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Abstract—Extreme Learning Machine (ELM), as a fast and
easy to implement model, has been widely used in multiple fields
in recent years. In practice, it has been found that ELM has
limited application in the field of multi-target data problems.
Moreover, ELM lacks resistance to outliers, which may lead to
a lack of robustness in multi-target problems. In response to
the above issues, this article proposes an improved methods
to enhance the robustness of multi-target ELM from the
perspective of L21 norm regularization and loss function. The
L21 norm regularization can adaptively eliminate redundant
neurons in ELM, reduce the complexity of model learning,
and thus achieve optimization of ELM. Based on the L21 norm
regularization, a p-Huber loss function is introduced to multi-
target robust ELM model, referred to as L21pHELM. The
p-Huber loss function can control the impact of outliers on
the model through the parameter p, thereby improving the
robustness of the model. To better validate the effectiveness
of the proposed L21pHELM in terms of model robustness
and generalization performance, we conducted experiments on
both artificial datasets and 14 benchmark datasets using an
iteratively reweighted algorithm, comparing it with four other
algorithms. The evaluation was performed under different
outlier conditions using two metrics: aRRMSE and average
rank. The experimental results demonstrate that L21pHELM
achieves relatively smaller aRRMSE values, particularly in
high-outlier scenarios, indicating stronger noise resistance ca-
pabilities.

Index Terms—Multi-target, Extreme Learning Machine, L21
Norm Regularization, p-Huber Loss, Robustness.

I. INTRODUCTION

MULTI-target regression [1], [2] is a machine learning
task where the model needs to predict the values of

multi-target variables simultaneously. In this type of prob-
lem, each sample has multi-target variables associated with
it, typically representing properties or features of different
aspects in the system[3]. The multi-target regression task re-
quires the model to consider the relationships between target
variables, which may have positive, negative, or nonlinear
relationships. The choice of model depends on the nature
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of the data and the complex relationship between the target
variables [4]. Feature selection is equally important in multi-
target regression, requiring selecting appropriate features,
performing normalization, and handling missing values. In
addition, to solve the problem of multi-target regression,
researchers have proposed various algorithm improvements
and techniques. Reference [5] solves the regression problem
of multi-target data by using different penalty functions for
error values falling in different intervals in the loss function.
Researchers continuously strive to improve the model to
handle the problems in multi-target regression tasks better. In
this field, it is not only necessary to focus on the prediction
accuracy of a single target but also to consider the synergistic
effects between multiple targets to improve the performance
of the model in complex tasks.

Multi-target regression involves developing predictive
models for problems with multiple continuous targets. One
challenge in constructing a multi-target model lies in captur-
ing the relationships between multi-target variables during
the training process, as these relationships are intertwined
with the input and target variables of the training set.
Support Vector Regression Correlation Chain [6] addresses
this challenge by establishing a maximum correlation chain
to capture the optimal correlations between target vari-
ables, thereby enhancing the predictive performance of the
model. This method introduces a correlation regression sub-
chain within the framework of Support Vector Regression
to address the complexities of multi-target regression. By
leveraging the correlations between targets, the correlation
regression chain enhances the regression performance, con-
sequently improving the accuracy of multi-target regression.

The L1 norm is introduced into the Outlier Robust
ELM(OR-ELM) [7], which is applied to a single-target. The
Generalized Outlier Robust ELM (GOR-ELM) [8] proposes
to extend OR-ELM to handle multi-target regression prob-
lems. GOR-ELM extends OR-ELM to multi-target regres-
sion problems, using the model proposed in GOR-ELM,
replacing the F norm with the L21 norm of prediction error,
which can be explained as an extended form of L1 norm.
When there is only one-dimensional target and only ridge re-
gression is used, this method is the same as OR-ELM. GOR-
ELM uses the alternating direction multiplier method [9] to
solve optimization problems. The alternating direction multi-
plier method is an efficient optimization method mainly used
to solve separable convex optimization problems. It performs
well in processing speed and convergence performance, and
is therefore widely used in fields such as statistical learning
and machine learning. Multi-target regression is widely used
in practical applications, including financial prediction [10],
mechanical design [11], and other fields.
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Whether it is a ELM model for multi-target data or single-
target data, the objective function comprises a regularization
and a loss term. Below is the development history of the
regularization term and the loss function.

A. Regularization

While traditional ELM may exhibit small training errors,
the primary objective extends beyond merely minimizing
training error. The ultimate aim is to ensure that the model
accurately predicts new samples during the testing phase,
thereby minimizing testing error. Regularizing target weights
serves the purpose of preventing the model from overfitting
to the training data and controlling model complexity. The
determination of target layer weights is influenced by factors
such as the number of hidden nodes in the input layer and
various parameters. Excessive model parameters can lead to
increased model complexity, rendering it prone to overfitting
[12]. Hence,adjusting model complexity can effectively re-
duce test errors, and model complexity is usually controlled
by regularization terms, which are typically implemented
through various norm forms.

L2 norm regularization [13] imposes constraints on all
target weights, potentially making it difficult to distinguish
target weights representing distinct model features. This
heightened sensitivity could negatively impact the model’s
performance. By amplifying the influence of irrelevant fea-
tures and introducing noise, the model may struggle to
extract meaningful feature-related information [14]. Con-
sequently, some researchers have proposed enhanced reg-
ularization techniques, such as L1 norm regularization ,also
known as Lasso regularization [13], to improve the model’s
generalization performance. An L1 norm regularization-
based ELM [15] combines L1 norm with ELM and utilizes
the Newton iteration method for optimization. This approach
tends to drive certain fitting weights of the model towards
zero, resulting in a sparse model that is more interpretable.
Experimental results demonstrate that, compared to conven-
tional ELM, L1 norm regularization-based ELM can achieve
comparable performance with fewer hidden layer nodes.

