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Abstract—In this paper, we establish necessary and sufficient
conditions for countable fan tightness and countable strong fan
tightness of the space Cp(T,G) based on Menger property and
the Rothberger property, respectively. Additionally, we explore
the relationship between countable fan tightness, Reznichenko
and Hurewicz properties for the space Cp(T,G). Moreover,
we demonstrated that the Menger property is preserved under
G equivalence of topological spaces. As a key contribution, we
present a general result concerning the fan tightness of Cp(T,G)
and the Hurewicz number of the space Tn for every natural
number n. Finally, we investigate the monolithicity of the space
Cp(T,G).

Index Terms—Topological group, Selection principles,
Menger property, Rothberger property, Hurewicz property,
Reznichenko property, Countable fan tightness, Countable
strong fan tightness, Fan tightness, Hurewicz number, G-
equivalence, Monolithicity.

I. INTRODUCTION

IN 1992, Arkhangelski [1] introduced a theory called
Cp theory for topological function spaces. Subsequently,

many mathematicians made considerable efforts to enhance
Cp theory, giving it the sophistication and elegance it
currently has. Arkhangelsky’s PhD student, Tkachuk, has
written a wide range of books [2], [3], [4], [5], which serve as
a vast compilation of many findings related to Cp theory. In
these book series, Tkachuk has produced a large collection of
open problems that serve as an attractive stimulus for further
research, not only to advance Cp theory but also to meet the
challenges of other branches of mathematics. Building on this
line of inquiry, a recent monograph by McCoy [6] highlights
the broad aspects of the Cp theory, and provides information
about its more general implications. His study includes a
comprehensive exploration of many properties related to the
space of continuous functions from one topological space to
another, culminating in the examination of uniform, fine, and
graph topology. More recently, in 2023, Mishra and Bhaumik
[7] and Aaliya and Mishra [8], [9], [10] studied properties
of topological function spaces under Cauchy convergence
topology and regular topology, respectively. These studies
also give an idea for further studies on topological function
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space by applying the new structure.
A topological group provides a natural setting where al-
gebraic operations (group structure) interact smoothly with
topology (continuity). This unification allows the application
of topological methods to group theory and vice versa.
Recently in 2024, the research papers [25], [26] studied
about topological transformation groups and this concept has
sparked a surge of research across various disciplines, in-
cluding engineering, medicine, economics and environmental
sciences.
However, such a study was initiated in 2010 by Shakhmatov
and Spevak [11], considering a new structure on topological
function spaces as topological groups. In this paper [11]
authors defined point wise convergence topology on the space
of group-valued continuous functions (denoted by Cp(T,G))
and further studied on good numbers of properties of such
space along with preservation of properties during some
equivalencies like G equivalence and T equivalence. In 2011,
Kocinac [12] extended the closure type properties of the
function spaces Cp(T ) to the function space Cp(T,G).
We aim to investigate various topological properties of the
space Cp(T,G), including Menger, Rothberger, Hurewicz,
Reznichenko properties as well as countable fan tightness,
countable strong fan tightness, fan tightness, and monolithic-
ity. Additionally, we establish that under certain conditions,
G-equivalence preserves the Menger property.
We are following most of the notation and terminology from
[14] and [11], unless we state otherwise. The study assumes
that all topological spaces under consideration are Tychonoff,
meaning that they are both completely regular and satisfy the
T1 separation axiom.
The selection principle refers to a guiding principle that
affirms the feasibility of obtaining mathematically significant
objects by selecting elements from predetermined sequences
of sets. Selection theory primarily involves the characteri-
zation of covering properties, measure theoretic properties,
category theoretic properties and local properties within topo-
logical spaces with a particular emphasis on function spaces.
These theories provide a framework for understanding and
analyzing the behavior of sets and functions with respect to
these properties. Frequently, employing selection theory to
characterize mathematical properties presents a challenging
endeavor, which often yields fresh insights into the distinctive
nature of the property being studied. In this paper we are
going to apply the results of selection principles to discuss
the tightness of the Cp(T,G) space.
In order to better understand of our results we are going
to briefly recall some important concepts such as selection
principles, Menger, Hurewicz, Rothberger and Reznichenko
properties but for detail readers can refer to the following
paper [15], [16]. Also note that throughout this paper G refers
to arbitrary topological group.
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II. PRELIMINARIES

Definition II.1 (Selection principles). [17], Section 1.1, Let
P and Q are the collection of the subsets of an infinite set I .
Let S1(P,Q) and Sf (P,Q) are the two selection hypotheses
defined by

(i) Notation S1(U ,V) denote the statement: Corresponding
to every sequence (Pn) ∈ P we can find a sequence
(Qn) ∈ Pn and {Qn : n ∈ N} ∈ Q.

