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Abstract—This study develops midpoint-type inequalities for
multiplicative ψ-Hilfer fractional integrals. We first establish
a midpoint-type identity involving multiplicative ψ-Hilfer
fractional integral operators, which forms the basis for deriving
inequalities applicable to multiplicatively MψA-p-functions.
Furthermore, we also provide concrete numerical examples with
graphical illustrations to validate the theoretical results and
enhance their interpretability. Finally, we explore applications
of these results to numerical quadrature formulas and special
mean value estimations, demonstrating their practical utility.

Index Terms—Multiplicative calculus, fractional integrals,
multiplicative convexities, midpoint-type inequalities

I. MULTIPLICATIVE CALCULUS

IN 1967, Grossman and Katz [1] introduced multiplicative
calculus, also called non-Newtonian calculus, which

replaces addition and subtraction with multiplication and
division, enabling it to better address exponential change
functions.

In contrast to Newton–Leibniz calculus, multiplicative
calculus has a narrower application scope, as it applies
exclusively to positive functions. Nevertheless, although
mathematicians primarily used Cartesian coordinates to
represent points in a plane, they also developed polar
coordinates, which require a nonnegative radius. Despite
these limitations, research on multiplicative calculus remains
crucial. We believe that multiplicative calculus could provide
innovative analytical tools for disciplines like economics,
biology, and finance.

For the function f , its multiplicative derivative f∗ is given
by:

f∗(x) = lim
h→0

(
f(x+ h)

f(x)

) 1
h

. (1)

Compared with (1), the conventional derivative concept is
formulated below:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (2)

Notably, the difference and product in equation (2)
are replaced by the quotient and power, respectively.
Consequently, the equation (1) is referred to as the
multiplicative derivative. The relationship between f∗ and
f ′ is given by:

f∗(x) = exp
{

[ln f(x)]
′}
. (3)
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The multiplicative integral for the function f , represented by∫ b
a

(f(x))
dx, is formally expressed as:∫ b

a

(f(x))
dx

= exp

{∫ b

a

lnf(x)dx

}
. (4)

Here, we present a biological case study to demonstrate the
utility of multiplicative calculus: bacterial population growth
modeled by ordinary differential equations. Ideally, the
exponential growth equation below provides a foundational
model for this phenomenon:

f ′(t) = R(t)× f(t), (5)

where
• f(t) is the size of the bacteria population.
• f ′(t) is the rate of variation in the bacterial population

over time.
• R(t) represents the intrinsic growth rate of the bacterial

population.
Equation (5) models exponential bacterial population

growth, where both the time variable t and the growth rate
of the bacterial population are strictly positive. In practice,
factors like resource limitations require more complex
models such as the logistic growth equation. Notably, (5)
can be reformulated as:

exp
{

[lnf(t)]
′}

= exp {R(t)} . (6)

By using multiplicative calculus, the equation (6) transforms
into:

f∗(t) = exp {R(t)} . (7)

The solution to equation (7) is presented by multiplicative
integral as follows:

f(t) = λ

∫ t

t0

(
eR(t)

)dt

, with λ = f(t0). (8)

Therefore, this example showcases the practical value of
multiplicative calculus in differential equations.

Convexity theory plays a significant role in mathematics
and engineering sciences. The Hermite–Hadamard (HH)
inequality, a key integral inequality for convex functions, is
stated as:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, (9)

where the function f : [a, b]→ R exhibits convexity. The first
and second inequalities in (9) are referred to as the midpoint-
type and trapezoid-type inequalities, respectively.

We now recall the fractional integral operators.
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Definition 1.1: [2] Let f ∈ L1[a, b] and α ∈ C with
Re(α) > 0, the Riemann–Liouville (RL) fractional integral
operators, namely J αa+f(x) and J αb−f(x), are defined as

J αa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a,

and

J αb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

where Γ(·) is the gamma function, which is expressed by

Γ(x) =

∫ ∞
0

tx−1e−tdt, Re(x) > 0,

with Γ(x+ 1) = xΓ(x) and Γ(1) = 1.
In 2013, Sarikaya et al. [3] established the following

fractional Hermite–Hadamard inequality.
Theorem 1.1: [3] If the function f : [a, b] → R+ is

convex on [a, b] and f ∈ L1[a, b], then for any α > 0, the
following inequalities are satisfied:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Iαa+f(b) + Iαb−f(a)]

≤ f(a) + f(b)

2
.

The ψ-Hilfer fractional integral operators, which
generalize the RL-fractional integrals, are defined as:

Definition 1.2: [2] Let ψ : [a, b]→ R be a monotonically
increasing function possessing a continuous derivative ψ′(t).
For α > 0, the left-sided ψ-Hilfer fractional integral of a
function f with respect to another function ψ on [a, b] is
defined by

Iα;ψ
a+ f(x) =

1

Γ(α)

∫ x

a

ψ′(t) [ψ(x)− ψ(t)]
α−1

f(t)dt,

and the right-sided one is defined by

Iα;ψ
b− f(x) =

1

Γ(α)

∫ b

x

ψ′(t) [ψ(t)− ψ(x)]
α−1

f(t)dt.

Here Γ(·) is the gamma function.
The nonlocal properties and model capabilities of

fractional calculus enable its widespread application in
various disciplines, including engineering [4], computer
science [5], and control science [6]. Recognizing the
importance of fractional calculus, researchers have
extensively studied fractional integral operators, such
as (k, h)-RL-fractional integrals [7], (k, s)-RL-fractional
integrals [8], generalized conformable fractional integrals
[9], Hadamard fractional integrals [10], and others.
Building on this work, scholars derived numerous fractional
integral inequalities to establish error bounds for numerical
integration formulas. Particularly, midpoint-type inequalities
have been formulated by utilizing RL-fractional integrals
[11], fractional (p, q)-integrals [12], and generalized
fractional integrals [13], among others. Moreover, for
further inequalities related to fractional calculus, see Refs.
[14], [15], [16], [17] and [18].

In 2016, Abdeljawad and Grossman [19] introduced
multiplicative RL-fractional integral operators.

Definition 1.3: [19] For α > 0, the multiplicative RL-
fractional integrals, namely aIα∗ f(x) and ∗Iαb f(x), are
outlined as follows:

aIα∗ f(x)

= exp
{
Iαa+ lnf(x)

}
= exp

{
1

Γ(α)

∫ x

a

(x− t)α−1lnf(t)dt

}
, x > a,

and

∗Iαb f(x)

= exp
{
Iαb− lnf(x)

}
= exp

{
1

Γ(α)

∫ b

x

(t− x)α−1lnf(t)dt

}
, x < b,

where the function f defined on interval [a, b] is positive.
In 2020, Budak and Özçelik [20] established endpoints-

and midpoint-type inequalities for multiplicative RL-
fractional integrals.

Theorem 1.2: [20] Given that f : [a, b] → (0,∞)
exhibits multiplicative convexity, it follows that

f

(
a+ b

2

)
≤ [aIα∗ f(b) · ∗Iαb f(a)]

Γ(α+1)
2(b−a)α

≤
√
f (a) f (b),

and

f

(
a+ b

2

)
≤
[
a+b

2
Iα∗ f(b) · ∗Iαa+b

2

f(a)
] 2α−1Γ(α+1)

(b−a)α

≤
√
f (a) f (b).