In contrast to L2 norm regularization, L1 norm regu-
larization constrains the model by incorporating a penalty
term that represents the sum of the absolute values of
the target weight parameters. This regularization technique
facilitates setting certain target weight values to zero, thereby
effectively reducing the impact of specific features on model
predictions [16]. However, when dealing with highly corre-
lated features, L1 norm regularization may encounter non-
uniqueness issues. These challenges have spurred a demand
for regularization methods with enhanced robustness and
flexibility. To address these challenges, the elastic net [17]
introduces a novel hyperparameter to balance the penalty
terms of L1 and L2 norms. This enables the elastic net to si-
multaneously select important features and handle scenarios
involving highly correlated features. As a result, the elastic
net provides a more stable solution, effectively mitigating
the issues arising from correlated features.

The L21 norm regularization is a novel regularization
technique that combines the characteristics of both L2 norm
and L1 norm regularization, similar to elastic networks. This
combination aims to strike a balance between promoting

smoothness and facilitating feature selection [18], [19], [20],
thereby effectively addressing the challenges posed by com-
plex data scenarios [21]. In 2018, Rui et al. proposed a
robust ELM model (L21ELM) that simultaneously applies
the L21 norm to both loss functions and regularization [22].
Additionally, the Sparse Multi-target ELM [23] incorporates
L21 norm regularization to enhance the sparsity of model
parameters when solving multi-target regression problems.
This regularization technique helps automatically select input
features that are strongly correlated with the target vari-
able, thus improving the model’s generalization performance.
Moreover, L21 norm-based regularization is also used for
feature selection in high-dimensional data processing. By pe-
nalizing the L21 norm of features, this approach enables the
model to identify and select the most informative features,
thereby enhancing the model’s robustness and generalization
capabilities.

The online sequential ELM with L21 norm regularization
[24] aims to improve performance in online sequential
modeling tasks that involve processing sequential data. This
method helps handle noise and redundant information in-
herent in online sequential data. By integrating L21 norm
regularization, these methods continuously adjust the spar-
sity of model parameters and the smoothness of weights,
thereby enhancing the performance of the ELM model in
various tasks. In grouped variable regression [25], the model
selection and estimation algorithm incorporates L21 norm
regularization as part of the Group Lasso method for model
selection and evaluation. This approach introduces regular-
ization of feature groups during variable selection, enabling
the simultaneous selection of relevant features. Zhang et
al. [26] proposed a technique for inducing weight sparsity
across multiple tasks using L21 norm regularization, aiming
to achieve feature selection within the framework of multi-
task learning. Similarly, multi-task feature learning [23]
employs L21 norm regularization as a sparse representation
technique, providing an overview of a sparse representation
method. These methods are applied across various domains,
such as signal processing, image analysis, and pattern recog-
nition, significantly improving the ability to handle high-
dimensional data effectively. The diverse applications of L21
norm regularization in ELM methods highlight its flexibility
and efficacy, offering an efficient solution for addressing a
wide range of complex problems.

B. Loss functions

In ELM, due to the simplicity and directness of the
L2 loss, it is commonly chosen as a performance metric
[27]. This metric quantifies the average squared difference
between predicted and true values, guiding the model to
minimize the overall prediction error. However, the L2
loss is highly sensitive to outliers and noise, which may
compromise the model’s robustness in complex scenarios.
On the other hand, the L1 loss [28] measures the absolute
difference between predicted values and true values. The use
of absolute errors provides robustness against outliers and
helps mitigate the impact of errors. Nevertheless, the L1
loss function is non-smooth and non-differentiable at zero,
requiring additional processing when used in optimization
algorithms. The L21ELM [22] adopts a loss function based

IAENG International Journal of Applied Mathematics

Volume 55, Issue 8, August 2025, Pages 2570-2580

 
______________________________________________________________________________________ 



on the L21 norm. Compared to the L2 loss, the L21 norm
loss function can reduce the improper influence of outliers
in data points, thereby enhancing the robustness and stability
of the learning process.

The correntropy loss function [29] achieves robustness
to outliers and noise by capturing statistical correlations
between samples. Outliers within the sample can lead to am-
plified errors, resulting in poor generalization performance of
the model. The robust one-class ELM based on correntropy
and kernel learning [30] addresses one-class problems using
elastic networks and correntropy loss functions, demonstrat-
ing the model’s capability in boundary construction and
noise resistance. By minimizing the correntropy loss, the
model can better capture the nonlinear relationship between
input and target variables, thereby enhancing its robustness
to noise and outliers. Furthermore, a robust extreme learning
machine based on truncating the maximum correntropy cri-
terion loss function [31] improves upon the correntropy loss
function by truncating the Maximum Correntropy Criterion
(MCC). This truncated loss function limits the maximum
correntropy loss to a constant, effectively suppressing the
influence of noise and outliers on the model. Additionally,
ELM introduces a regularization correntropy criterion suit-
able for extreme learning machines [32], which is based on
the regularization correntropy criterion. This enhancement
aims to improve the noise resistance of ELM. The intro-
duction of correntropy loss enhances the model’s ability to
capture complex data distributions and relationships between
labels.

The L2 loss function is commonly employed for evaluat-
ing regression performance in regression problems. How-
ever, regression algorithms based on L2 loss suffer from
a notable drawback: their optimality heavily relies on the
Gaussian assumption. In practical applications, data often
exhibits non-Gaussian noise or outliers, and using a loss
function that lacks robustness to outliers can compromise
the entire statistical analysis. Reference [33] introduces a
robust regression technique called Regression Robust Ex-
treme Learning Machine, which leverages the differentia-
bility, non-convexity, and boundedness of the exponential
Laplace loss function. This approach significantly enhances
the robustness of the ELM model. Similarly, Reference [34]
proposes a Robust Regularized Extreme Learning Machine
based on non-convex loss functions. By replacing the L2 loss
function with a non-convex alternative, this method imposes
a constant penalty for larger outliers, thereby mitigating their
negative impact. Additionally, the optimization problem of
the model is solved using difference of convex functions
programming.