(ii) Notation Sf (P,P) denote the statement: Corresponding
to every sequence (Pn) ∈ P we can find a sequence

(Pn) ⊂ Qn with
∞⋃
n=1

Qn ∈ Q and Pn is finite for every

n.

Definition II.2 (Menger space). [13], Definition 1.2, A space
T is Menger if for every open covers (Pk), k ∈ ω of T there
exists a sequence (Qk) ⊂ Pk with

⋃
{Qk : k ∈ ω} is a cover

of T and Qk is finite.

Definition II.3 (Countable fan tightness space). [12], Section
1.1, If Sf (Ωt,Ωt) holds for each t ∈ T , then T has countable
fan tightness (CFT) where Ωt = {K ⊂ T\{t} : t ∈ K}.

Example II.1. The space Cp(T,G) has CFT, where T =
[0, 1] is set with usual topology and G = S1 is unit circle in
the complex plane with the usual topology.

Definition II.4 (ω cover). [12], Section 1.1, A ω cover P is
an open cover of a space T and if for every finite K ⊂ T
we can find a P ∈ P such that K ⊂ P and T /∈ P.

Definition II.5 (Hurewicz covering property). [12], Section
1.1, If for any sequence (Pk) of open covers of T we can
identify a sequence (Qk) with Qk being a finite subset of
Pk for all k ∈ N and every t ∈ T belongs to

⋃
Qk for all

but finitely many k, then the space T satisfies the Hurewicz
covering property.

Definition II.6 (Rothberger space). [13], Section 2, A space
T satisfies Rothberger property if for each (Pk), k ∈ ω of
open covers of T , we can find some Qk ∈ Pk. Here {Pk : k ∈
ω} is a cover of T .

The following implications are true for any arbitrary space.

σ − compact space ⇒ Hurewicz space ⇒ Menger space ⇒
Lindelöf space

Rothberger space ⇒ Menger space

Definition II.7 (Network weight of a space). [1], Section 2,
Let D be a collection of subsets of a space T . Then D is a
network of T if for each t ∈ T and for O ∈ τ(T ) containing
t we can identify some P ∈ D such that t ∈ P ⊂ O.
Network weight is the least cardinality of a network in T . It
is denoted by nw(T ).

Definition II.8 (Weight of a space). [1], Section 2, Weight
of a space T is the smallest cardinal number κ with B is
a base for the space T , then κ ≤ |B| and it is denoted by
w(T ).

Note that if w(X) = ω, then X is a space with a countable
base (it is a separable metric space). Also if nw(X) = ω,
then X is a space with a countable network.

Definition II.9 ( τ monolithic space). [1], Section 6, Let τ
denotes the cardinal number with infinite cardinality. Then
a space T is said to be τ monolithic if S is a subspace of
T with |S|≤ τ, nw(S) ≤ τ .

Definition II.10 (Monolithic space). [1], Section 6, A mono-
lithic space is τ monolithic for each infinite cardinal τ .

Example II.2. N with Cofinite topology is a monolithic
space.

Example II.3. Cp([0, 1]) is a monolithic space.

Definition II.11 (Stable space). [1], Section 6, Let Y be a
continuous image of X . Then a space X is called τ stable
space if for every Y , iw(Y ) < τ (iw(Y ) denotes the minimal
weight of all spaces onto which Y can be condensed). A
stable space is τ stable for each infinite cardinal τ .

Note that all compact topological spaces are stable.

Definition II.12. [11], Definition 2.2, Let T be any arbitrary
space and K ⊂ T be closed. Then T is

(i) G regular, provided that corresponding to each K in
T and for each t in T\K, there exists a function h in
Cp(T,G) and a ̸= e in G with h(t) = a for t ∈ T\K
and h(t) = e for all t ∈ K.

(ii) G∗ regular, provided that there exists an element a ̸= e
in G such that corresponding to each K in T and for
t in T\K, we can find a function h in Cp(T,G) such
that h(t) = a and h(t) = e for all t ∈ K.

(iii) G∗∗ regular, provided that corresponding to each K in
T , for each t in T\K and for every a in G, we can
find h ∈ Cp(T,G) such that h(t) = a and h(t) = e for
every t ∈ K.