Multiplicative calculus has significant application value in
fields such as mathematical finance [21], biomedical sciences
[22], and applied nonlinear models [23], among others. In
the context of inequality theory, multiplicative calculus has
been applied to derive bounds for integer-order inequalities
in diverse forms, including Maclaurin-type [24], Radau-
type [25], Ostrowski-type [26], Boole-type [27], HH-type
[28], [29], midpoint- and trapezoidal-type [30], [31], and
parametrized inequality [32], [33], and so on.

Inspired by merging multiplicative calculus and fractional
calculus, researchers recently focused on fractional
multiplicative calculus theory, analyzing bounds for
multiplicative fractional inequalities. Notably, Budak
and Özçelik [20] deduced HH-type inequalities through
multiplicative RL-fractional integral operators, which
aroused the interest of scholars. Subsequently, Merad et al.
[34] and Boulares et al. [35] employed the same operators
to formulate Maclaurin- and Bullen-type inequalities,
respectively. Furthermore, Du and Long [36] introduced
a multi-parameter fractional integral identity, which they
used to derive three-point Newton–Cotes-type inequalities.
Similarly, Almatrafi et al. [37] established a parametric
integral identity, allowing them to obtain inequalities for
one, two, and three-point quadrature formulas. Additionally,
researchers have investigated inequalities involving different
multiplicative fractional integral operators. Specifically,
Fu et al. [38] studied multiplicative tempered fractional
integrals, Peng et al. [39] examined multiplicative fractional
integrals with exponential kernels, and Kashuri et al. [40]
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explored multiplicative Sarikaya fractional integrals, with
each deriving corresponding fractional HH-type inequalities.
Recently, Zhang et al. [41] introduced multiplicative k-RL-
fractional integrals and used them to establish HH- and
Newton-type inequalities for multiplicative (P,m)-convex
functions. For further study of multiplicative fractional
integrals, we recommend several publications [42], [43],
[44] and [45], as well as the references they cite.

Motivated by prior work, this paper aims to explore
midpoint-type inequalities for multiplicatively MψA-p-
functions that involve multiplicative ψ-Hilfer fractional
integrals. To achieve these goals, the paper is structured
as follows: After Sec. II, Sec. III presents a multiplicative
ψ-Hilfer fractional integral identity, from which we derive
some multiplicative fractional midpoint-type inequalities for
multiplicatively MψA-p-functions. Additionally, we provide
several illustrative instances to confirm the accuracy of these
inequalities. In Sec. IV, we apply the obtained results to
numerical quadrature and special mean estimates. Finally,
Sec. V summarizes the key findings of the study.

II. MULTIPLICATIVE CALCULUS

In 2008, Bashirov et al. [46] introduced ∗integral
operators, and deduced the following properties.

Proposition 2.1: [46] Given that the positive functions f
and g are ∗integrable on [a, b], and a ≤ c ≤ b, the following
properties clearly hold:

(i)

∫ b

a

((f(x))
p
)dx =

(∫ b

a

(f(x))
dx

)p
, p ∈ R,

(ii)

∫ b

a

(f(x)g(x))dx =

∫ b

a

(f(x))
dx ·

∫ b

a

(g(x))
dx
,

(iii)

∫ b

a

(
f(x)

g(x)

)dx

=

∫ b
a

(f(x))
dx∫ b

a
(g(x))

dx
,

(iv)

∫ b

a

(f(x))
dx

=

∫ c

a

(f(x))
dx ·

∫ b

c

(f(x))
dx
,

(v)

∫ a

a

(f(x))
dx

= 1,

(vi)

∫ b

a

(f(x))
dx

=

(∫ a

b

(f(x))
dx

)−1

.

The concept of the multiplicative derivative, also termed
∗differentiable functions and first proposed by Bashirov et al.
in Ref. [46], establishes a specific mathematical correlation
between f∗ and f ′, which can be formally expressed as
follows:

f∗(x) = exp
{

[lnf(x)]
′
}

= exp

{
f ′(x)

f(x)

}
.

For further properties related to the ∗differentiability of the
function f , please refer to Ref. [46].

The following result naturally arises from the previous
discussion.

Proposition 2.2: Provided that the function f : I ⊂ R→
R+ is ∗differentiable, it holds that f∗ ≥ 1 when f is an
increasing function.

Proof: Applying the relationship between f∗ and f ′

leads to the result.
Finally, we review the integration by parts formula for

∗integral operators.

Theorem 2.1: [47] Assuming the function f : [a, b] →
R+ is ∗differentiable, and considering that g : [a, b] → R
and h : J ⊂ R → [a, b] are differentiable, the following
equation can be derived:∫ b

a

([
f∗(h(x))

]g(x)h′(x)
)dx

=

[
f(h(b))

]g(b)[
f(h(a))

]g(a)
· 1∫ b

a

([
f(h(x))

]g′(x)
)dx

.

III. MAIN RESULTS

This part aims to obtain some bounds for midpoint-type
inequalities from the perspective of the multiplicative ψ-
Hilfer fractional integral operators. For this, we need to
revisit the concepts of the multiplicative ψ-Hilfer fractional
integral operators and the multiplicatively MψA-p-functions.

Definition 3.1: [48] Let ψ be a monotonically increasing
function on (a, b) with a continuous derivative ψ′(t) within
the interval. For α > 0, the multiplicative left-sided ψ-Hilfer
fractional integral of a function f with regard to another
function ψ on [a, b] is defined as

aIα;ψ
∗ f(x)

= exp{Iα;ψ
a+ lnf(x)}

= exp

{
1

Γ(α)

∫ x

a

ψ′(t) [ψ(x)− ψ(t)]
α−1

lnf(t)dt

}
,

and the multiplicative right-sided one is defined as

∗Iα;ψ
b f(x)

= exp{Iα;ψ
b− lnf(x)}

= exp

{
1

Γ(α)

∫ b

x

ψ′(t) [ψ(t)− ψ(x)]
α−1

lnf(t)dt

}
.

Remark 3.1: The functional parameter ψ plays a pivotal
role in multiplicative ψ-Hilfer fractional integrals, allowing
them to transform into diverse classes of multiplicative
fractional integral operators.
(i) Setting ψ(ν) = ν, we can obtain the multiplicative RL-
fractional integrals [19].
(ii) Setting ψ(ν) = lnν and b > a > 0, we can get the
multiplicative Hadamard fractional integrals:

aHα∗ f(x) = exp{Hαa+ lnf(x)}

= exp

{
1

Γ(α)

∫ x

a

(lnx− lnt)
α−1

lnf(t)
dt

t

}
,

and

∗Hαb f(x) = exp{Hαb− lnf(x)}

= exp

{
1

Γ(α)

∫ b

x

(lnt− lnx)
α−1

lnf(t)
dt

t

}
,

which are defined in [45, Definition 3.1] by setting k = 1.
(iii) Setting ψ(ν) = − 1

ν , we can deduce the “multiplicative
Harmonic fractional integrals”:

aRα∗ f(x) = exp{Rαa+ lnf(x)}

= exp

{
x1−α

Γ(α)

∫ x

a

lnf(t)

(x− t)1−αtα+1
dt

}
,
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and

∗Rαb f(x) = exp{Rαb− lnf(x)}

= exp

{
x1−α

Γ(α)

∫ b

x

lnf(t)

(t− x)1−αtα+1
dt

}
.