The Huber loss function [35] stands out as a smooth
loss function that bridges the gap between L1 and L2
loss, offering robustness against outliers. By blending the
strengths of both L1 and L2 loss functions, Huber loss
proves to be more resilient to outliers compared to L2 loss
while remaining differentiable at the center point. The robust
regularization ELM for iterative reweighted least squares
regression [36] adopts four different loss functions (L1 norm,
Huber, Bissquare, and Welsch) within the ELM model.
This approach also incorporates L1 and L2 regularization
strategies to mitigate overfitting. Huber loss, in particular,
strikes a balance between L2 and L1 loss, adjusting its

behavior based on the error magnitude. It behaves similarly
to L2 loss when the error is small and transitions to L1 loss
when the error is large.

The p-Huber loss function [37] is an extension of the
Huber loss function that allows sensitivity to outliers to be
adjusted through the parameter p. It combines the L2 loss
function and the L1 loss function, controlled by two param-
eters. When the residual is less than the given parameter,
the computationally convenient L2 loss is still used. After
comparing the robustness and fitting effects of the L1 loss
function, Huber loss function, and correntropy loss function,
it was verified that the p-Huber loss function is more robust
to outliers and can better fit data [38]. Therefore, the p-
Huber loss function is more robust in handling outliers and
can reduce the impact of outliers on the model, thereby
improving the stability and predictive performance of the
model.

The remainder of this paper is organized as follows.
Section 2 presents related work concerning the symbols and
background of ELM. In Section 3, we describe the L21
norm regularization ELM with the p-Huber loss function for
multi-target regression and provide the algorithmic process.
Section 4 reports the experimental results by comparing our
model with several other ELM models on 14 benchmark
datasets and 1 artificial dataset. Finally, Section 5 draws
conclusions.

II. RELATED WORKS

A. Notations and definitions

This section provides an overview of the symbols and
concepts utilized. The Lp-norm of a vector v belonging to

the real number set Rn is expressed as ∥v∥p =

(
n
∑

i=1
|vi|p

)1/p

.

In the case of a matrix M ∈ Rm×n , and apply it to a well-
known vector norm. For example, if we employ the Lp-norm
for a vector, then can obtain the Lp-norm of the matrix M.

∥M∥p =

(
m

∑
i=1

n

∑
j=1

∣∣mi j
∣∣p)1/p

(1)

The L21-norm of a matrix, which is also called the
rotational invariant L1-norm and used in various applications
[12-15], which is defined as:

∥M∥21 =
m

∑
i=1

(
n

∑
j=1

mi j
2

)1/2
(2)

B. Brief introduction of extreme learning machine

ELM [2] is a single-hidden-layer feedforward neural
network, in which the parameters of the hidden layer are
randomly initialized and remain unchanged without iterative
adjustment. Given a multi-target regression problem involv-
ing N training samples

{
(xi, ti) |xi ∈ Rd , ti ∈ Rm

}N
i=1, where
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each training sample with m targets. H can be written as:

H =


h(x1)
h(x2)

...
h(xN)




g(w1
T x1 +b1) g(w2

T x1 +b2) · · · g(wL
T x1 +bL)

g(w1
T x2 +b1) g(w2

T x2 +b2) · · · g(wL
T x2 +bL)

...
...

...
...

g(w1
T xN +b1) g(w2

T xN +b2) · · · g(wL
T xN +bL)


(3)

Within the framework of the ELM, the j-th node is defined
by parameters (w j, b j), and the hidden layer output matrix
H is represented as a function of input weights w and biases
b. These parameters are randomly obtained within a specific
range. The activation function g(·) in ELM is typically a
nonlinear piecewise continuous function.

ELM aims to represent these N samples with zero error,
which can be expressed in matrix form as:

Hβ = T (4)

where β = [β1,β2, ...,βL]
T ∈ RL×m is the output weight

matrix, and βi = [βi1,βi2, ...,βim]
T is the weight vector con-

necting the i-th hidden neurons and the output neurons. T is
the target matrix of training samples.

T =


t1T

t2T

...
tN T


N×m

=


t11 t12 · · · t1m
t21 t21 · · · t2m
...

...
...

...
tN1 tN2 · · · tNm

 (5)

The regularization ELM enhances stability and generaliza-
tion capability by minimizing both the training errors and
the norm of output weights.

Minimize : LELM =
C
2
∥T −Hβ∥2

2+
1
2
∥β∥2

2 (6)

where C is the regularization parameter that governs the
trade-off between training error and model complexity. By
setting the gradient of LELM with respect to β to 0, the
analytical expression for β is given in [2],

β =


HT
(

HHT +
I
C

)−1

T, N < L

(HT H +
I
C
)−1HT T, N ≥ L

(7)

The dimension of the identity matrix I will change with
the size relationship between N and L. When N ≥ L, the
dimension is L; otherwise, the dimension is N. The process
of ELM training can be summarized into three steps: First,
generate w and b randomly within a certain range, and
confirm the specific activation function. Second, calculate
H through the activation function, w, and b, and finally,
calculate β through the above equation. ELM generates
random hidden node parameters and analytically determines
the output weights β , providing a stable, efficient, and simple
deterministic solution.

III. L21 NORM REGULARIZATION ELM WITH p-HUBER
LOSS FUNCTION FOR MULTI-TARGET REGRESSION

A. p-Huber loss function

The Huber loss function as follows, shown in Fig. 1.

φ
Huber (y, f (x)) =

{ 1
2 (y− f (x))2, |y− f (x)|< δ ,

δ |y− f (x)|− 1
2 δ 2, |y− f (x)| ≥ δ

(8)
In (8), this parameter is used as a trade-off between

quadratic and linear loss functions. When it exceeds or equal
δ , the Huber loss function adopts L1 loss; when it is less
than δ , L2 loss is used. The design of Huber loss function
combines the advantages of L1 and L2 loss functions,
making it more anti-interference when dealing with outliers.
In contrast, the impact of outliers on it is smaller than that
of L2 loss function, and it is still differentiable in the central
part.