III. TIGHTNESS PROPERTIES OF THE SPACE Cp(T,G)

In 1986, [18] Arkhangelskii find an equivalent condition
for countable fan tightness of the space Cp(X) in term of
Menger property of the space X . In continuation of this
study we are going to generalize this result for the space
Cp(X,G) under the certain condition. In this section we are
going to find an equivalent condition for the space Cp(T,G)
to be CFT (countable strong fan tightness) in term of Menger
(Rothberger) property of the base space T . Following results
motivates us to find such conditions.

Theorem III.1. [12], Corollary 2.4, Let G be a metric and T
be a space satisfies G∗-regularity. The subsequent assertions
are equivalent.

1) The space Cp(T,G) holds countable fan tightness.
2) T satisfies Sfin(Ω,Ω).

Theorem III.2. [12],Theorem 2.5, Let G be a metric and T
be a space satisfies G∗-regularity. The subsequent assertions
are equivalent.

1) The space Cp(T,G) possesses countable strong fan
tightness.

2) T satisfies S1(Ω,Ω).

Definition III.1. [12], Section 2, A ω Lindelof space is a
space T that has a countable ω-subcover for every ω-cover
of T . Equivalently, Tn are Lindelof for all n ∈ N.
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Theorem III.3. [19], theorem 14, Let T be a ω Lindelof
space, then T satisfies Sf (Ω,Ωgp) if and only if Tn has
Hurewicz property for every natural number n.

Theorem III.4. Let G be a metric and T be an ω-lindeloff
space satisfies G∗-regularity. Then the subsequent assertions
are equivalent.

1) Cp(T,G) satisfies countable fan tightness
2) Tn holds Menger property for every natural number n.

Proof: Let Cp(T,G) has CFT, then from Theorem
(III.1), X satisfies Sf (Ω,Ω). So from Theorem (III.3), Xn

has Hurewicz property for every n ∈ N. Since Hurewicz
property implies Menger property for every topological space
[13, Definition 1.2], Xn has Menger property for every
n ∈ N.

Conversely assume that Xn has Menger property for every
n ∈ N. Then from [[19], theorem 14] X satisfies Sf (Ω,Ω).
Therefore from theorem (III.1), Cp(T,G) has CFT.

Definition III.2 (ϕ small set). [20], Section 3, Let ϕ =<
Hk, k ∈ ω > be an open covers of the space T . Then A ⊆ T
is ϕ small if for every k ∈ ω there are j ∈ ω and sets
Hi ∈ HK+i with A ⊂ ∩{Gi : i < j}.

Let us consider the following property(∗) that was intro-
duced by Gerlits and Nagy in [20, Theorem 5]: If ϕ =<
Gn, n ∈ ω > is an open covers of T , then T can be
represented as a union of countably many ϕ small sets.

Theorem III.5. [19], Theorem 19, For an ω Lindelof space
T , T has property S1(Ω,Ω

gp) if and only if Tn has
property(∗) for n ∈ N.

Using the above theorems we can generalize the result of
[21, Theorem 1], in Cp theory that Cp(X) has countable
strong fan tightness if and only if every finite power of X
is Rothberger (equivalent to property C ′′ in [21]).

Theorem III.6. Let G be a metric and T be an ω-lindeloff
space satisfies G∗-regularity. The subsequent assertions are
equivalent.

1) Cp(T,G) holds countable strong fan tightness
2) Zn satisfies Rothberger property for every natural num-

ber n.

Proof: Suppose that (1) holds, then from theorem (III.2),
T satisfies S1(Ω,Ω). Then from theorem (III.5), since T is
a ω Lindelof space T satisfies property (∗). In a ω Lindelof
space property(∗) implies Rothberger property. Therefore Tn

satisfies Rothberger property for n ∈ N.
Conversely assume that (2) holds. In a ω Lindelof space

Rothberger property implies property(∗), so from Theorem
(III.5), T satisfies S1(Ω,Ω). Then from Theorem (III.2),
Cp(T,G) has countable strong fan tightness.

Now we will generalize another result on Cp theory that
Cp(X) has countable fan tightness and the Reznichenko
property if and only if Xn have the Hurewicz property for
n ∈ N ([19], theorem 21). To prove the following result we
need the following lemma from ([12], Lemma 2.1).

Lemma III.1. [12], Lemma 2.1, Suppose that T satisfies G∗-
regularity, then there exists an element a ̸= e in G such that
for every O ∈ τ(T ) and every non-empty finite set K ⊂ O,
there exists hK,O ∈ Cp(T,G) satisfying hK,O(K) ⊆ {e}
and hK,O(T\O) ⊆ {a−1}.