(iv) Setting ψ(ν) = νρ

ρ , where ρ > 0, we can acquire the
multiplicative Katugampola fractional integrals [42]:

aKα∗ f(x) = exp{Kαa+ lnf(x)}

= exp

{
ρ1−α

Γ(α)

∫ x

a

(xρ − tρ)α−1
tρ−1lnf(t)dt

}
,

and

∗Kαb f(x) = exp{Kαb− lnf(x)}

= exp

{
ρ1−α

Γ(α)

∫ b

x

(tρ − xρ)α−1
tρ−1lnf(t)dt

}
.

Definition 3.2: [48] Suppose ψ : I ⊂ R → R is
a continuous and strictly increasing function. A function
f : I → R+ is called a multiplicatively MψA-p-function,
if the inequality

f
(
ψ−1

(
tψ(x) + (1− t)ψ(y)

))
≤ f(x)f(y)

is satisfied for all x, y ∈ I and t ∈ [0, 1].
Remark 3.2: The multiplicatively MψA-p-functions can

generalize distinct multiplicative convex functions by varying
the functional parameter ψ.

(i) Setting ψ(ν) = ν, it can be obtained that the definition
of multiplicative P -convex functions [49]:

f (tx+ (1− t)y) ≤ f(x)f(y).

(ii) Setting ψ(ν) = lnν, it can be gotten that the definition
of “GG-P -convex functions”:

f
(
xty1−t) ≤ f(x)f(y),

which is defined in [50, Definition 2.7] by taking h(t) = 1.
(iii) Setting ψ(ν) = − 1

ν , it can be deduced that the definition
of “multiplicative Harmonic P -convex functions”:

f

(
xy

ty + (1− t)x

)
≤ f(x)f(y).

(iv) Setting ψ(ν) = νρ

ρ , it can be acquired that the definition
of “multiplicative ρp-convex functions”:

f
(

[txρ + (1− t)yρ]
1
ρ

)
≤ f(x)f(y).

We now introduce a pivotal lemma that supports the
subsequent theoretical analysis and discussion.

Lemma 3.1: Given that the function f : [a, b] → R+

is ∗differentiable, and assuming that f∗ is multiplicatively
integrable on [a, b], with ψ is a strictly increasing function
whose derivative ψ′ is continuous on (a, b), the following

multiplicative ψ-Hilfer fractional integral identity holds:

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

=

∫ 1
2

0

([
f∗
(
ψ−1

(
(1− t)ψ(a)

+tψ(b)

))] tα
2 A(t;ψ(ν))

)dt

×
∫ 1

1
2

[f∗(ψ−1

(
(1− t)ψ(a)

+tψ(b)

))] tα−1
2 A(t;ψ(ν))

dt

×
∫ 1

2

0

([
f∗
(
ψ−1

(
tψ(a)
+(1− t)ψ(b)

))] tα
2 D(t;ψ(ν))

)dt

×
∫ 1

1
2

[f∗(ψ−1

(
tψ(a)
+(1− t)ψ(b)

))] tα−1
2 D(t;ψ(ν))

dt

where

A
(
t;ψ(ν)

)
:=
[
ψ−1

(
(1− t)ψ(a) + tψ(b)

)]′
and

D
(
t;ψ(ν)

)
:=
[
ψ−1

(
tψ(a) + (1− t)ψ(b)

)]′
.

Proof: We define the following notations to streamline
the discussion:

T1 =∫ 1
2

0

([
f∗
(
ψ−1

(
(1− t)ψ(a)

+tψ(b)

))] tα
2 A(t;ψ(ν))

)dt

T2 =∫ 1

1
2

[f∗(ψ−1

(
(1− t)ψ(a)

+tψ(b)

))] tα−1
2 A(t;ψ(ν))

dt

T3 =∫ 1
2

0

([
f∗
(
ψ−1

(
tψ(a)
+(1− t)ψ(b)

))] tα
2 D(t;ψ(ν))

)dt

and

T4 =∫ 1

1
2

[f∗(ψ−1

(
tψ(a)
+(1− t)ψ(b)

))] tα−1
2 D(t;ψ(ν))

dt

.

Utilizing integration by parts for multiplicative integrals, as
described in Theorem 2.1, we have that:

T1 =

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))( 1
2 )
α+1

exp

{∫ 1
2

0

αtα−1

2
lnf

(
ψ−1

(
(1− t)ψ(a)

+tψ(b)

))
dt

} . (10)
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Similarly, we can get that

T2 =

f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2−( 1

2 )
α+1

exp

{∫ 1

1
2

αtα−1

2
lnf

(
ψ−1

(
(1− t)ψ(a)

+tψ(b)

))
dt

} (11)

T3 =

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))( 1
2 )
α+1

exp

{∫ 1
2

0

αtα−1

2
lnf

(
ψ−1

(
tψ(a)
+(1− t)ψ(b)

))
dt

} (12)

and

T4 =

f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2−( 1

2 )
α+1

exp

{∫ 1

1
2

αtα−1

2
lnf

(
ψ−1

(
tψ(a)
+(1− t)ψ(b)

))
dt

} . (13)

By multiplying both sides of equalities (10) and (11), we
obtain that

T1 × T2 =

f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2

exp

{∫ 1

0

αtα−1

2
lnf

(
ψ−1

(
(1− t)ψ(a)
+tψ(b)

))
dt

} . (14)

By using the variable change x = ψ−1
(
(1−t)ψ(a)+tψ(b)

)
,

we derive that

T1 × T2

=
f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2

exp

{∫ b

a

α

2

[
ψ(x)− ψ(a)

ψ(b)− ψ(a)

]α−1
ψ′(x)lnf(x)

ψ(b)− ψ(a)
dx

}

=
f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2

exp


Γ(α+ 1)

2 [ψ(b)− ψ(a)]
α

1

Γ(α)

×
∫ b

a

ψ′(x) [ψ(x)− ψ(a)]
α−1

lnf(x)dx


=

f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2

[
∗Iα;ψ
b f(a)

] Γ(α+1)
2[ψ(b)−ψ(a)]α

. (15)

In analogy with the preceding steps, we can deduce that

T3 × T4 =
f
(
ψ−1

(
ψ(a)+ψ(b)

2

)) 1
2

[
aIα;ψ
∗ f(b)

] Γ(α+1)
2[ψ(b)−ψ(a)]α

. (16)

From equalities (15) and (16), we can readily infer that

T1 × T2 × T3 × T4

=
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

. (17)

The proof is completed here.
Corollary 3.1: Under the condition that ψ assumes

certain functions in Lemma 3.1, the following conclusions
can be reached:
(i) Setting ψ(ν) = ν, we can derive the following
multiplicative RL-fractional integral identity:

f
(
a+b

2

)
[aIα∗ f(b) · ∗Iαb f(a)]

Γ(α+1)
2[b−a]α

=

∫ 1
2

0

([
f∗
(
(1− t)a+ tb

)] tα
2 (b−a)

)dt

×
∫ 1

1
2

([
f∗
(
(1− t)a+ tb

)] tα−1
2 (b−a)

)dt

×
∫ 1

2

0

([
f∗
(
ta+ (1− t)b

)] tα
2 (a−b)

)dt

×
∫ 1

1
2

([
f∗
(
ta+ (1− t)b

)] tα−1
2 (a−b)

)dt

.