Fig. 1: Huber loss functions with different δ

On the basis of Huber loss function, p-Huber loss is
proposed, which is defined as follows:

φ(y, f (x)) =

{
(y− f (x))2, |y− f (x)|< δ ,
2δ 2−p

p |y− f (x)|p − 2−p
p δ 2, |y− f (x)| ≥ δ

(9)
where p > 0 and δ > 0. When p =1, the loss function is the
same as the Huber loss function. When p =2, the loss func-
tion is L2 loss. As shown in Fig. 2 and 3, the parameters p
mainly controls the concavity and convexity of the p-Huber
loss function. When p <1, the image is non convex, and
when p >1, the image is convex. The main focus is on study-
ing the non-convex case when p <1. The parameters mainly
control the inflection point of the loss function. The p-Huber
loss function combines the advantages of two different loss
functions, which are controlled by two parameters. When the
error between the predicted value and the true value is less
than the given parameter, the computationally convenient
L2 loss is still used. Conversely, a more robust function is
used. To verify the regression prediction performance of the
model, the regression performance of the proposed model
was compared with other ELM models on different datasets,
and the experimental results were compared and analyzed to
draw conclusions.
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Fig. 2: Different parameters p when fixed δ =0.5

Fig. 3: Different parameters δ when fixed p =0.5

B. Robust ELM model based on L21 norm regularization
and p-Huber loss function

A multi-target robust extreme learning machine model
with L21 norm regularization and p-Huber loss function was
constructed. Firstly, the model is established:

min
β ,ξ ,p

C
2

N
∑

i=1
φ(ξi)+∥β∥2,1

s.t. h(xi)β = tiT −ξi
T , i = 1,2, ...,N

(10)

Construct the Lagrange function as follows:

L(β ,ξi,αi j) =
C
2

N
∑

i=1
φ(ξi)+∥β∥2,1

−
N
∑

i=1

m
∑
j=1

αi j(h(xi)β. j − ti j +ξi j)
(11)

According to the optimality conditions, take partial deriva-
tives for αi , β j , and ξi to zero respectively

∂L
∂αi

= 0 → h(xi)β − tT
i +ξ

T
i = 0 → Hβ −T +ξ = 0 (12)

∂L
∂β. j

= 0 → Dβ. j =
N

∑
i=1

αi jh(xi)
T → Dβ = HT

α (13)

∂L
∂ξi

= 0 → α =Cφ
′ (14)

where

φ
′ =

{
ξ , |ξ |< δ ,

δ 2−p ∥ξ∥p−1
1

1
max(|ξ |,10−6)

, |ξ | ≥ δ
(15)

The optimal solution β can be calculated as

β =

{
D−1HT

(
HD−1HT + WN

−1

C

)−1
T,N < L,

(HTWNH + D
C )

−1HTWNT,N ≥ L
(16)

C. Algorithm description and analysis
The training steps of a multi-target extreme learning

machine based on L21 norm regularization and p-Huber
loss function are described in Algorithm 1. The training
process uses an iterative reweighting algorithm to solve the
weight matrix until it reaches the maximum number of
iterations, and targets of optimal solution. Throughout the
entire algorithm execution process, from the initial stage to
the convergence result, the model needs to solve multiple
matrix equations for each iteration. Each iteration of the
algorithm is equivalent to solving an independent ELM
model. The algorithm iteratively updates the two weighted
matrices D and WN in the model based on β0 , ξ . As the
target weights are continuously updated, the prediction error
gradually decreases until it reaches its minimum.

IV. EXPERIMENTS AND ANALYSIS
To evaluate the effectiveness of the proposed L21pHELM,

experiments are conducted on various multi-target datasets,
comprising one artificial dataset and 14 benchmark datasets.
The comparison includes ELM, WELM, IRWELM, and
L21ELM. ELM serves as the base model, employing only
the L2 loss term. IRWELM enhances robustness through an
iterative reweighting algorithm. L21ELM incorporates the
L21 norm into both the regularization term and the loss
function of ELM, endowing the model with robustness and
sparsity. Regularization parameter C used in all methods is
selected from a set {2i|i= −19,−18,−17, ...,17,18,19,20}.
The σ introduced in the proposed L21pHELM is from the
range {0.1,0.2,0.3,0.4,0.5, ...,1.7,1.8,1.9,2.0}. We set the
number of hidden nodes to L = 1000. The experiments are
conducted in Matlab R2021a on a system with 4GB of
memory and an i5-7300 2.50-GHz processor.

To assess the efficacy of these algorithms, we utilize a
commonly used regression estimation measure. Assuming
that t(l) = (t1(l), ..., tN(l))T , where l = 1,2, ...,m, represents
the l-th target of the m targets in the actual values of testing
samples,aRRMSE [29] is defined as the mean of each target’s
relative root mean square error (RRMSE):

aRRMSE
(

T̂ ,T
)
=

1
m

m

∑
l=1

RRMSE
(

t̂ (l)−t(l)
)

=
1
m

m

∑
l=1

√√√√√√√
N
∑

i=1

(
t̂i
(l)−ti(l)

)2

N
∑

i=1

(
t(l) −ti(l)

)2

(17)
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Algorithm 1 L21pHELM

Input: Training set X and corresponding target matrix T ,
penalty coefficient C, and small-scale predefined param-
eters ε > 0, p-Huber loss parameter δ , p. Number of
hidden layer nodes L.

Output: Output weight β

1: Transform the samples into the random feature space H
according to (5).

2: Initialize t = 1 and D ∈ RL×L , WN ∈ RN×N as an identity
matrix.

3: Repeat
4: Calculate the output weight β t according to (16)
5: Update D as:

D(t+1)= diag
{

1
/
(2∥β1∥2),1

/
(2∥β2∥2), ...,1

/
(2∥βL∥2)

}
6: Update ξ as:

T −Hβ = ξ

7: Update D1 as:

WN
(t+1) = diag{w(ξ1),w(ξ2), ...,w(ξN)}

and

w(ξi) = min(ξi,δ
2−p ∥ξi∥p−1

1 /max(|ξi| ,10−6))

8: t = t +1
9:

β
(t+1) =

{
D−1HT

(
HD−1HT + WN

−1

C

)−1
T,N < L,

(HTWNH + D
C )

−1HTWNT, N ≥ L

10: If t > tmax or
∥∥∥β (t+1)−β (t)

∥∥∥ ≤ 10−3, stop, else, go to
step 4.

where t̂ (l) = (t̂1
(l)
, t̂2

(l)
, ..., t̂N

(l)
)T is the l-th targets of pre-

dicted values, and t(l) = 1
N

N
∑

i=1
ti(l).