Theorem III.7. Let G be a metric and T be an ω-Lindelof
space satisfies G∗ regularity. The subsequent assertions are
equivalent.

1) Cp(T,G) has CFT and Reznichenko property
2) Zn has Hurewicz covering property for every natural

number n.

Proof: Suppose that (i) holds. Consider the sequence
(Wi) of ω covers of T . From the definition (II.4), cor-
responding to a finite subset K of X we can identify
W (i,K) ∈ Wi with K ⊂ W (i,K). Then according to
the lemma (III.1) there exists a in G and h in Cp(T,G)
depends on K and W (i,K) such that h(K) = {e}, and
h(T\W ) ⊂ {a−1}. Let us consider Ak = {h : W ∈ Wi, h
depends on K and W (i,K)}. This implies for all k ∈ N,
he ∈ Ak. Since Cp(T,G) have Reznichenko property, for
each k ∈ N we can identify a sequence of finite subsets Bk
of Ak such that corresponding to every neighbourhood V
of he, V ∩ Bn ̸= ϕ, except for finitely many k ∈ N. Let
Vi = {W (i,K) : h ∈ Bk}. Then Vi ⊂ Wi for every i ∈ N.
Let E ⊆ T be finite. Now we will show that E ⊂ V for
some V ∈ Vk, except for finitely many k ∈ N. Consider the
neighborhood N(D,Ok) of he such that N(D,Ok)∩Bk ̸= ϕ
for k ≥ k0 and for some k0 ∈ N. Let h ∈ N(D,Ok), that is
for t ∈ D, h(t) ∈ Ok. Therefore D ⊂ W (i,K) ∈ Vi. This
proves (2).

Conversely assume that Xn has Hurewicz property for
every natural number n. Let Ck : k ∈ N be the countable
local base at the identity e in G. Consider the sequence

Ik of subsets in Cp(T,G) with he ∈
∞⋂
k=1

Ik. Let D ⊆ T

be finite. Then the neighborhood N(D,O1) of he satisfies
N(D,O1) ∩ I1 ̸= ϕ. Take hD(1) ∈ I1. The continuity
of hD(1) guarantees that for every t ∈ D we can choose
Ut ∈ τ(T ) with hD(1)(Ut) ⊂ C1 and set UD(1) =

⋃
t∈D

Ut.

Then the collection U1 = {UD(1) : D ⊂ T is finite }.
Clearly U1 is a ω cover of T . Similar way we can construct
Un for every natural number n ≥ 2. Since T satisfies
Hurewicz property and also by using theorem (III.3), for any
n ∈ N we can find finite subsets Kn of Un with every finite
subset of T is a member of Kn except for finitely many n.
Now without effecting the generality, we can suppose that

Ki ∩ Kj = ϕ, for i, j ∈ N. This implies K =
∞⋃
n=1

Kn

is a groupable ω cover of T . Suppose that for n ∈ N,
let Kn = {UD(1,n), UD(2,n), . . . UD(k,n)}. For n ∈ N, let
Mn ⊂ In be the set of all functions in In having the
property UD(i,n) ∈ Kn, i ≤ kn. Then fD(i)(Ut) ⊂ Ci. This
implies Cp(T,G) satisfies Reznichenko property. Countable
tightness of Cp(T,G) will implies from theorem (III.1) and
(III.3).

IV. FAN TIGHTNESS OF Cp(X,G) AND HUREWICZ
NUMBER OF X

We define fan tightness and Hurewicz number from [24]
by Shou Lin.

Definition IV.1. [24], Section 1, Let a ∈ T . Then
vet(T, a) = ω +min{ϵ : for each δ < ϵ and corresponding
to each collection of subsets {Aδ} of T having a ∈

⋂
Aδ
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there exists a subset Bδ ⊂ Aδ satisfies |Bδ| < ϵ such
that a ∈

⋃
Bδ}. Then fan tightness vet(T ) is given by

vet(T ) = sup{vet(T, a) : a ∈ T}.

Note that, a space T has CFT if and only if vet(T ) = ω.

Definition IV.2. [24], Section 1, Let C be the collection of
compact subsets of T and α be the network of C, which is
closed with respect to the finite unions and closed subsets.
Then we say that a collection of subsets of T is an α cover
if every member of α is contained in some member of this
collection.

Definition IV.3. [24], Section 1, A k cover is an α cover
and it is equal to C.

Definition IV.4. [24], Section 1, An α cover is same as the
set of all finite subsets of T , then it is called ω cover.

