objective function while reducing the penalty on significant 

coefficients as much as possible. This property of preserving 

convexity mirrors that of the MCP function. Numerical 

experiments indicate that the Atan function excels in terms of 

fitting performance. 

  The organization of this article is as follows: Section 2 

revisits the definition and properties of the Atan function and 

introduces a non-convex model for the Atan function; Section 

3 outlines the specific solution steps for the ADMM algorithm; 

Section 4 validates the approach through numerical 

experiments, demonstrating the effectiveness of both the 

model and the algorithm; Section 5 offers a concise summary 

of the content of this chapter. 

II. ATAN REGULARIZATION MODEL 

This section begins by revisiting the definition and 

properties of Atan penalty functions and extends these 

concepts to multivariate functions. Subsequently, a 

non-convex sparse model incorporating the Atan penalty 

function is introduced. By integrating the 

difference-of-convex (DC) framework, we reformulate the 

non-convex problem as the difference between two convex 

functions to find the solution. This decomposition is facilitated 

by the DC algorithm, which iteratively resolves convex 

subproblems to progressively approximate the global 

optimum. 

Definition 2.1 The Atan penalty function is defined as 

follows: 

tan

| |,                                           0

2 1 2 | |
(arctan( ) ),  

( ;
 

3 3

)
0

6

A x a

x a

a x
a

a






 
 



     （5） 

where 0a   is the parameter. 

Property 2.1 If the parameter 0a   satisfies 0 1/a   , 

then 

1) The function 
2

A

1
( ) ( ; ) ( )

2
tanx x a x t     is strictly 

convex; 

2) The proximity operator corresponding to 
tan ( ; )A x a is 

2

tan

1
( ; , ) arg min ( ; ) ( ) ,

2
A

x
prox t a x a x t  

 
   

 

          (6) 

which is a continuous nonlinear function, where 0   is 

called the proximity parameter. The proximity operator is an 

effective tool for solving sparse problems; its specific 

calculations can be found in [39]. 

Within the difference of convex (DC) framework, consider 

another function that corresponds to it 

tan tan( ) | | ( ; ).A Ax x x a            (7) 

Figs 1-3 show the images of 
tan ( ; )A x a , 

tan ( )A x , and 

( ; , )prox t a  , respectively. It can be seen that 
tan ( )A x  is a 

convex function, which is crucial for establishing new 

non-convex models. 

 

 
Fig. 1. The graph of 

tan ( ; )A x a . 

 

 
Fig. 2. The graph of 

tan ( )A x . 
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Fig. 3. The graph of ( ; , )prox t a  . 

 

The vector generalization of functions
tan ( ; )A x a  and 

tan ( )A x  yields the following expression: 

N N

tan

1

an

N

t

1

( ) ( ), ( ) ( ), Ri i

i i

a A a Av v 
 

     v v v ， 

where 
tan ( )A iv  and  

tan ( )A iv  are defined by (7). 

Furthermore, the following definition is obtained: 

 

Definition 2.2 Define the AtanTV regularization term 

tan
: N

A TV
X R R for NX R  as follows 

a 1t n ( ) ( ),aA V aTX X X X   D D D‖ ‖ ‖ ‖   （8） 

where D is the gradient operator. In model (2), we consider 

using 
tanA TV

X  instead of the TV regularization term and 

obtain the following non-convex sparse model 

2
tann

2
mi .

1

X
A TVAX y X ‖ ‖ ‖ ‖             (9) 

    Lemma 2.1 Let 0   and 0a  . Define ( ) : NR R  , 

2

tan

1
( )

2
.A TVX X y AX   ‖ ‖ ‖ ‖             (10) 

If T Ta A A D D , then  is convex. 

  Proof: Using (8), we write   as 

2

tan

2 2

2 2

1

1
( ) || || || ||

2

1
( ) || || || || 2

2

1 1
|| || || || || || ( ) .