A. Experiments on artificial datasets

We first conduct experiments on an artificial dataset to
prove the robustness of the algorithm. Reference [39] pro-
vides the simulated datasets used in our experiments. The
outlier-free dataset S = {(x,y)∈X ×Y ⊂R×R3} , x∈ (0,10)
is the function defined as follows:

y1 = x−1 sinx

y2 = |x−1|/8+ |sin(0.75+0.25x)π|/2+0.5
y3 = |x−1|(1+10 |sin(x+1)|)/100

(18)

We initially generate a dataset comprising 200 samples,
which are then randomly partitioned into 150 training sam-
ples and 50 testing samples. Additionally, to simulate varying
degrees of outliers, we added outliers to the target values
of the training samples generated in the second step. The
outliers were randomly selected from the range [0, 0.1] and
added to 0%, 10%, 20%, 30%, and 40% of the training
samples, respectively. Notably, the testing samples were
obtained from the outlier-free function to ensure consistency.
To guarantee the reliability of our results, we conducted ten
independent experiments for each outlier distribution.

TABLE I: aRRMSE under different levels of outliers in 5
models

Level ELM WELM IRWELM L21ELM L21pHELM

0% 1.1925 1.2019 1.2033 1.4500 0.9715
10% 0.9829 1.2741 1.2495 1.3829 0.8758
20% 1.0271 1.1237 1.1298 1.1672 0.9490
30% 0.9748 0.9988 1.1151 1.1241 0.9348
40% 0.9502 0.9482 0.9524 1.0251 0.9192

TABLE I summarizes the prediction accuracy of the
artificial datasets under varying outlier levels. Notably,
L21pHELM exhibits the lowest aRRMSE values across
different outlier level. When the outlier level increases from
0% to 40%, the change in aRRMSE for L21ELM is the
most significant, while the changes for other models, namely
WELM, IRWELM, ELM, and L21pHELM are relatively
small. In particular, for the L21pHELM model, the aRRMSE
even decreases by 0.0523 as the proportion of outliers
increases. This indicates that L21pHELM not only achieves
superior performance compared to other models, but also
exhibits greater stability.

To further assess stability, Fig. 4 utilizes a multi-target
artificial dataset with a 40% outlier level to compare five
models. Overall, the curves of each model remain consistent
with the original sample points. Initially, the y1 curve shows
that all five models maintain a similar proportion between
the predicted and original values during function prediction.
However, upon analyzing the y2 function curve, it becomes
evident that the latter half of the curves for ELM, WELM,
and IRWELM exhibit excessive smoothness compared to the
original y2 curve. Conversely, the curves of L21ELM and
L21pHELM are notably closer to the trajectory of the y2
function curve.

Finally, comparing the y3 function curves reveals a sig-
nificant discrepancy between the function images generated
by ELM, WELM, and IRWELM and the original function
images. This indicates that these models are more sensitive
to outliers. In contrast, the curves produced by L21ELM and
L21pHELM closely match the original images, demonstrat-
ing their robustness to outliers. These results further confirm
that the proposed L21pHELM maintains strong robustness
even under high outlier levels.

B. Experiments on benchmark datasets

1) Robustness Analysis
To thoroughly assess the robustness of L21pHELM,

this section presents further experiments on benchmark
datasets. The experimental data were obtained from the
Mulan datasets [40] and other benchmark datasets. First,
the datasets were preprocessed and divided into training and
testing sets for multi-target prediction. TABLE II summa-
rizes the key characteristics of the 14 datasets, including
the number of training samples, test samples, attributes, and
targets.

To evaluate the robustness of L21pHELM in the presence
of outliers, five different outlier levels—0%, 10%, 20%,
30%, and 40%—were introduced to simulate varying noise
levels. All datasets were normalized to the range [0, 1].
To ensure consistency, each model was tested on all 14
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(a)

(b)

(c)

Fig. 4: Prediction Objectives of Different Models on
Artificial Datasets with 40% Outliers.

datasets. The samples were randomly allocated according to
the specified number of training and testing samples, and the
experiments were repeated ten times using cross-validation
to ensure reliability.

TABLE III presents a comparison of aRRMSE without
outliers across 14 benchmark datasets. The results show that
L21pHELM achieved the smallest aRRMSE on 4 datasets
and ranked second on the enb and sf1 datasets. Similarly,
WELM and L21ELM attained the minimum aRRMSE on
four datasets, while IRWELM achieved the optimal aR-
RMSE on the andro, sf1, and sf2 datasets. This suggests
that these models exhibit better robustness compared to
the standard ELM. Although L21pHELM outperforms the
standard ELM, the improvements are not significant. This is
because, whether L1 loss, L21 norm, or p-Huber loss func-
tions are employed, when outliers are absent, the differences
between model predictions and actual targets are primarily
influenced by the model’s complexity and parameters rather
than random outliers in the data. Therefore, the impact of the