Definition IV.5. [24], Section 1, We define αH(T ) = ω +
min{ϵ : for each collection {Uδ}, δ < ϵ of open α-covers of
T we can identify a subset Bδ ⊂ Uδ with |Bδ| < ϵ for each
δ < ϵ such that

⋃
Bδ is an α cover of T}. We call αH(T )

as a α Hurewicz number. If α consists of the singleton sets
of T , then it is called Hurewicz number of T . A space X is
said to be a Hurewicz space if H(T ) = ω.

Theorem IV.1. Let G be a metric and T satisfies G∗-
regularity. Then vet(Cp(T,G)) =Sup{H(Tn)}, n ∈ N .

Proof: Assume that vet(Cp(T,G)) = ϵ. We need to
show that Sup{H(Tn)} = ϵ, for every natural number
n. To see this, for δ < ϵ and for the space Tn, consider
the collection of open covers {Uδ}. For δ < ϵ, Now
we define a property P (n, δ) for the collection V of
subsets of T that for every {Vi}ni=1 ⊂ V there exists
U ∈ Uδ satisfies Πni=1Vi ⊂ U . Let I(n, δ) represents
the family of all finite open sets satisfies the property
P (n, δ). Now for each V ∈ I(n, δ) and for V ∈ V we
can identify U ∈ Uδ with V ⊂ U . By applying lemma
(III.1) we can find a a ∈ G and h(V, δ) ∈ Cp(T,G)
such that h(V, δ)(V ) = {e} and h(V, δ)(T\U) ⊂ {a−1}.
Let us define FV = {h(V, δ) ∈ Cp(T,G) : V ∈ V and
V ∈ I(n, δ)}. Now we claim that for δ < ϵ, this implies set
Aδ =

⋃
FV is a dense subset of Cp(T,G).

For a finite subset E of T and an open set O containing
e ∈ G, we denote W (E,O) be a neighbourhood of he in
Cp(T,G). Since E is finite, we can identify W ∈ I(n, δ).
That is W satisfies property P (n, δ). Then E ⊂

⋃
W . Now

take t ∈ E, we define the set Vt =
⋂
{W ∈ W : t ∈ W}.

Let V be the collection sets Vt. It is evident that the family
V satisfies the property P (n, δ) and E ⊂

⋃
V . Also we

observed that W satisfies property P (n, δ). Since V (ti) is a
subset of Wi, we have Πni=1V (ti) ⊂ U . Choose a function
h′ in Cp(T,G) with h′(E) = h(E) and h′(T\U) = a−1.
Then h′ ∈ FV ⊂ Aδ , so W (E,O)

⋂
Aδ ̸= ϕ. Therefore A

is a dense in Cp(T,G).
Now fix a c ∈ G, then consider a function fc ∈ C(T,G)
with fc(T ) = c. Then for δ < ϵ, fc ∈

⋂
Aδ . From the

definition of fan tightness of T , for each δ < ϵ there is a
subset Bδ ⊂ Aδ with |Bδ| < ϵ and fg ∈

⋃
Bδ . Then we

can identify a subset J(n, δ) of I(n, δ) with |J(n, δ)| < ϵ
such that Bδ ⊂

⋃
{FV : V ∈ J(n, δ)}. Since J(n, δ)

satisfies property P (n, δ), we have for V ∈ J(n, δ) and for

each ψ = (V1, V2 . . . Vn) ∈ Vn, take Mψ ∈ Uδ such that
Πni=1Vi ⊂ Mψ . Put Mδ = {Mψ : ψ ∈ Vn,V ∈ J(n, δ)}.
Obviously |Mδ| < ϵ and Mδ ⊂ Uδ . Now we claim that⋃

Mδ covers T .
Let (t1, t2, . . . , tn) ∈ Tn and N be an open set containing
of hc ∈ Cp(T,G). Since hc ∈

⋃
Bδ , we can find δ < ϵ

such that N ∩ Bδ is non empty. This implies there exists
V ∈ I(n, δ) such that N ∩ FV ̸= ϕ. Let z ∈ N ∩ FV .
Then z(T\U) = c−1 and z(ti) ∈ N , for every i between
1 and n. Now for i between 1 and n we can choose
Vi ∈ V with ti ∈ Vi. That is we can find Mψ ∈ Mδ

with (t1, t2, . . . , tn) ∈ Πni=1Vi ⊂ Mψ . So (t1, t2, . . . , tn) ∈⋃
(
⋃
δ<ϵ

Mδ). Hence H(Tn) ≤ vet(Cp(T,G)).