(ii) Setting ψ(ν) = lnν, we can achieve the following
multiplicative Hadamard fractional integral identity:

f
(√

ab
)

[aHα∗ f(b) · ∗Hαb f(a)]
Γ(α+1)

2[lnb−lna]α

=

∫ 1
2

0

([
f∗
(
a1−tbt

)] tα
2 (lnb−lna)a1−tbt

)dt

×
∫ 1

1
2

([
f∗
(
a1−tbt

)] tα−1
2 (lnb−lna)a1−tbt

)dt

×
∫ 1

2

0

([
f∗
(
atb1−t

)] tα
2 (lna−lnb)atb1−t

)dt

×
∫ 1

1
2

([
f∗
(
atb1−t

)] tα−1
2 (lna−lnb)atb1−t

)dt

.

(iii) Setting ψ(ν) = − 1
ν , we can attain the following

“multiplicative Harmonic fractional integral” identity:

f
(

2ab
a+b

)
[aRα∗ f(b) ·∗ Rαb f(a)]

(ab)αΓ(α+1)
2[b−a]α

=

∫ 1
2

0

[f∗( ab

ta+ (1− t)b

)] tα
2

(b−a)ab

[ta+(1−t)b]2

dt

×
∫ 1

1
2

[f∗( ab

ta+ (1− t)b

)] tα−1
2

(b−a)ab

[ta+(1−t)b]2

dt

×
∫ 1

2

0

[f∗( ab

(1− t)a+ tb

)] tα
2

(a−b)ab
[(1−t)a+tb]2

dt

×
∫ 1

1
2

[f∗( ab

(1− t)a+ tb

)] tα−1
2

(a−b)ab
[(1−t)a+tb]2

dt

.
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(iv) Setting ψ(ν) = νρ

ρ , where ρ > 0, we can export
the following multiplicative Katugampola fractional integral
identity:

f

((
aρ+bρ

2

) 1
ρ

)
[aKα∗ f(b) ·∗ Kαb f(a)]

ραΓ(α+1)
2[bρ−aρ]α

=

∫ 1
2

0

([
f∗
(

[(1− t)aρ + tbρ]
1
ρ

)]∇1(t;a,b,ρ)
)dt

×
∫ 1

1
2

([
f∗
(

[(1− t)aρ + tbρ]
1
ρ

)]∇2(t;a,b,ρ)
)dt

×
∫ 1

2

0

([
f∗
(

[taρ + (1− t)bρ]
1
ρ

)]∇3(t;a,b,ρ)
)dt

×
∫ 1

1
2

([
f∗
(

[taρ + (1− t)bρ]
1
ρ

)]∇4(t;a,b,ρ)
)dt

,

where

∇1(t; a, b, ρ) =
tα

2

(bρ − aρ) [(1− t)aρ + tbρ]
1−ρ
ρ

ρ

∇2(t; a, b, ρ) =
tα − 1

2

(bρ − aρ) [(1− t)aρ + tbρ]
1−ρ
ρ

ρ

∇3(t; a, b, ρ) =
tα

2

(aρ − bρ) [taρ + (1− t)bρ]
1−ρ
ρ

ρ

and

∇4(t; a, b, ρ) =
tα − 1

2

(aρ − bρ) [taρ + (1− t)bρ]
1−ρ
ρ

ρ
.

The subsequent theorems require three special functions:
beta functions, incomplete confluent hypergeometric
functions, and incomplete hypergeometric functions. We
therefore review these function classes.

Definition 3.3: [2] For any positive numbers σ and ϑ, the
beta function is expressed as

B(σ, ϑ) =

∫ 1

0

tσ−1(1− t)ϑ−1dt,

where Γ(·) denotes the Euler gamma function.
Definition 3.4: [51] The integral form of the incomplete

confluent hypergeometric function is provided by

1F1([σ, ϑ; y], z)

=
1

B(σ, ϑ− σ)

∫ y

0

tσ−1(1− t)ϑ−σ−1eztdt,

where Re(ϑ) > Re(σ) > 0 and B(·, ·) is the beta function.
Definition 3.5: [51] Under the conditions κ > ϑ > 0

and |x| < 1, the mathematical expression for the incomplete
hypergeometric function is given by

2F1(σ, [ϑ, κ; y], x)

=
1

B(ϑ, κ− ϑ)

∫ y

0

tϑ−1(1− t)κ−ϑ−1(1− xt)−σdt,

where B(·, ·) is the beta function.
Making use of Lemma 3.1 and taking into account that

f∗ is a multiplicatively MψA-p-function, we establish the
following theorem.

Theorem 3.1: Let f : [a, b] → R+ be an increasing
and ∗differentiable function, and let ψ be a continuous and

strictly increasing function, whose derivative ψ′ is continuous
on (a, b). If f∗ is a multiplicatively MψA-p-function on
[a, b], then for α > 0 the following inequality holds:∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ [f∗(a)f∗(b)]

Υ1(t;ψ(ν))
,

where

Υ1

(
t;ψ(ν)

)
:=

∫ 1
2

0


(

1−(1−t)α+tα

2

)
×

(
|A (t;ψ(ν))|

+ |D (t;ψ(ν))|

)
dt

and A (t;ψ(ν)), D (t;ψ(ν)) are given in Lemma 3.1.
Proof: By invoking Lemma 3.1 and using the property

of multiplicative integrals, it can be derived that∣∣∣∣∣∣∣∣
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣exp


∫ 1

2

0

 tα

2 A (t;ψ(ν))×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


∣∣∣∣∣∣

×

∣∣∣∣∣∣exp


∫ 1

1
2

 ( tα−1
2

)
A (t;ψ(ν))×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


∣∣∣∣∣∣

×

∣∣∣∣∣∣exp


∫ 1

2

0

 tα

2 D (t;ψ(ν))×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


∣∣∣∣∣∣

×

∣∣∣∣∣∣exp


∫ 1

1
2

 ( tα−1
2

)
D (t;ψ(ν))×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


∣∣∣∣∣∣

≤ exp


∫ 1

2

0

 tα

2 |A (t;ψ(ν))| ×∣∣∣lnf∗(ψ−1
(
(1− t)ψ(a) + tψ(b)

))∣∣∣
dt


× exp


∫ 1

1
2

 ∣∣ tα−1
2

∣∣ |A (t;ψ(ν))| ×∣∣∣lnf∗(ψ−1
(
(1− t)ψ(a) + tψ(b)

))∣∣∣
dt


× exp


∫ 1

2

0

 tα

2 |D (t;ψ(ν))| ×∣∣∣lnf∗(ψ−1
(
tψ(a) + (1− t)ψ(b)

))∣∣∣
dt


× exp


∫ 1

1
2


∣∣ tα−1

2

∣∣ |D (t;ψ(ν))| ×∣∣∣∣lnf∗(ψ−1

(
tψ(a)
+(1− t)ψ(b)

))∣∣∣∣
dt

 .