TABLE II: Information about multi-target regression
datasets

Dataset Training samples Test samples Attributes Targets

andro 33 16 30 6
atp1d 225 112 411 6
arp7d 197 99 411 6
edm 103 51 16 2
enb 512 256 8 2
jura 239 120 15 3

oes10 269 134 298 16
oes97 223 111 263 16

ef 400 368 8 2
slump 69 34 7 3

sf1 200 123 10 3
wq 707 353 16 4
scpf 95 48 23 3
sf2 700 366 10 3

TABLE III: aRRMSE for 5 models and 14 benchmark
datasets without outliers

0% level ELM WELM IRWELM L21ELM L21pHELM

andro 0.6400 0.6375 0.6350 0.6741 0.6612
atp1d 0.4739 0.4724 0.4797 0.4849 0.4844
atp7d 0.4951 0.4912 0.5022 0.5098 0.5061
edm 0.9157 0.9092 0.9146 0.8985 0.8823
enb 0.1319 0.1357 0.1456 0.1267 0.1296
jura 0.6736 0.6914 0.7068 0.6918 0.7510

oes10 0.4580 0.4579 0.4580 0.4872 0.4893
oes97 0.6675 0.6690 0.6687 0.7146 0.7155

ef 0.1574 0.1632 0.1761 0.1440 0.1413
slump 0.6722 0.6920 0.6748 0.6915 0.6791

sf1 1.0753 1.0611 1.0611 1.0611 1.0659
wq 0.9999 1.0002 1.0009 0.9998 0.9998
scpf 1.0004 1.0036 1.0068 0.9996 0.9990
sf2 1.0305 1.0616 1.0163 1.0163 1.0763

loss function is relatively minor in the absence of outliers.
Based on the data presented in TABLE IV, it can be

inferred that when the outlier level is set to 10% and 20%, the
proposed method L21pHELM achieves the best results in 25
out of 28 cases. Next, we analyze the datasets with 10% and
20% outliers. TABLE IV shows that L21pHELM achieved
the best aRRMSE on 12 datasets. When the outlier level was
10%, the aRRMSE ranked second on the sf1 dataset. On the
slump dataset with a 20% outlier proportion, the aRRMSE
was only surpassed by the L21ELM algorithm. This indi-
cates that L21pHELM can achieve more optimal aRRMSE
compared to the scenario where the levels of outliers is
0%. A comparison with TABLE III reveals that the optimal
solutions tend to cluster around the L21pHELM model,
validating its ability to resist outliers. However, due to the
random generation of outliers, the aRRMSE of some models
may increase as outliers appear, further confirming their
sensitivity to outliers. We can measure the extent to which
each model is affected by outliers by examining the changes
in aRRMSE of different models under different datasets.
The growth rate of aRRMSE for the proposed model in this
section is approximately one-tenth that of the standard ELM,
demonstrating that L21pHELM exhibits excellent robustness
in the presence of outliers. By calculating the increment from
10% outliers to 20% outliers, it was found that the average
increment of aRRMSE for L21pHELM on each dataset was
0.0265, while for ELM, it was 0.0561, for WELM, it was
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TABLE IV: aRRMSE for 5 models and 14 benchmark
datasets with 10% ,20%outliers

Dataset Outlier levels ELM WELM IRWELM L21ELM L21pHELM

andro 10% 0.7725 0.7302 0.7398 0.7295 0.6860
20% 0.8483 0.8332 0.8162 0.8328 0.7881

atp1d 10% 0.5923 0.5158 0.5235 0.5009 0.4918
20% 0.7005 0.5850 0.5488 0.5115 0.4928

atp7d 10% 0.5859 0.5082 0.5088 0.5028 0.4955
20% 0.7046 0.5634 0.5257 0.5262 0.5006

edm 10% 0.9798 0.9453 0.9297 0.9332 0.9266
20% 0.9943 0.9808 0.9388 0.9569 0.9326

enb 10% 0.3827 0.2567 0.1849 0.1813 0.1639
20% 0.5074 0.3536 0.2534 0.2864 0.1891

jura 10% 0.8172 0.7326 0.7343 0.7114 0.7033
20% 0.8673 0.8201 0.8262 0.7455 0.7324

oes10 10% 0.7681 0.5178 0.5045 0.4852 0.4729
20% 0.8597 0.6528 0.5927 0.5230 0.4753

oes97 10% 0.8692 0.6609 0.6226 0.6520 0.6057
20% 0.8985 0.7248 0.5977 0.6490 0.5772

ef 10% 0.3894 0.2988 0.2071 0.1880 0.1648
20% 0.5097 0.3595 0.2983 0.2738 0.2057

slump 10% 0.8812 0.8438 0.8149 0.7498 0.7331
20% 0.9182 0.8931 0.9170 0.8417 0.8454

sf1 10% 1.0207 1.0391 1.0452 1.0105 1.0109
20% 1.0073 1.0249 1.0423 1.0061 1.0053

wq 10% 1.0000 0.9999 0.9999 1.0000 0.9998
20% 1.0001 1.000 1.0000 0.9999 0.9999

scpf 10% 0.9997 0.9988 0.9981 0.9990 0.9944
20% 1.0000 0.9953 0.9884 0.9889 0.9838

sf2 10% 1.0024 1.0029 1.0090 1.0036 1.0017
20% 1.0013 1.0012 1.0078 1.0017 0.9996

0.0554, for IRWELM, it was 0.0435, and for L21ELM, it
was 0.0382. From the perspective of the incremental mean,
it was evident that the incremental mean of L21pHELM
was significantly smaller compared to other models, with
ELM exhibiting the largest incremental mean. This can be
attributed to the use of the L2 loss function in the first
three models, which amplifies the impact of outliers, thereby
increasing the models sensitivity to outliers. On the other
hand, the p-Huber loss function employed by L21pHELM
reduces sensitivity to outliers by adjusting parameters to
control the range of L1 and L2 losses. Consequently, as the
levels of outliers increases, L21pHELM demonstrates robust
resistance to outliers.

TABLE V presents a comparison of different models
at outlier levels of 30% and 40%. It is evident that the
L21pHELM model consistently achieved the optimal aR-
RMSE across all 14 datasets under the 30% outlier condition,
surpassing the optimal aRRMSE attained under a 20%
outlier level by one. Moreover, in the sf2 dataset, WELM
also attained a comparable optimal aRRMSE. Comparing the
incremental changes in aRRMSE from 20% to 30% outliers,
the results show that L21pHELM has the smallest change in
aRRMSE, indicating its strong robustness against outliers
and minimal susceptibility to their influence.