Conversely assume that Sup{H(Tn)} = ϵ. Let (Ok)
be a sequence of decreasing local base at e in G. For
δ < ϵ, let {Aδ} be a collection of subsets of Cp(T,G)
with he ∈

⋂
Aδ . For each finite set K of T and δ < ϵ the

neighborhood W (K,O1) of he has non-empty intersection
with Aδ . Choose h(t, δ) ∈ W (F,O1)

⋂
Aδ . Since h(t, δ)

is continuous, for ti ∈ F we can identify an open set
V (ti) with h(K, δ)(V (ti)) ⊂ O1. Let U(t, δ) = Πni=1V (ti)
be a neighborhood of t = (t1, t2, . . . , tn) ∈ Tn. Then
U(n, δ) = {U(t, δ) : t ∈ Tn} covers Tn and also note that
for each (y1, y2, . . . , yn) ∈ U(t, δ), h(t, δ)(yi) ∈ Oi.

Case (i) Suppose ϵ > ω. Since H(Tn) ≤ ϵ, for each
δ < ϵ we can identify a collection of subsets {S(n, δ)} in Tn

with |S(n, δ)| < ϵ such that
⋃
S(n, δ) covers Tn. Note that

S(n, δ) = {U(t, δ) : t ∈ S(n, δ)}. Now define for each δ <

ϵ, B(n, δ) = {h(t, δ) : t ∈ S(n, δ)} and Bδ =
∞⋃
n=1

B(n, δ).

Then Bδ ⊂ Aδ with |Bδ| < ϵ, and h ∈
⋃
Bδ . Let W (E,O)

be a basic neighborhood of he ∈ Cp(T,G). Then δ < ϵ
such that (y1, y2, . . . , yn) ∈

⋃
S(n, δ) and x ∈ S(n, ϵ) such

that (y1, y2, . . . , yn) ∈ U(t, δ). So h(t, δ) ∈ B(n, δ) and
h(t, δ) ∈ On for each i ≤ n. So h(t, δ) ∈ W (E,O) (Here
E = {y1, y2, . . . , yn}). That is h(t, δ) ∈ W (E,O) ∩ Bδ .
Therefore fe ∈

⋃
Bδ .

Case 2. Suppose ϵ = ω. That is replace δ with a natural
number k ≥ n. Then choose Bk =

⋃k
n=1B(n, k) and

follow case 1. The proof will be immediate. Therefore
vet(Cp(T,G)) = Sup{H(Tn)}.

V. PRESERVATION OF MENGER PROPERTY ON
G-EQUIVALENCE

Definition V.1. [11], Definition 1.2(ii), Two topological
spaces X and Y are said to be G equivalent if Cp(X,G) ∼=
Cp(Y,G).

If G = T, the circle group R\Z, then G equivalence can
be viewed as T equivalence.

Theorem V.1. [11], Theorem 10.7, T equivalence preserves
pseudo compactness.

Lemma V.1. Suppose X and Y are T equivalent. If X is
a Cech complete Menger space, then Y is also a Menger
space.

Proof: Let X be a Cech complete Menger space. Then
from [[22], theorem 1.2], X is a σ compact space. Since
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X and Y are T equivalent and from (V.1), σ compactness
preserves T equivalence, we can say that Y is also a Menger
space.

Definition V.2. If G can be embedded as a subgroup of a
compact group, then it is called precompact.

Theorem V.2. [11], Corollary 10.5, If G is precompact and
Abelian, then T-equivalence implies G-equivalence.

By using above theorem and lemma, we can state the
following result.

Theorem V.3. Let G be precompact and Abelian. Suppose
that X and Y are G equivalent. If X is a Cech complete
Menger space, then Y is also a Menger space.

Proof: Suppose X and Y are G equivalent. Take G = T,
then by Lemma (V.1), T equivalence preserves Menger prop-
erty. From Theorem (V.2), in case of a precompact Abelian
group T eqivalence implies G equivalence. Therefore Y is
also a Menger space.

VI. MONOLITHICITY ON Cp(X,G)

Theorem VI.1. Let T be a topological space and G be
second countable. Then nw(T ) = nw(Cp(T,G))

Proof: To prove this, first we claim that
nw(Cp(T,G)) ≤ nw(T ). Fix a network N
in T and a countable base B in G. Choose
M1,M2,M3, . . . ,Mκ ∈ N and U1, U2, U3, . . . , Uκ ∈ B.
We define W (M1,M2,M3, . . . ,Mκ, U1, U2, U3, . . . , Uκ) =
{f ∈ Cp(T,G) : f(Mi) ⊂ Ui, i = 1, 2, 3, . . . , κ}.