2 2

a

A TV

T

a

T

X X y AX

X AX y AX

X y y AX AX X





 

   

      

   
        
   

D y

D D

 

To prove that   is a convex function, it is sufficient to show 

that 
21

( ) || || ( )
2

aX AX X    D  is convex. Using (8), we get 

1 2

2 2 21
( ) (|| || || || ) ( || || ( )).

2 2
D D Da

a
X AX a X X X 

 

   
 

Based on the condition T Ta A A D D , 1  is a convex 

function. According to Proposition 1 in reference [39], 2 is 

also a convex function. Thus, the proposition is established.  

III. NUMERICAL ALGORITHM 

In this section, to effectively solve the problem (9), we first 

replace XD with an auxiliary variable z , and then transform 

the original optimization problem into an equation constraint 

form 

21
  ,

2

  . .    z=

min ( )a
X

z AX y

s t X

 

D

‖ ‖
                 (11) 

The augmented Lagrangian function of (11) is 

2 21
( , , ) ( ) ( ) ,

2 2
aX z z y X z X X


       T

w A w D D‖ ‖ ‖z ‖  

where  

1
( ) ( )a az z z   , 

w is the Lagrange multiplier and   is the penalty parameter. 

According to the traditional ADMM algorithm framework, the 

solution of (11) can be expressed as 
1

2 2

1

2

1 1

argmin ( , , )

1
      min{ ,

2 2

argmin ( , , )

      min{ ( ) ,
2

( ).

}

}

k

kT

X

k k

k k

k

k

a

k k

z

k k k k

X X z

y X X X

z X z

z X

X z

z








 



  

 

     





     

   

1

T 1

1

w

A w D D

w

w D

w w D

‖ ‖ ‖z ‖

‖z ‖

 

Now consider the calculation for each subproblem. The 

X  subproblem can be derived from the first-order optimality 

condition. 

( ) ,k
kX   1 T T 1

D D A A H  

where k k
k z y  T T T

H ρD A D w .   

For the z subproblem,  

1 2min{ ( )
2

}.k k

z
a

kzz z X


     T 1
w D‖z ‖  

We expand and organize the quadratic terms in the above 

equation, omitting the constant to obtain  

1 2min{ ( ) ( )
2

}.
k

k

z
a

kz z X




     1 w
D‖ ‖+z  

Hence, we obtain the explicit solution of the above equation 

from the proximity operator as 

, ( ).
a

k
k kz prox X



  1 1

Φ

w
D  

  The ADMM algorithm for solving problem (10) is provided 

below. Due to the inclusion of the AtanTV regularization term 

in the model, this algorithm is referred to as the AtanTV 

method. 

 

Algorithm 3.1 (AtanTV): 

 

Step 0: Initialization 

Input , , 0a   and tolerance 0  .  

Given
0 0 0( , , ) ( , , )X z X zw w , let : 0k  ; 

Step 1:  Compute  

1

1

,

1 1 1

( ) ,

( ),

( ),

a

k

k

k

k

k

k

k k

X

prox

X z

z 

 



  

  





  

T T 1

Φ

D D A A H

t

w w D

 

where  .
k

k kX


 1 w
t D   
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Step 2:  Update 

Set  
1 1 1 1( , , )

k k k kX z
   w w  , if 

1k k

 2

2w w ε‖ ‖ , STOP; 

otherwise, let : 1k k  , go back to Step 1. 

Lemma 2.1 demonstrates that, with suitable parameters, the 

proposed AtanTV model preserves the convexity of the 

objective function. Therefore, the algorithm introduced in this 

section can be theoretically analyzed using the framework 

described in [36] or through similar proofs found in [39]. 

IV. EXPERIMENTAL RESULTS 

This section will utilize the newly proposed AtanTV model 

for image deblurring experiments and compare it with the 

classical TV model [15] and the MCTV model [36]. In model 

(9), the matrix A  represents the convolution operator K . 