As depicted in TABLE V, under a 40% outlier level,
L21pHELM achieved the optimal aRRMSE in 13 out of 14
datasets, securing the second position in the scpf dataset.
When analyzing the growth rate of outlier levels, it was
observed that L21pHELM maintained the smallest growth
rate, while the first three models exhibited significantly
higher growth rates in aRRMSE compared to L21pHELM.
This phenomenon can be attributed to the linear increase in
L2 loss with error escalation, particularly in environments

TABLE V: aRRMSE for 5 models and 14 benchmark
datasets with 30% ,40%outliers

Dataset Outlier levels ELM WELM IRWELM L21ELM L21pHELM

andro 30% 0.8859 0.8413 0.8552 0.8467 0.8135
40% 0.8937 0.8862 0.8903 0.9134 0.8753

atp1d 30% 0.7929 0.7126 0.6503 0.5616 0.5079
40% 0.8263 0.8192 0.7987 0.6077 0.5133

atp7d 30% 0.7855 0.7198 0.6624 0.5641 0.5112
40% 0.8166 0.7980 0.7700 0.6159 0.5173

edm 30% 0.9941 0.9854 0.9299 0.9575 0.9289
40% 0.9801 0.9773 0.9608 0.9645 0.9571

enb 30% 0.6070 0.4578 0.3928 0.3404 0.2652
40% 0.6671 0.6399 0.6167 0.3834 0.3158

jura 30% 0.9142 0.8915 0.8594 0.7924 0.7906
40% 0.9280 0.9262 0.9268 0.8433 0.8047

oes10 30% 0.9159 0.7824 0.7047 0.5411 0.4818
40% 0.9526 0.9387 0.9128 0.6051 0.5079

oes97 30% 0.9455 0.8628 0.7336 0.6786 0.6039
40% 0.9734 0.9650 0.9463 0.7639 0.5926

ef 30% 0.6082 0.4656 0.4206 0.3427 0.2920
40% 0.6630 0.6437 0.6349 0.3833 0.3191

slump 30% 0.9458 0.9584 0.9694 0.9327 0.9084
40% 0.9499 0.9466 0.9650 0.9193 0.9143

sf1 30% 1.0042 1.0094 1.0376 1.0015 1.0000
40% 1.0059 1.0044 1.0206 1.0030 1.0029

wq 30% 1.0000 0.9999 0.9999 1.0000 0.9998
40% 0.9999 1.0000 1.0001 0.9999 0.9998

scpf 30% 1.0000 0.9964 0.9877 0.9753 0.9715
40% 0.9997 0.9985 0.9946 0.9575 0.9603

sf2 30% 1.0012 0.9998 1.0005 1.0004 0.9998
40% 1.0022 1.0018 1.0020 1.0007 0.9998

with high levels of outliers. In contrast, the p-Huber loss
function does not exhibit linear growth similar to L2 loss
in such outlier-rich environments; instead, it reduces model
sensitivity to errors through the parameter p. Overall, even
under the highest levels of outliers, the L21pHELM model
demonstrates exceptional robustness. Therefore, based on
the Mulan dataset experiment, it is evident that the models
proposed in this paper exhibit strong performance in terms
of aRRMSE, even with varying levels of outliers. As outlier
levels continuously increase, the growth rate of aRRMSE
for the models proposed in this section remains the lowest
compared to other models. This highlights that through
iterative optimization of model parameters, the trained model
exhibits significant robustness against outliers.

2) Sparsity Analysis
As previously mentioned, the L21pHELM proposed in this

section enhances sparsity through the introduction of L21
norm regularization. In this context, the sparsity of specific
components of β is determined by setting a threshold, where
components with absolute values below this threshold are
considered sparse. To validate the capability of L21pHELM
in learning sparse representations of regression problems,
this section conducted an analysis involving five models:
ELM, WELM, IRWELM, L21ELM, and L21pHELM.

Following the outlined procedure, a column vector is
derived by computing the number of elements in each
row of the target weight matrix that satisfy the sparsity
condition. Subsequently, these column vectors corresponding
to the five models are combined into a matrix, and the
results for each row are ranked. Finally, the average ranking
of each column serves as the sparsity ranking indicator
for this section. Presented in TABLE VI are the average
rankings of row sparsity across the edm, jura, oes97, and
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sf2 benchmark datasets at a 40% outlier level. Notably, both
the L21ELM and L21pHELM models, which employ the
L21 norm, secured top positions among the five models.
This further validates the effectiveness of the L21 norm in
achieving row sparsity by eliminating redundant neurons.
The sparsity ranking results highlight the superior sparsity
achieved through the application of the L21 norm in the
models.

TABLE VI: Average rank of row sparsity under 40%
outliers

Dataset ELM WELM IRWELM L21ELM L21pHELM

edm 1.8100 1.8100 1.8100 1.1550 1.1770
jura 2.8960 2.8010 2.7910 1.4390 1.0490

oes97 2.6170 2.6210 2.6210 1.1670 1.1010
sf2 2.4810 2.4800 2.4810 1.0440 1.0500

3) Friedman Test
To more comprehensively assess the effectiveness of the

five algorithms, we performed a statistical evaluation of the
obtained results. The Friedman test [41] is a widely used sta-
tistical method for comparing algorithm performance across
different datasets and under varying outlier conditions. Our
null hypothesis states that there is no significant difference
in performance among all the algorithms. The calculation of
the Friedman test involves the following statistical measure:

χ
2
F =

12N
k(k+1)

[
∑

j
R2

j −
k(k+1)2

4

]
(19)

where the test statistic is χ2
F distributed with k-1 degrees

of freedom, with N as the dataset count, k as the algorithm
count, and R j as the algorithm’s mean rank. Furthermore, the
Friedman test statistic approximates an F distribution under
the null hypothesis:

FF =
(N −1)χ2

F

N(k−1)−χ2
F

(20)

with (k−1)(N −1) degrees of freedom.