By employing the monotonically increasing property of the
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positive function f , we deduce that∣∣∣∣∣∣∣∣
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


∫ 1

2

0

 tα

2 |A (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


× exp


∫ 1

1
2

 ( 1−tα
2

)
|A (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


× exp


∫ 1

2

0

 tα

2 |D (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


× exp


∫ 1

1
2

 ( 1−tα
2

)
|D (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


= exp


∫ 1

2

0

 tα

2 |A (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


× exp


∫ 1

2

0


(

1−(1−t)α
2

)
|D (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


× exp


∫ 1

2

0

 tα

2 |D (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt


× exp


∫ 1

2

0


(

1−(1−t)α
2

)
|A (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


= exp


∫ 1

2

0


(

1−(1−t)α+tα

2

)
|A (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
dt


× exp


∫ 1

2

0


(

1−(1−t)α+tα

2

)
|D (t;ψ(ν))| ×

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
dt

 .

(18)

Leveraging the condition that f∗ is a multiplicatively MψA-
p-function on [a, b], we have that

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
≤ ln [f∗(a)f∗(b)] (19)

and

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
≤ ln [f∗(a)f∗(b)] . (20)

Through the application of the inequalities (19) and (20) to

the inequality (18), we arrive at the following result:∣∣∣∣∣∣∣∣
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


∫ 1

2

0

 ( 1−(1−t)α+tα

2

)
|A (t;ψ(ν))|

×ln [f∗(a)f∗(b)]

dt


× exp


∫ 1

2

0

 ( 1−(1−t)α+tα

2

)
|D (t;ψ(ν))|

×ln [f∗(a)f∗(b)]

 dt



= exp



ln [f∗(a)f∗(b)]

×
∫ 1

2

0


(

1−(1−t)α+tα

2

)
×

[
|A (t;ψ(ν))|

+ |D (t;ψ(ν))|

]
dt


. (21)

Hence, the proof of the theorem is complete.
Corollary 3.2: By setting ψ(ν) = ν in Theorem 3.1,

we can derive the following inequality for multiplicative P -
convex functions involving the multiplicative RL-fractional
integrals. ∣∣∣∣∣∣ f

(
a+b

2

)
[aIα∗ f(b) ·∗ Iαb f(a)]

Γ(α+1)
2[b−a]α

∣∣∣∣∣∣
≤ [f∗(a)f∗(b)]

(b−a)(α−1+21−α)
2(α+1) .

Proof: The required result can be deduced from the
subsequent calculation:

Υ1 (t; ν) =

∫ 1
2

0

(
1− (1− t)α + tα

2

)
[2(b− a)] dt

=
(b− a)

(
α− 1 + 21−α)

2(α+ 1)
. (22)

The proof is now concluded.
Example 3.1: Let f(x) = exp

{
1
3x

3
}

for any x ∈ [0,∞).
We can infer that the function f∗(x) = exp

{
x2
}

exhibits
multiplicative P -convexity. By taking a = 0 and b = 1, it
then follows that the inequality presented in Corollary 3.2
transforms into

exp

{
1

24
− α

6

[
6

α(α+ 1)(α+ 2)(α+ 3)
+

1

α+ 3

]}
≤ exp

{
α− 1 + 21−α

2(α+ 1)

}
. (23)

TABLE I: Numerical values of the inequality (23) for
f(x) = exp

{
1
3x

3
}

in Example 3.1

α Left term Right term
0.1 0.90537 1.55134
0.2 0.91664 1.48012
0.3 0.92790 1.42701
0.4 0.93662 1.38686
0.5 0.94334 1.35627
0.6 0.94849 1.33289
0.7 0.95242 1.31504
0.8 0.95539 1.30151
0.9 0.95760 1.29140
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Fig. 1: Visualization graphic of Example 3.1 for α ∈ (0, 1]

Figure 1 and Table I show that the quantity on the left
is significantly less than the quantity on the right, validating
the theoretical result presented in Corollary 3.2.

Corollary 3.3: For b > a > 0, if we choose ψ(ν) = lnν
in Theorem 3.1, then the following inequality concerning
multiplicative Hadamard fractional integrals can be deduced
for GG-P -convex functions.∣∣∣∣∣∣ f

(
a+b

2

)
[aHα∗ f(b) ·∗ Hαb f(a)]

Γ(α+1)
2[lnb−lna]α

∣∣∣∣∣∣ ≤ [f∗(a)f∗(b)]
Υ1(t;lnν)

,

where

Υ1 (t; lnν)

=
b− a

2
+
a(lnb− lna)

2(α+ 1)

×

[
1F1

([
1, α+ 1; 1

2

]
, ln ba

)
−1F1

([
α+ 1, α+ 2; 1

2

]
, ln ba

) ]

− b(lnb− lna)

2(α+ 1)

[
1F1

([
1, α+ 1; 1

2

]
, lnab

)
−1F1

([
α+ 1, α+ 2; 1

2

]
, lnab

) ] .
Proof: The predicted outcome is derived from the

following fact:

Υ1 (t; lnν)

=

∫ 1
2

0

 ( 1−(1−t)α+tα

2

)
(lnb− lna)

×
(
a1−tbt + atb1−t

)
 dt

=
lnb− lna

2


a

∫ 1
2

0

(1− (1− t)α + tα)

(
b

a

)t
dt

+b

∫ 1
2

0

(1− (1− t)α + tα)
(a
b

)t
dt


=
b− a

2
+
a(lnb− lna)

2(α+ 1)

×

[
1F1

([
1, α+ 1; 1

2

]
, ln ba

)
−1F1

([
α+ 1, α+ 2; 1

2

]
, ln ba

) ]

− b(lnb− lna)

2(α+ 1)

[
1F1

([
1, α+ 1; 1

2

]
, lnab

)
−1F1

([
α+ 1, α+ 2; 1

2

]
, lnab

) ] . (24)

The proof is finalized.
Corollary 3.4: If we consider ψ(ν) = − 1

ν in Theorem
3.1, then the following inequality involving “multiplicative

Harmonic fractional integral operators” can be derived for
multiplicatively Harmonic P -convex functions.∣∣∣∣∣∣ f

(
a+b

2

)
[aRα∗ f(b) ·∗ Rαb f(a)]

(ab)αΓ(α+1)
2[b−a]α

∣∣∣∣∣∣ ≤ [f∗(a)f∗(b)]
Υ1(t;− 1

ν ) ,

where

Υ1

(
t;−1

ν

)
=
b− a

2
+

a(b− a)

2b(α+ 1)

