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Abstract—This study is concerned with the maximum like-
lihood estimation (MLE) for stochastic differential equations
(SDEs) driven by fractional Brownian motion (fBm). Firstly, we
give the likelihood function and obtain the maximum likelihood
estimator (MLEr). Then, we prove the strong consistency of the
estimator. Finally, we derive the asymptotic normality of the
estimation error.

Index Terms—SDEs; MLE; consistency; asymptotic normal-
ity; fBm

I. INTRODUCTION

To estimate the parameters is very important for modeling
the stochastic models and many scholars devoted to study this
problem. For example, Ding ( [2]) explored the properties
of the least squares methods and the multi-innovation least
squares methods. Farghali et al. ( [5]) proposed generalized
two-parameter estimators and an algorithm for the estimation
of shrinkage parameters to combat multicollinearity in the
multinomial logit regression model. Liu and Liu ( [11]) used
the principle of least squares between the uncertainty distri-
bution and the empirical distribution of the observed data and
estimated the unknown parameters in uncertain differential
equation. Liu ( [12]) proposed the moment estimation of un-
certain regression model and used uncertain hypothesis to test
the estimated uncertain regression model. Xu ( [20]) offered a
dynamical length stochastic gradient estimation technique to
obtain more accurate parameter estimates by using dynamical
length measured data from the step response. Yang et al. (
[23]) focused on iterative parameter estimation methods for
a nonlinear closed-loop system with an equation-error model
for the open-loop part. Basit et al. ( [1]) introduced a neural-
network-based unified estimation framework to estimate the
unknown nonlinear function in conjunction with the system
state and unknown parameters. Lenzi et al. ( [9]) used
deep learning models to estimate parameters in statistical
models when standard likelihood estimation methods are
computationally infeasible. Wei ( [18]) studied the parameter
estimation for Ornstein-Uhlenbeck process driven by Liu
process. Xu ( [21]) provided a novel parameter estimation
method for the systems with colored noises by using the
filtering identification idea. Yang and Liu ( [24]) used a
method of moments to estimate unknown parameters in
uncertain partial differential equations. Guo et al. ( [7])
proposed three distributed-like algorithms for multivariate
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Gaussian mixture models. Wei et al. ( [19]) used MLE to
study the partially observed SDEs and gave the asymptotic
properties of the estimators.

In view of recent empirical findings of long memory in
finance, it becomes necessary to extend the diffusion models
to processes having long-range dependence. One way is to
use stochastic differential equations with fBm driving term,
with Hurst index greater than %, the solution of which is
called fractional diffusion. The fBm being not a Markov
process and not a semimartingale, the classical Itd calculus
is not applicable to develop its theory. In recent years, many
scholars devoted themselves to the study of this problem.
For instance, Dufitinema et al. ( [4]) introduced the long-
range dependent completely correlated mixed fBm. Feng et
al. ( [6]) proposed a general parameter estimation neural
network to jointly identify the system parameters and the
noise parameters of a stochastic differential equation driven
by fBm from a short sample trajectory. Omari ( [15]) dealed
with the parameter estimation problem for an nth-order
mixed fBm. Tuan et al. ( [17]) investigated four problems for
stochastic fractional pseudo-parabolic containing bounded
and unbounded delays. Panunzi et al. ( [16]) estimated
the order of the fractional stochastic process on night-time
continuously measured glycemia data. Han and Zhang ( [8])
investigated the nonparametric Nadaraya-Watson estimator
for the drift function of stochastic differential equations
driven by fBm. Liu ( [10]) considered the time discretization
of fractional stochastic wave equation with Gaussian noise
and derived the error estimates of the time discretization.
Djerfi et al. ( [3]) defined the MLEr of the drift parameter
and provided a sufficient condition for the James-Stein type
estimators. Yamagishi and Yoshida ( [22]) constructed a
theory of exponents based on a graphical representation of
the structure of the functionals.

Although the problem of parameter estimation for SDEs
driven by fBm has been developed in recent years, the strong
consistency and asymptotic normality of estimators have
been considered in few literature. Motivated by the above
considerations, in this paper, we investigate the maximum
likelihood estimation for SDEs driven by fBm. We give the
likelihood function and obtain the expressions of MLEr and
estimation error. We prove the strong consistency of MLEr
and derive the asymptotic normality of estimation error. The
structure of this paper is organized as follows. Section 2
gives the likelihood function and obtain the MLEr. Section 3
provide the strong consistency and asymptotic normality of
estimator. The conclusion is given in Section 4.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (2, F,IP) be a basic probability space equipped with
a right continuous and increasing family of o-algebras
{F}i>o0.
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The SDE driven by fractional Brownian Motion considered
in this paper is described as follows:

{ dX; =aa(t, X;)dt + b(t, X;)dWH )

Xo =1,

where « is an unknown parameter, n is a finite random
variable, W, H € (4,1) is the fractional Brownian motion.