TABLE VII: average ranks of aRRMSE for the five
algorithms at different outliers levels on the Benchmark

datasets

Algorithm 0% 10% 20% 30% 40%

L21pHELM 3.0714 1.0714 1.0714 1.0714 1.0714
ELM 2.8571 4.6429 4.6429 4.6429 4.5714

L21ELM 3.3571 3.4286 3.1429 3.2143 3.5
WELM 3.0714 2.5 2.4286 2.4286 2.2857

IRWELM 2.6429 3.3571 3.7143 3.6429 3.5714

TABLE VIII: Related information about the Friedman test
at different outliers levels

Outlier X2
F FF CD d(L21pHELM–)

ELM L21ELM WELM IRWELM

0% 1.6 0.3824 1.4695 0.2143 0 0.4286 0.2857
10% 39.0857 30.0405 1.4695 3.5714 1.4286 2.2857 2.3571
20% 33.6571 40.7429 1.4695 3.5714 1.3571 2.6429 2.0714
30% 40.3429 33.4964 1.4695 3.5714 1.3571 2.5714 2.1429
40% 40.7429 34.7154 1.4695 3.5 1.2143 2.5 2.4286

In the experiments, N = 14 and k = 5. The comparative
performance rankings of the algorithms, as measured by
aRRMSE under increasing outlier levels, are summarized
in Table VII through their average rank values R j. The
Friedman test statistics were calculated based on the average
algorithm rankings from Table VII, with χ2

F and FF values
subsequently reported in Table VIII. For α = 0.05, Fα(4,52)
= 2.550. As evident from Table VIII, the condition FF >
Fα holds across outlier levels from 10% to 40%, leading
us to reject the null hypothesis of equivalent algorithmic
performance. For an in depth performance evaluation of
L21pHELM against competing algorithms, the Nemenyi test
[42] serves as a commonly employed post hoc analysis
method. The critical difference (CD) is mathematically de-
fined as:

CD = qα

√
k(k+1)

6N
= 2.459×

√
5× (5+1)

6×14
= 1.4695

(21)
where q0.1= 2.459 represents the critical value at α = 0.1
significance level. Performance differentials between the
proposed L21pHELM method and comparative algorithms
were statistically evaluated using Nemenyi’s test on mean
rank distributions. A statistically significant performance
difference between algorithms is established when their
mean rank difference surpasses the CD threshold. In our
analysis, significant comparisons are highlighted in boldface
in Table VIII.

Table VIII reveals no statistically significant differences
between L21pHELM and the four algorithms in outlier
free conditions, indicating comparable baseline performance.
However, at outlier contamination levels between 10% and
40%, L21pHELM demonstrates statistically superior perfor-
mance compared to ELM, WELM, and IRWELM, while
showing no significant improvement over L21ELM accord-
ing to the Nemenyi test results. Although the mean rank dif-
ference between L21pHELM and L21ELM does not exceed
the CD threshold at 10%-40% outlier levels, the observed
difference approaches statistical significance. This observed
performance similarity may be attributed to their shared uti-
lization of L21 norm regularization, which inherently limits
substantial performance divergence between the two algo-
rithms. Collectively, the experimental results demonstrate
that L21pHELM exhibits superior generalization capability
and exceptional outlier robustness, particularly under high
outlier contamination scenarios.

4) Parameter Analysis
To further investigate the influence of various parameters

on experimental outcomes, an analysis was conducted to
explore their impact on model performance. Initially, a fixed
optimal regularization parameter C was chosen, and the
effects of different values of δ and p on model perfor-
mance were examined. Three datasets—andro, atp1d, and
atp7d—were selected for analysis. The traversal range for
δ was [0, 2] with a step size of 0.1, while p ranged from
[0.1, 5] with the same step size. In the accompanying figures,
points denote the optimal aRRMSE and the corresponding
coordinates where this optimal value is achieved. The X-
axis represents p, the Y-axis represents δ , and the Z-axis
represents aRRMSE. The parameters under scrutiny are p
and δ .

As depicted in Fig. 5(a), upon analyzing the traversal
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(a)andro

(b) atp1d

(c) atp7d

Fig. 5: aRRMSE values of different parameters p and δ

without outliers

data from the andro dataset, it is evident that when the
value of p becomes too large, the rate of aRRMSE increase
also escalates rapidly, peaking around 1.3. This peak occurs
when both δ and p values are very small, indicating that
within a certain range, smaller exponents p in the p-Huber
loss function allow L21pHELM to achieve relatively low
aRRMSE across all δ ranges. Moving to the analysis of
the atp1d dataset, illustrated in Fig. 5(b), it is notable that
the change in aRRMSE remains relatively modest across
most parameter conditions. However, significant changes
in aRRMSE begin to manifest when p exceeds a certain
threshold. A similar condition is observed in the analysis of

the atp7d dataset, as shown in Fig. 5(c). Overall, when p
is relatively large, the aRRMSE of the three datasets will
experience violent fluctuations, significantly deviating from
the minimum aRRMSE. This trend is also evident in the
variations of δ . Therefore, to achieve optimal aRRMSE,
it’s crucial for the selection range of both parameters to be
appropriate, allowing the model to attain peak performance.

V. CONCLUSION

This section primarily addresses the challenges of ro-
bustness and insufficient generalization performance encoun-
tered by traditional regression ELM when applied to multi-
target datasets. It introduces an L21 norm regularization
ELM combined with a p-Huber loss function to tackle
regression problems with outliers. L21 norm regularization
is an effective technique for inducing row sparsity, which
can dynamically eliminate potential noise and autocorrelated
neurons in ELM. The p-Huber loss function regulates the
variability of the loss function through parameter p and
exhibits strong robustness against outliers. The optimal target
weight matrix is derived through an iterative reweighting
method. Experimental findings on 14 multi-target benchmark
datasets and artificial datasets demonstrate that L21pHELM
exhibits superior robustness and row sparsity compared to
other models, delivering commendable performance across
benchmark datasets.

Due to the wide range of traversal required for the two
parameters p and δ in the p-Huber loss function, the process
tends to extend the model training time to identify the op-
timal parameters. Consequently, the principal enhancement
introduced by the L21pHELM model in this article focuses
on refining parameter selection.
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