×

(
2F1

(
2,
[
α+ 1, α+ 2; 1

2

]
, b−ab

)
−2F1

(
2,
[
1, α+ 2; 1

2

]
, b−ab

) )

+
b(b− a)

2a(α+ 1)

(
2F1

(
2,
[
α+ 1, α+ 2; 1

2

]
, a−ba

)
−2F1

(
2,
[
1, α+ 2; 1

2

]
, a−ba

) ) .
Proof: The following fact gives rise to the expected

result:

Υ1

(
t;−1

ν

)

=
ab(b− a)

2

∫ 1
2

0


(1− (1− t)α + tα)

×

 1
[ta+(1−t)b]2

+ 1
[(1−t)a+tb]2


dt

=
ab(b− a)

2

∫ 1
2

0


(1− (1− t)α + tα)

×

 1
b2

[
1− b−a

b t
]−2

+ 1
a2

[
1− a−b

a t
]−2


dt

=
b− a

2
+

a(b− a)

2b(α+ 1)

×

(
2F1

(
2,
[
α+ 1, α+ 2; 1

2

]
, b−ab

)
−2F1

(
2,
[
1, α+ 2; 1

2

]
, b−ab

) )

+
b(b− a)

2a(α+ 1)

(
2F1

(
2,
[
α+ 1, α+ 2; 1

2

]
, a−ba

)
−2F1

(
2,
[
1, α+ 2; 1

2

]
, a−ba

) ) . (25)

This marks the end of the proof.
Corollary 3.5: If we set ψ(ν) = νρ

ρ with ρ > 0
in Theorem 3.1, then the following inequality including
multiplicative Katugampola fractional integrals can be
obtained for multiplicatively ρp-convex functions.∣∣∣∣∣∣ f

(
a+b

2

)
[aKα∗ f(b) ·∗ Kαb f(a)]

ραΓ(α+1)
2[bρ−aρ]α

∣∣∣∣∣∣ ≤ [f∗(a)f∗(b)]
Υ1(t; ν

ρ

ρ ) ,

where

Υ1

(
t;
νρ

ρ

)
=
b− a

2
+
a1−ρ(bρ − aρ)

2ρ(α+ 1)

×

 2F1

(
ρ−1
ρ ,
[
α+ 1, α+ 2; 1

2

]
, a

ρ−bρ
aρ

)
−2F1

(
ρ−1
ρ ,
[
1, α+ 2; 1

2

]
, a

ρ−bρ
aρ

)
+

b1−ρ(bρ − aρ)
2ρ(α+ 1)

 2F1

(
ρ−1
ρ ,
[
α+ 1, α+ 2; 1

2

]
, b
ρ−aρ
bρ

)
−2F1

(
ρ−1
ρ ,
[
1, α+ 2; 1

2

]
, b
ρ−aρ
bρ

)
 .
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Proof: The proof is akin to the approach used in
Corollary 3.4.

On the assumption that p and q are conjugate exponents
that obey the relation p+q = pq with p, q ∈ (1,∞), we now
state the theorem below.

Theorem 3.2: Suppose f : [a, b] → R+ is an increasing
function that is ∗differentiable, and ψ is a continuous and
strictly increasing function with a continuous derivative ψ′

on (a, b). If [lnf∗]
q is a MψA-p-function on [a, b] for q > 1

with 1
p + 1

q = 1, then we can derive that∣∣∣∣∣∣∣∣
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ [f∗(a)f∗(b)](

1
2 )

1
q [Υ2(t;ψ(ν))+Υ3(t;ψ(ν))]

,

where

Υ2 (t;ψ(ν)) =

(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |A (t;ψ(ν))|p

]
dt

) 1
p

Υ3 (t;ψ(ν)) =

(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |D (t;ψ(ν))|p

]
dt

) 1
p

and A (t;ψ(ν)), D (t;ψ(ν)) are given in Lemma 3.1.
Proof: Relying on the inequality (18) as stated in the

proof of Theorem 3.1, and employing the Hölder’s inequality,
we can conclude that∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣

≤ exp



(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |A (t;ψ(ν))|p

]
dt

) 1
p

×

[∫ 1
2

0

[
lnf∗

(
ψ−1

[
(1− t)ψ(a)
+tψ(b)

])]q
dt

] 1
q



× exp



(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |D (t;ψ(ν))|p

]
dt

) 1
p

×

[∫ 1
2

0

[
lnf∗

(
ψ−1

[
(1− t)ψ(b)
+tψ(a)

])]q
dt

] 1
q


.

(26)

Exploiting the condition that [lnf∗]
q is a MψA-p-function

on [a, b], we infer that[
lnf∗

(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))]q
≤ [lnf∗(a)]

q
+ [lnf∗(b)]

q (27)

and [
lnf∗

(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))]q
≤ [lnf∗(a)]

q
+ [lnf∗(b)]

q
. (28)

By applying the inequalities (27) and (28) to the inequality
(26), we can arrive at the conclusion that∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣

≤ exp



∫ 1
2

0

 ( 1−(1−t)α+tα

2

)p
× |A (t;ψ(ν))|p

dt


1
p

×

(∫ 1
2

0

[lnf∗(a)]
q

+ [lnf∗(b)]
q

dt

) 1
q



× exp



∫ 1
2

0

 ( 1−(1−t)α+tα

2

)p
× |D (t;ψ(ν))|p

dt


1
p

×

(∫ 1
2

0

[lnf∗(a)]
q

+ [lnf∗(b)]
q

dt

) 1
q


= exp



∫ 1
2

0

 ( 1−(1−t)α+tα

2

)p
× |A (t;ψ(ν))|p

dt


1
p

×
(

1
2 [lnf∗(a)]

q
+ 1

2 [lnf∗(b)]
q) 1

q


× exp



∫ 1
2

0

 ( 1−(1−t)α+tα

2

)p
× |D (t;ψ(ν))|p

dt


1
p

×
(

1
2 [lnf∗(a)]

q
+ 1

2 [lnf∗(b)]
q) 1

q

 . (29)

Leveraging the inequality Mτ +Nτ ≤ (M +N)τ , which is
valid for any M ≥ 0, N ≥ 0 with τ ≥ 1, we have that∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


(

1
2

) 1
q ln [f∗(a)f∗(b)]

×

(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |A (t;ψ(ν))|p

]
dt

) 1
p


× exp


(

1
2

) 1
q ln [f∗(a)f∗(b)]

×

(∫ 1
2

0

[ (
1−(1−t)α+tα

2

)p
× |D (t;ψ(ν))|p

]
dt

) 1
p

 . (30)

Here ends the proof.
Corollary 3.6: By setting ψ(ν) = ν in Theorem 3.2, we

can obtain the following inequality for P -convex functions
that involve multiplicative RL-fractional integrals.∣∣∣∣∣∣ f

(
a+b

2

)
[aIα∗ f(b) ·∗ Iαb f(a)]

Γ(α+1)
2[b−a]α

∣∣∣∣∣∣
≤ [f∗(a)f∗(b)]

(b−a)( 1
2 )

1
q ∆(α,p)

,

where

∆(α, p) =

(∫ 1
2

0

(1− (1− t)α + tα)
p

dt

) 1
p

.
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Remark 3.3: The numerical evaluation of ∆(α, p), as
described in Corollary 3.6, can be performed for certain
parameter values. The results are illustrated in Table II below.