We assume that the function ¢ : R - Rand b: R — R
are known and satisfy

Assumption 1: |f(t,z)| + |g(t,x)| < K(1 + |z|) for all
t e 0,17,

Assumption 2: | f(t,x) — f(t,y)| + |g(t, ) — g(t,y)| <
K(Jx —y|) for all ¢t € [0, 7],
for some constant K > 0.

Remark 1: Under the conditions 1 and 2, it is known that
there exists a unique solution of the SDE (1) (see( [13])).

Define

t
M; = / kL (s)dwi 2)
0

where k' (s) = 7' (s(t—s))2 ", 7y = 2HT (3 — H)T'(H +
3)
5)-

Hence, M* is a Gaussian martingale with variance func-
tion

t2_2H
M*); = 3
W A 3)
ey = 2D
Then M} can be rewritten as
t
M; :/ F(s5)dW,, "
0

where f(s) = 1/2(1/\7:{11)3%_11 and W; is a standard Brow-
nian motion.
Thus we have

Yy, = )X,
o= o) |
:a/ K(t,S)a(S,XS)dS—f—/ K(t, s)b(s, Xs)dWH
0 0
:a/ n(t,s)a(s,XS)der/ f(s)dWs.
0 0

Consider the probability P

P T k(T t)a(t, X,)
=P —exp(—a/o Tth
_oﬁ T k(T t)a(t, Xt)

F ), S

According to the Girsanov’s theorem, the following pro-
cess is a Brownian motion

. t

W, = W, +/ oL 8als, Xa) 4 )

0 f(s)

Hence, we have

T o~

Yr = / f(t)dWs, (6)
0
and

T2—2H

Yr NN(O,T). @)
H

Therefore, it can be checked that the likelihood function
is
lr() a/T AT s)als, Xs)
T = ————aW;
0 f(s)
T
/ (K(T,s)a(s,Xs))st
0 f(s)
T
T X,
[ Tt )
0 (f(s))

_af2 T K(T, s)a(s, Xs) .o <
> [, e

Then, we can obtain the following maximum likelihood
estimator (MLEr)

+
N‘QM

Q

IT k(T,s)a(s,Xs) dy,

~ 0 (f(s))?
ar = w(T,s)a(s,X : ®)
fo ( ( ]2(5() .))st

III. MAIN RESULTS AND PROOFS

Lemma 1: ( [14]) Let M : [0,7] x [0,T] x @ > Rx R
be a B([0,T]) ® B([0,T]) ® F measurable process satisfying
the following conditions:

(D)M(t,s) =0ifs > t,

(2)M (t, s)isFs — adapted,

(3) There exists a positive random variable ¢ and S € (0, 2]
such that for all ¢, r € [0, T

At
| 1) = Mo <= ol
0

Then for any 6, 0 < 8 < 1 A S, there exist positive constants
K, (depending only on #),K5,K3, such that

t
P( sup | [ M(t,s)dWs| > n,

o<t<T Jo
1Moo < Knrye < Cwur)

2
S exp(_ )7

K-
TK2, +TFCy °

for any 7 > 0,0 > 0 and Kj; > 0 such that n(T%~C)y, +
TYOK3)7E > Ky V Kp((L+T)T%).

Theorem 1: Under conditions 1-2, as T" — oo, the MLEr
ar is strong consistent, that is to say

Proof: According to the expression of ar and Equation
(1), we have

T k(T,s)a(s,Xs)

ar = Jo ey dYs
T, k(T,s)a(s, X,

fo(( ]2(5() L)2ds

T k(T,s)a(s,X5)
N s O
T  k(T, 5, Xs '

fo( ( S}Ezs() ))2ds
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Then, from Lemma 1, we have

R fOT w(T, sf)a(s,Xs)dWS
Plar—al >n) =P g—rho——| > 1)

fo T )ds
fT /{(T,s)a(s,Xs)dWs

<P ”T’ > 1,
T
K(T, s)a(s, Xs) o
BT P52 6] <
[ RS ) < )
Kn?
<;W,

where n = T | o < Ky, 8€(0,2].
Thus, by us1ng Borel Cantelli lemma, when T" — oo, we
obtain that

P(jar —al > n)—0. ©)
Then, we have
ar 3 a (10)

The proof is complete.

|
Theorem 2: Under conditions 1-2, as T — oo,
~ d
\/ QT(CVT — a) — N(O, 1),
where T ( Ja )
w(T, s)a(s, X,
Qr :/ (82 g,
0 f(s)
Proof: Since
T k(T,s)a(s,Xs )d
N e
\/ Jo () 2ds
It is known that the continuous semimartingale

f h(t,s, Xs)dWs has the decomposition as follows:

/htsX /hssX

Oh(r,u, X,,)
+/0 (/0 B = a— dW,,)dr.