For the experiments, a set of commonly used classic images of 

various sizes was selected, as shown in Fig. 4. From left to 

right, the images included are the "Cameraman" and "MRI" 

images of size 256×256, the "Lena" image of size 512×512, 

and the "Boat" image of size 1024×1024. All simulations were 

performed using Matlab R2015a on a PC with an Intel Core i5 

CPU @ 2.20 GHz and 8 GB of RAM. 
 

  
 

  
Fig. 4. Experimental images 

 
We utilized the fspecial function from the Matlab toolbox in 

the perturbation simulation. For the experiments, different 

parameter settings were applied to images of various sizes to 

enhance the generalizability of the results. To evaluate the 

experimental outcomes of other models, we employed PSNR, 

RE, and SSIM metrics to measure the image reconstruction 

quality.  

A. AtanTV Model Parameter Testing 

 In applying non-convex sparse models, parameter selection 

remains a critical unresolved issue that significantly influences 

the results. This article introduces a model named AtanTV, 

with the penalty parameter a   ranging from 0 to 1/  , where 

   is the regularization parameter. To explore the impact of 

various parameter combinations on the model's outcomes, we 

systematically tested multiple values for  a   and   using the 

default settings of the fspecial ('Gaussian') function in Matlab 

for the image "Cameraman (256)" as presented in Table I. The 

experimental findings reveal a high sensitivity of parameter 

selection to both the model's convergence rate and the final 

solution's quality. 

 Additionally, Fig.5 visually depicts the relationship 

between   and PSNR values. Further analysis indicates that 

the penalty parameter a exhibits relative stability in image 

deblurring applications. Specifically, when  is set to 0.01 or 

0.001, the difference between the minimum and maximum 

PSNR values does not exceed 8%. Therefore, careful 

parameter selection can enhance the model's stability and 

significantly improve the accuracy of the solution. This 

highlights the importance of fine-tuning hyperparameters to 

achieve optimal performance.  
 

TABLE I   

PSNR VALUES UNDER DIFFERENT PARAMETERS  

   a   PSNR 

10 

0.1 32.774 dB 

0.01 29.252 dB 

0.001 23.574 dB 

1 

1 46.985 dB 

0.1 46.169 dB 

0.01 44.543dB 

0.001 41.654 dB 

0.1 

10 47.079dB 

1 46.999 dB 

0.1 47.058 dB 

0.01 47.000dB 

0.001 46.901 dB 

0.01 

100 47.052 dB 

10 47.029 dB 

1 47.050 dB 

0.1 47.105 dB 

0.01 47.070 dB 

0.001  47.050 dB  

0.001 

1000 47.027 dB 

100 47.022 dB 

10 47.030 dB 

1 47.049 dB 

0.1 47.043 dB 

0.01 47.041 dB 

0.001 47.027 dB 

 

 
Fig. 5.  ( 0.1)a   vs. PSNR Curve 
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Taking into account the model types discussed 

subsequently, as well as the results presented in Table I and 

Fig. 5, we have chosen parameters 0.001, 1.5   , and 

0.1a    for the AtanTV model. The number of iterations was 

fixed at 250. 

B. Evaluation of the New Method Amid Different Blur 

Disturbances 

This sub-section explores the performance of the proposed 

new method in image restoration under three common types 

of blur disturbances. Fig. 6 illustrates the restoration results of 

the 256×256 "Cameraman" image under various blur 

perturbations using the AtanTV method. Table Ⅱ presents the 

SSIM and CPU values for each method. The findings show 

that the AtanTV method excels in effectively managing 

Gaussian noise. 
 

TABLE Ⅱ   

CPU TIME AND SSIM VALUES 

Blur type SSIM CPU/s 

('Gaussian',[5 5], 1)  1.0000  3.319  

('motion', 9, 0)  0.7994.  4.174  

('average',3)  0.8919.  2.741  

 

  
 

  
 

  
 

Fig. 6. AtanTV method recovery results 

C.  Performance Comparison among Different Models 

In this subsection, we compare our method with existing TV 

and MCTV methods by conducting four sets of tests to 

evaluate the image reconstruction performance on images of 

varying sizes under different levels of blur interference. Fig. 7 

shows the reconstruction results of the three methods. 