Let N ′ = {W (M1,M2,M3, . . . ,Mκ, U1, U2, U3, . . . , Uκ)}.
Then we will show that N ′ is a network in Cp(T,G). Since
|N ′| ≤ |N |, it follows that nw(Cp(T,G)) ≤ nw(T ).

Let h ∈ Cp(T,G) and V be the open neighbourhood
of h in Cp(T,G) i.e. V = {g ∈ Cp(T,G) : g(t) ∈ U
for some open set U ∈ G}. Then, there exists open sets

U1, U2, U3, . . . , Uκ ∈ B such that U =

κ⋃
i=1

Ui. Since h is

continuous, there exists Mi ∈ N with h(Mi) ⊂ Ui, for
i = 1, 2, 3, . . . , κ i.e, h ∈ N ′.
Now we claim that N ′ ⊂ V . To prove this, let g ∈ N ′,
then g ∈ {W (M1,M2,M3, . . . ,Mκ, U1, U2, U3, . . . , Uκ},
i.e. g ∈ {f ∈ Cp(T,G) : f(Mi) ⊂ Ui, i = 1, 2, 3, . . . , κ}.

Let U =

κ⋃
i=1

Ui. Clearly U is an open set and g(t) ∈ U ,

for each t ∈ T , i.e. g ∈ V . Thus N ′ is a network of
Cp(T,G). So nw(Cp(T,G)) ≤ nw(T ). To get the reverse
inequality we use the fact that X ⊂ Cp(Cp(T,G)). So
nw(T ) ≤ nw(Cp(Cp(T,G))) ≤ nw(Cp(T,G)).

In the above theorem the second countability of the topo-
logical group G is a sufficient condition. To see this consider
the topological group G = R under addition with discrete
topology. Every group together with discrete topology can
be viewed as a topoloical group. An uncountable topological
space with discrete topology cannot be a second countable
space. So G does not satisfy second countablity.

If we let T = Z with the topology induced from the usual
topology of R and nw(T ) = ℵ0, then the space Cp(T,G)
consists only of constant functions, and its cardinality is
equal to that of R, where R is considered with the discrete

topology. Therefore, it does not have a countable network.
Hence, nw(Cp(T,G)) ̸= ℵ0

Theorem VI.2. Let h : Z → W be a map. Let h∗ : GW →
GZ be a map defined by h∗(ϕ)(z) = ϕ(h(z)) for ϕ ∈ GW ,
then h∗ is continuous.

Proof: To show that h∗ is continuous, let V be an open
set containing of ψ ∈ GZ and suppose that ψ = h∗(ϕ) for
some ϕ ∈ GW . Then, V = {g ∈ GZ : g(z) ∈ U for some
open set U ∈ G for each z ∈ Z}. Since ψ ∈ V , we have
ψ(z) ∈ U for some open set U in G. Define V ′ = {h ∈
GW : h(z) ∈ U}. Clearly V ′ is an open set in GW .

We will prove that h∗(V ′) ⊂ V . Let θ ∈ h∗(V ′), then θ =
h∗(g) for some g ∈ V ′, i.e. θ(z) = g(h(z)), and g(w) ∈ U
for some w ∈ W . That is, θ(z) ∈ U . So θ ∈ V . Therefore,
h∗ is continuous.

Theorem VI.3. Let h : Z → W be a map. If f(Z) = W ,
then h∗ : GW → GZ is a homeomorphism from GW onto
the closed subspace h∗(GW ) of GZ .

Proof: Let h(Z) = W . To prove h∗ is a homeomor-
phism, first we will show that h∗ is a bijective function. To
see this, let θ1, θ2 ∈ GW and assume that θ1 ̸= θ2, then there
exists w ∈ W such that θ1(w) ̸= θ2(w). Since h(Z) = W ,
corresponding to each w ∈ W there exists z ∈ Z such that
h(z) = w. So, h∗(θ1)(z) = θ1(h(z)) = θ1(w) ̸= θ2(w) =
θ2(h(z)) = h∗(θ2)(z), i.e. h∗ is one-one. Therefore, h∗ is a
bijective function from GW to h∗(GW ). In a similar way of
the proof of Theorem (VI.2) we can easily show that (h∗)−1

is continuous. Therefore, h∗ is a homeomorphism from GW

to h∗(GW ).
Next we will show that h∗(GW ) is a closed set. To prove

this, it is enough to show that (h∗(GW ))∁ is an empty set.
Suppose θ ∈ (h∗(GW ))∁. Then there does not exist ψ ∈ GW

such that h∗(ψ) = θ. That is, there does not exist z ∈ Z
such that ψ(h(z)) = θ(z). But it is a contradiction to our
assumption that h(Z) = W . Hence h∗(GW ) is a closed
subspace of GZ .