By using Skorohod embedding for continuous semimartin-
gale, we have

T T
/h(T,s,Xs)dWS:W*(/ R (T, s, X,)ds), (12)
0 0

where W* is some Brownian motion.

Defi
chne k(T, s)a(s, Xs)
h(T,s,x) = T (13)
Then we have
T k(T,s)a(s,Xs) N
L S (O m G L (70 S
T/ k(T,s)a(s,Xs) \/
VI (el Xdyza or
Since W*(Q )
T
N(0,1), (15)
VQr
when T — oo, we have
VQr(@r —a) % N(0,1). (16)
The proof is complete.
| ]

IV. EXAMPLE

Consider the Ornstein-Uhlenbeck process described by the
following stochastic differential equation

dX; = aXidt +dWH, t>0, Xo=0, (17)

where « is an unknown parameter, W, H € (3,1) is the
fractional Brownian motion.
Define

t
M} = / kL (s)dWH, (18)
0
where ki (s) =

i (s(t—s)) 4~
3)-

Hence, M* is a Gaussian martingale with variance func-
tion

H 1y = 2HT(3—H)T(H+

t272H
(M) = ——, (19)
H
_ 2HTR-2H)T(H+3)
where A\ = yemyy
Then M can be rewritten as
¢
M} = / f(s)dWw, (20)
0
where f(s) = Ms%*f[ and W is a standard Brow-
H
nian motion.
Define .
d [ KkL(s)Xsds
Q= fod—, ey
4
where
vy = A 22 (22)
Then, we can obtain that
Au 2H-1 /t 2H-1
—{t Zy dZ}. 23
Define the process Z = (Z;,t € [0,T]) as follows:
¢
Z :/ 7 (s(t — s)) 2~ HdX,. (24)
0

Thus, we can get that Z is the fundamental semimartingale
associated with the process X.

According to the Girsanov theorem, the Radon-Nikodym
derivative of P! with respect to P is

t

dP 2 T
iP —exp{a/ Q:dZ— / Qidv:}. (25)
0

Then, the derivative of the likelihood function is

KT(Oé)

dé
zl / QudZ, - a / Qdv.  (6)
Hence, the maximum likelihood estimator is
T
dz,
ar = Jo @2z Q27

fOT Qt2 dV t
It is easy to check that the coefficients of the Ornstein-
Uhlenbeck process satisfy the assumptions 1-2. Therefore,
the maximum likelihood estimator is strong consistent.
Remark 2: When the process is observed discretely, we
consider the following contrast function

Z ‘Xt Xt7 1 aa(’i 13Xt71_1)Ati—1|2
tio1, Xe, ) At ’
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where Ati_1 = ti — ti—l = %

Then, it is easy to obtain that
b2 (ti—1,Xe;_y)

P
=1
a?(ti—1,X¢, )

PO s me
=1 an(ti—17Xti71 )

(Xe;, —Xe;_q)alti—1,Xe, 1)

Qp =

We use the discrete sample (X}, );=0.1,...,» to compute the
estimator ,,. In Table 1, zy = 0.5, the sample size from
100 to 500. In Table 2, x¢y = 0.1, the sample size from 1000
to 5000. In Table 3, z¢p = 0.01, the sample size from 10000
to 50000. These tables list the value of estimator “cy,,”” and
the absolute errors (AE)“|avg — Q|

These tables provide that when n is large enough, the
estimator is very close to the true parameter value.

TABLE 1
ESTIMATOR SIMULATION RESULTS OF g

True Aver AE

ap Size n Qin,e |og — Qe
100 1.1873 0.1873

1 300 1.1392 0.1392
500 1.0915 0.0915
100 2.1736 0.1736

2 300 2.1281 0.1281
500 2.0843 0.0843

TABLE II
ESTIMATOR SIMULATION RESULTS OF [e75)

True Aver AE

ag Size n Qin,e |ag — Qi e |
1000 1.1125 0.1125

1 3000 1.0276 0.0276
5000 1.0008 0.0008
1000 2.1209 0.1209

2 3000 2.0315 0.0315
5000 2.0007 0.0007

TABLE III
ESTIMATOR SIMULATION RESULTS OF g

True Aver AE

Y0 Size n Ve 170 — Fn,e
10000 0.9246 0.0754

1 30000 1.0283 0.0283
50000 1.0002 0.0002
10000 2.0512 0.0512

2 30000 2.0194 0.0194
50000 2.0003 0.0003

V. CONCLUSIONS

In this article, we have investigated the problem of MLE
for SDEs driven by fBm. We have given the likelihood
function by using the Girsanov’s theorem. Then, we have
obtained the expression of MLEr. Furthermore, we have
derived the strong consistency and asymptotic normality
of the estimator by utilizing exponential inequality for s-
tochastic integrals and Skorohod embedding for continuous
semimartingale. We will consider the estimation for partially
observed SDEs driven by fBm in future works.
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