The deblurring performance of three methods (TV, MCTV, 

and AtanTV) on MRI (256) images is illustrated in Figs. 

7(a2)-(a4) and  (b2)-(b4). The findings reveal that AtanTV 

significantly outperforms TV and MCTV in restoring images 

under both mild Gaussian blur ('Gaussian,' [5 5], 1) and severe 

Gaussian blur ('Gaussian,' [10 10], 10). This indicates that 

AtanTV not only enhances image clarity but also preserves 

essential structural details often compromised by standard 

techniques.  

Fig. 7 (c2)-(c4) shows the deblurring results for Lena (512) 

images subjected to heavier Gaussian blur, comparing the 

efficacy of TV, MCTV, and AtanTV. These results highlight 

the distinct approaches and impacts of each method on 

Gaussian blur. The AtanTV method, integrating TV 

regularization with non-convex function information, 

effectively restores fine image features and structures. This 

conclusion is further corroborated by the results in Fig. 7 

(d2)-(d4). 

Table III illustrates the performance of four methods (TV, 

MCTV, AtanTV) across different images and blur settings, as 

assessed by relative error (RE%) and peak signal-to-noise 

ratio (PSNR/dB). For the MRI image (256x256) under 

Gaussian blur conditions ([5 5], 1) and ([10 10], 10), the 

AtanTV method achieves relative errors (RE%) of 9.06% and 

15.82%, with PSNR values of 37.01dB and 32.15dB, 

respectively, outperforming both TV and MCTV methods. 

For the Lena image (512), AtanTV achieves an RE% of 5.04% 

and a PSNR of 31.76 dB, outperforming TV (RE% of 5.35%, 

PSNR of 30.83 dB) and MCTV (RE% of 5.29%, PSNR of 

31.12 dB). Similarly, for the Boat image (1024x1024), 

AtanTV achieves a RE% of 4.53% and a PSNR of 32.27dB, 

surpassing TV and MCTV. In summary, the AtanTV method 

consistently delivers lower relative errors and higher PSNR 

across various deblurring scenarios, underscoring its efficacy 

in image deblurring applications. 

 
TABLE Ⅲ   

NUMERICAL RESULTS 

Image Blur type Method RE% PSNR/dB 

MRI 

(256) 

('Gaussian', 

[5 5], 1) 

TV 10.29 36.00 

MCTV 10.18 36.08 

AtanTV 9.06 37.01 

MRI 

(256) 

('Gaussian', 

[10 10], 10) 

TV 19.52 30.54 

MCTV 18.29 31.06 

AtanTV 15.82 32.15 

Lena 

(512) 

('Gaussian', 

[10 10], 10) 

TV 5.35 31.19 

MCTV 5.29 31.29 

AtanTV 5.04 31.68 

Boat 

(1024) 

('Gaussian', 

[15 15], 15) 

TV 4.89 31.64 

MCTV 4.81 31.77 

AtanTV 4.53 32.27 
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(a1)                                            (a2)                                              (a3)                                            (a4) 
 

       
 

(b1)                                              (b2)                                               (b3)                                                (b4) 

 

         
 

(c1)                                             (c2)                                                (c3)                                            (c4) 

 

       
 

(d1)                                                (d2)                                            (d3)                                              (d4) 
 

Fig. 7. Images restored by TV, MCTV, AtanTV models 
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V. CONCLUSION 

This paper introduces a sparse, non-convex regularization 

model based on the arctangent function, which, under suitable 

parameters, facilitates convex optimization solutions for 

non-convex models. It effectively mitigates blur in image 

deblurring, enhancing clarity while retaining essential features 

and reducing noise. The model's versatility extends beyond 

image deblurring, with potential applications in dynamic 

imaging, machine learning, and signal processing. 
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