Note that in case of G = R, G∗ regular space can be
replaced by completely regular.

Definition VI.1 (G quotient map). Let T be any arbitrary
space, S be any arbitrary set and f : T → S be a onto map.
Then G quotient topology on S is the strongest of all G∗

regular topologies on S relative to which f is continuous. If
the topology generated by a map f : T → S coincides with
G quotient topology on S then it is called G quotient map.

Example VI.1. In case of R with usual topology the G
quotient map will coincide with the R quotient map and
topology generated by G quotient map is Real quotient
topology.

Theorem VI.4. Let T be a compact space and G satisfies
second axiom of countability. Then the space Cp(T,G) is
monolithic.

Proof: To prove Cp(T,G) is monolithic, let D ⊂
Cp(T,G) and |D| ≤ τ . Let ∆ be the diagonal product map
of maps from D. Thus, ∆(t) = {tg = g(t) : g ∈ D}.
Let Y = ∆(T ), then S is a subspace of GD. Therefore,
w(S) ≤ |D| ≤ τ .

Let S′ be the points in S with the G quotient topology gen-
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erated by the map ∆. Then define an identity map i from S′

to S, making it a condensation map. So, iw(S′) ≤ w(S) ≤ τ .
Since T is a compact space, it is stable, hence it is τ stable
for every τ . Thus, we can find a continuous function from
T to S′, implying nw(S′) ≤ τ . Also, from Theorem (VI.1),
we have nw(Cp(S′, G)) = nw(S′) ≤ τ . Consider the map
∆: T → S′, which is evidently a G quotient map. Then
define δ∗ : Cp(S′, G) → Cp(T,G) such that δ∗ = i−1 ◦∆.
Therefore, by Theorem (VI.3), Cp(S′, G) is homeomorphic
to the closed subspace K = ∆∗(Cp(S

′, G)) of Cp(T,G).
We have ∆∗ = i−1 ◦ ∆, so ∆ = i ◦ ∆∗. Then for

every g ∈ D, we can write g = pg ◦ i ◦ ∆∗, where pg
is a projection mapping from GD to G. Since projection
mapping on a topological group is continuous [23], pg ◦ i
is continuous from S′ to G, thus pg ◦ i ∈ Cp(S

′, G).
This implies g ∈ K. Hence, D ⊂ K. Since K is closed,
D ⊂ K = K. nw(D) ≤ nw(K) = nw(Cp(S

′, G)) as
Cp(S

′, G) is homeomorphic to K. Therefore, nw(D) ≤ τ .
Consequently, Cp(T,G) is a monolithic space.

VII. APPLICATIONS AND SIGNIFICANCE OF THE WORK

Covering properties like menger, rothberger and hurewicz
have concrete applications in functional analysis, dynamical
systems, computer science, ramsey theory, mathematical
physics, algebraic geometry, game theory and economics.
These properties provide compactness like conditions that
influence the structure and behavior of infinite mathematical
objects across disciplines.
The results in the paper are helpful to enhance the study
of Cp theory by generalizing the results from Cp(T ) to
Cp(T,G).

• Results in section III are generalizations of two
main results in the topological function spaces
related to tightness properties and covering proper-
ties. These results definitely helpful to solve prob-
lems related to the covering properties of function
spaces.

• Result in section IV is a significant result that
generalize the concept of fan tightness to the space
Cp(T,G).

• In section V we studied the G equivalence of
Menger property and similar way we can study
other properties like Rothberger property, Hurewicz
properties under G equivalence.

• In section VI, Monolithicity is a compactness like
property which is very useful to study Cp the-
ory and for the theory of cardinal invariants. By
studying this property in the space Cp(T,G) will
enhance the theory of function spaces, especially
Cp theory.

VIII. CONCLUSION

The space Cp(T,G) is a general case of Cp(T ) as we view
G = R. So all the properties discussed in Cp(T ) is relevant in
case of Cp(T,G) also. Cp theory serves as a bridge between
topology, analysis, probability, and computation, influencing
diverse areas of mathematics and science.
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