TABLE II: Numerical evaluations of the integrals ∆(α, 2),
∆(α, 4) and ∆(α, 6) by Matlab

α ∆(α, 2) ∆(α, 4) ∆(α, 6)
0.1 0.62461 0.75018 0.80134
0.2 0.56556 0.69302 0.75052
0.3 0.52226 0.65448 0.71810
0.4 0.48996 0.62728 0.69590
0.5 0.46559 0.60747 0.67999
0.6 0.44707 0.59274 0.66826
0.7 0.43296 0.58166 0.65946
0.8 0.42226 0.57328 0.65282
0.9 0.41419 0.56699 0.64783

Finally, our study centers on the scenario where q ∈ (0, 1],
and we begin by revisiting the following Lemma.

Lemma 3.2: [48] Let 0 < q ≤ 1 and let f : [a, b] →
[1,∞) such that fq is a MψA-p-function on [a, b].

(i) If 0 < q ≤ 1
2 , then

f
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
≤ q2

1
q−1

[
f(a) + f(b) +

(
2

q
− 2

)√
f(a)f(b)

]
.

(ii) If 1
2 < q ≤ 1, then

f
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
≤ f(a) + f(b) +

(
2

1
q − 2

)√
f(a)f(b).

Theorem 3.3: Let f : [a, b] → R+ be a function
that is both increasing and ∗differentiable, and let ψ be a
continuous and strictly increasing function with a continuous
derivative ψ′ on (a, b). If [lnf∗]

q is a MψA-p-function on
[a, b] for 0 < q ≤ 1, then we have the following results.

(i) For 0 < q ≤ 1
2 , we have∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


q2

1
q−1Υ1 (t;ψ(ν))

×

 lnf∗(a) + lnf∗(b)

+

(
2
q − 2

)√
lnf∗(a)lnf∗(b)


 .

(ii) For 1
2 < q ≤ 1, we have∣∣∣∣∣∣∣∣
f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


Υ1 (t;ψ(ν))

×

[
lnf∗(a) + lnf∗(b)

+
(

2
1
q − 2

)√
lnf∗(a)lnf∗(b)

]  ,

where Υ1 (t;ψ(ν)) is given in Theorem 3.1.

Proof: Relying on the inequality (18) obtained through
the proof of Theorem 3.1, we can acquire that∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣
≤ exp


∫ 1

2

0


(

1−(1−t)α+tα

2

)
|A (t;ψ(ν))| ×

lnf∗
[
ψ−1

(
(1− t)ψ(a)
+tψ(b)

)] dt

×
exp


∫ 1

2

0


(

1−(1−t)α+tα

2

)
|D (t;ψ(ν))| ×

lnf∗
[
ψ−1

(
(1− t)ψ(b)
+tψ(a)

)] dt

 . (31)

Case 1. Provided 0 < q ≤ 1
2 , knowing that [lnf∗]

q is a
MψA-p-function, we can employ the inequality from part
(i) of Lemma 3.2 to derive that

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
≤ q2

1
q−1

 lnf∗(a) + lnf∗(b)

+

(
2
q − 2

)√
lnf∗(a)lnf∗(b)

 (32)

and

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
≤ q2

1
q−1

 lnf∗(a) + lnf∗(b)

+

(
2
q − 2

)√
lnf∗(a)lnf∗(b)

 . (33)

The following result is derived by applying the inequalities
(32) and (33) to the inequality (31):∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣

≤ exp



q2
1
q−1× lnf∗(a) + lnf∗(b)

+

(
2
q − 2

)√
lnf∗(a)lnf∗(b)

×
∫ 1

2

0


(

1−(1−t)α+tα

2

)
×

(
|A (t;ψ(ν))|
+ |D (t;ψ(ν))|

)
dt


. (34)

It is possible to acquire the first inequality as stated in
Theorem 3.3.
Case 2. Provided 1

2 < q ≤ 1, knowing that [lnf∗]
q is a

MψA-p-function, we can employ the inequality from part
(ii) of Lemma 3.2 to deduce that

lnf∗
(
ψ−1

(
(1− t)ψ(a) + tψ(b)

))
≤ lnf∗(a) + lnf∗(b) +

(
2

1
q − 2

)√
lnf∗(a)lnf∗(b) (35)

and

lnf∗
(
ψ−1

(
tψ(a) + (1− t)ψ(b)

))
≤ lnf∗(a) + lnf∗(b) +

(
2

1
q − 2

)√
lnf∗(a)lnf∗(b). (36)
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Applying the inequalities (35) and (36) to the inequality (31),
we derive that∣∣∣∣∣∣∣∣

f
(
ψ−1

(
ψ(a)+ψ(b)

2

))
[
aIα;ψ
∗ f(b) · ∗Iα;ψ

b f(a)
] Γ(α+1)

2[ψ(b)−ψ(a)]α

∣∣∣∣∣∣∣∣

≤ exp



[
lnf∗(a) + lnf∗(b)

+
(

2
1
q − 2

)√
lnf∗(a)lnf∗(b)

]

×
∫ 1

2

0


(

1− (1− t)α + tα

2

)
×
[
|A (t;ψ(ν))|
+ |D (t;ψ(ν))|

]
dt


. (37)

Hence, the proof is finished here.
Corollary 3.7: By setting ψ(ν) = ν in Theorem 3.3, we

can derive the following inequality for P -convex functions
that involve multiplicative RL-fractional integrals:
(i) For 0 < q ≤ 1

2 , we have

∣∣∣∣∣∣ f
(
a+b

2

)
[aIα∗ f(b) ·∗ Iαb f(a)]

Γ(α+1)
2[b−a]α

∣∣∣∣∣∣
≤ exp


q2

1
q−1

 lnf∗(a) + lnf∗(b)

+

(
2
q − 2

)√
lnf∗(a)lnf∗(b)


×

(b− a)
(
α− 1 + 21−α)

2(α+ 1)


.

(ii) For 1
2 < q ≤ 1, we have

∣∣∣∣∣∣ f
(
a+b

2

)
[aIα∗ f(b) ·∗ Iαb f(a)]

Γ(α+1)
2[b−a]α

∣∣∣∣∣∣
≤ exp



[
lnf∗(a) + lnf∗(b)

+
(

2
1
q − 2

)√
lnf∗(a)lnf∗(b)

]

×
(b− a)

(
α− 1 + 21−α)

2(α+ 1)

 .

To visually showcase and validate the correctness of
Corollary 3.7, a specific illustrated example is given below.

Example 3.2: Considering f(t) = exp
{

q
2+q t

2
q+1
}

for
all t ∈ [0,∞). We can infer that the function (lnf∗(t))

q
= t2

possesses P -convexity. By setting a = 0 and b = 1 in the
inequalities established by Corollary 3.7, we can arrive at the
conclusions detailed below.
(i) For 0 < q ≤ 1

2 , we have

exp


q

4 + 2q


(

1

2

) 2
q

− α


∫ 1

0

(1− t)α−1t
2
q+1dt

+

∫ 1

0

t
2
q+αdt





≤ exp

{
q2

1
q−1

[
α− 1 + 21−α

2(α+ 1)

]}
.

(ii) For 1
2 < q ≤ 1, we have

exp


q

4 + 2q


(

1

2

) 2
q

− α


∫ 1

0

(1− t)α−1t
2
q+1dt

+

∫ 1

0

t
2
q+αdt





≤ exp

{
α− 1 + 21−α

2(α+ 1)

}
.

Fig. 2: Visualization graphics for q ∈
(
0, 1

2

]

Fig. 3: Visualization graphics for q ∈
(

1
2 , 1
]

It is apparent from Figures 2 and 3 that the left-hand value
is less than the right-hand value, aligning with the theoretical
result given in Corollary 3.7.

Remark 3.4: It is worth noting that Theorem 3.3 and
Theorem 3.1 are interconnected, although they are derived
using two completely different methods. Specifically, by
setting q = 1 in Theorem 3.3, we can regain Theorem 3.1.

Remark 3.5: In Theorems 3.2–3.3, by choosing specific
forms of the function ψ(ν), we can obtain three different
midpoint-type inequalities:
(1)Setting ψ(ν) = lnν, we get the midpoint-type inequalities
for multiplicative Hadamard fractional integrals, which are
applicable to GA-P -convex functions.
(2)Setting ψ(ν) = − 1

ν , we get the midpoint-type inequalities
for multiplicative Harmonic fractional integrals, which are
applicable to Harmonic P -convex functions.
(3)Setting ψ(ν) = νρ

ρ , we get the midpoint-type inequalities
for multiplicative Katugampola fractional integrals, which
are applicable to ρp-convex functions.
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IV. APPLICATIONS

This section is divided into two subsections, each of which
addresses different applications stemming from our derived
results. Subsection IV-A centers on quadrature formulas,
while Subsection IV-B discusses special means.

A. Applications to quadrature formulas

By dividing the interval [a, b] into n subintervals [µi, µi+1]
for i = 0, 1, 2, 3, ..., n − 1, we get a partition d : a = µ0 <
µ1 < ... < µn−1 < µn = b. Subsequently, we examine the
quadrature formula in the context of multiplicative calculus,
as outlined below:∫ b

a

(f(x))
dx

=
N (f, d)

R(f, d)
, R > 0, (38)

where N (f, d) and R(f, d) respectively represent the
approximate value and the corresponding approximation
error of the integral

∫ b
a

(f(x))
dx when employing different

numerical integration methods. Here, we examine the
midpoint quadrature formula.

N (f, d) =
n−1∏
i=0

[
f

(
µi + µi+1

2

)]µi+1−µi
. (39)

The integral formulations outlined above allow us to obtain
the following error estimation.

Proposition 4.1: Assuming all conditions in Corollary
3.2 hold, we set α = 1 to derive the following error estimate
for the midpoint quadrature formula.

|R(f, d)| ≤
n−1∏
i=0

[f∗(µi)f
∗(µi+1)]

(µi+1−µi)
2

4 .

Proof: Applying the result obtained by setting α = 1
in Corollary 3.2 on the subinterval [µi, µi+1] ∈ [a, b], i =
0, 1, · · ·, n− 1, we can conclude that:∣∣∣∣∣∣∣∣

[
f
(
µi+µi+1

2

)]µi+1−µi∫ µi+1

µi

(f(x))
dx

∣∣∣∣∣∣∣∣
≤ [f∗(µi)f

∗(µi+1)]
(µi+1−µi)

2

4 . (40)

By multiplying i from 0 up to n − 1, we can derive the
following error estimate:

|R(f, d)| =

∣∣∣∣∣∣∣∣∣
N (f, d)∫ b

a

(f(x))
dx

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
n−1∏
i=0

[
f
(
µi+µi+1

2

)]µi+1−µi∫ µi+1

µi

(f(x))
dx

∣∣∣∣∣∣∣∣
=
n−1∏
i=0

∣∣∣∣∣∣∣∣
[
f
(
µi+µi+1

2

)]µi+1−µi∫ µi+1

µi

(f(x))
dx

∣∣∣∣∣∣∣∣
≤
n−1∏
i=0

[f∗(µi)f
∗(µi+1)]

(µi+1−µi)
2

4 . (41)

This concludes the proof.
Proposition 4.2: Under the assumptions of Corollary 3.6,

we set α = 1 and p = 2 to derive the following error estimate
for the midpoint quadrature formula.

|R(f, d)| ≤
n−1∏
i=0

[f∗(µi)f
∗(µi+1)]

(µi+1−µi)
2

2
√

3 .

Proof: Relying on Corollary 3.6, the proof proceeds in
a manner analogous to Proposition 4.1.

B. Applications to special means

We consider two particular types of special means as
illustrated below:
(1)The arithmetic mean:
A(a1, a2, ..., an) = a1+a2+...+an

n .

(2)The η-logarithmic mean:

Lη(a, b) =
(
bη+1−aη+1

(η+1)(b−a)

) 1
η

,

where a, b > 0, a 6= b and η ∈ R\{−1, 0}.
Proposition 4.3: Given a, b ∈ R with 0 ≤ a < b, it

follows that

exp
{
A4 (a, b)− L4

4 (a, b)
}

≤ exp
{

4A (−a, b)A
(
a3, b3

)}
.

Proof: Setting α = 1 in Corollary 3.2 and applying it
to the function f(t) = exp

{
t4
}

with t ∈ R+, we arrive at
the desired result.

Proposition 4.4: For a, b ∈ R with 0 ≤ a < b, we deduce
that:

exp

{
q

q + 1

[
A

1
q+1 (a, b)− L

1
q+1
1
q+1

(a, b)

]}
≤ exp

{
2
√

3

3
A (−a, b)A

(
a

1
q , b

1
q

)}
.

Proof: Setting α = 1 and p = 2 in Corollary 3.6 and
applying it to the function f(t) = exp

{
q
q+1 t

1
q+1
}

with t ∈
R+, we arrive at the desired conclusion.

V. CONCLUSIONS

This study presents midpoint-type inequalities for
multiplicatively MψA-p-functions using multiplicative ψ-
Hilfer fractional integrals. To the best of our knowledge,
the investigation of midpoint-type inequalities through the
application of multiplicative ψ-Hilfer fractional integrals has
not been reported in the existing literature. As a result,
our work broadens the theoretical scope of multiplicative
calculus, particularly regarding multiplicative fractional
integrals.

The methodologies presented in this work can be
extended to other inequalities, such as Maclaurin-type
[24], Milne-type [52], Bullen-type [53], [54], Hadamard-
type [55], [56], Ostrowski-type [57], [58], among others.
Moreover, researchers could employ various multiplicative
fractional integrals, including multiplicative (k, s)-fractional
integrals [59], multiplicative k-RL-fractional integrals [41],
and multiplicative fractional integrals having exponential
kernels [39], to establish new midpoint-type inequalities.
This represents an interesting field for future research.
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