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Application of Meshless Method in Numerical
Simulation of Solitary Waves for the
Generalized Regularized Long Wave Equation

Huiling Chen, Rahmatjan Imin, Azhar Halik

Abstract—This study proposes an enhanced meshless
Smoothed Particle Hydrodynamics (SPH) method for solving
the 1D Generalized Regularized Long Wave Equation (GRLW)
with nonlinear dispersion properties. The method innovatively
combines the Crank-Nicolson temporal discretization scheme
with Kernel Derivative Free-SPH (KDF-SPH) spatial
approximation, establishing an unconditionally stable
semi-implicit conservative scheme. To further validate the
performance of the method, the reliability of the KDF-SPH
method is systematically verified through simulations of single
solitary wave propagation, interaction between two solitary
waves and waveform evolution processes. Evaluation based on
three conservation invariants and error norms shows that the
proposed method not only effectively preserves the conservation
properties of the equation but also exhibits superior
computational accuracy. Comparative analysis with existing
numerical methods clearly reveals that the method achieves
higher computational precision and better simulation
performance, conclusively verifying its accuracy and
effectiveness in solving the GRLW equation.

Index Terms—KDF-SPH method; GRLW equation; the
stability analysis; numerical simulation

I. INTRODUCTION

He continuous advancement of disciplines including

fluid mechanics and engineering mechanics, together
with emerging technologies and associated theoretical
developments, has led to the derivation of a class of nonlinear
Partial Differential Equations (PDEs) characterizing fluid
phenomena and engineering mathematical models in these
domains. For instance, the Advection-Diffusion-Reaction
Equation (ADRE) has been widely used in many fields of
science and engineering related to fluid dynamics and
molecular diffusion [1]. The Korteweg-de Vries Equation
(KdV) is widely applied across diverse domains, including
fluid dynamics, plasma physics, optical fiber communication
and the mathematical physics, etc. For practical problems,
obtaining exact analytical solutions for these equations is
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quite difficult. Therefore, the study of numerical methods for
nonlinear PDEs holds both significant academic value and
substantial practical importance in addressing real-world
applications.

Regularized long wave (RLW) equation

u, +Vu+oauVu— pAu, =0, (1)

where both o and g are positive constants. u, +Vu is a

linear wave propagation term, indicating that the wave
propagates at a constant velocity to the right. The term
uVu is a nonlinear term, reflecting the effect of wave
amplitude on propagation velocity. The term Au, serves dual

roles as a dispersion term and a regularization term. By
suppressing high-frequency short-wave oscillations, it
enhances the model's physical validity in long-wave regimes.
In nonlinear wave equations, this dual functionality balances
nonlinear effects to permit stable solitary wave formation.

RLW equation was originally proposed by D.H. Peregrine
[2] in 1966. Due to its effectiveness in modeling physical
processes including soliton propagation, electromagnetic
waves, and acoustic waves, this equation has become a
paradigm in several research fields. The wave motion RLW
equation describes coincides with the approximate solutions
of the KdV, and it also effectively simulates nearly all
applications of the KdV, which has attracted significant
research attention. The RLW equation is especially effective
in modeling wave-dominated systems, as it can capture the
nonlinear characteristics of wave propagation and accounts
for dispersive effects. Therefore, the research of the RLW
equation not only enriches our understanding of nonlinear
dynamics but also offers valuable solutions to the
wave-related engineering challenges. In fact, the GRLW
equation is a generalization of RLW equation. GRLW
introduces a more general nonlinear term based on the RLW
equation, and its expression is as follows

u, +Vu+ou”Vu— pAu, =0, 2)

where p is a positive integer. When p =1, the GRLW

equation (2) corresponds to the RLW equation, i.e., equation
(1). When p =2, the GRLW equation (2) corresponds to

modified regularized long wave (MRLW) equation.

The GRLW equation's nonlinear term makes analytical
solutions generally intractable. Therefore, many researchers
have conducted extensive studies on numerical solutions of
this equation under initial and boundary conditions. For the
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RLW, Kutluay et al. [3] proposed a linearized implicit finite
difference scheme for numerical solution of the 1D RLW
equation. Sun et al. [4] discretized the spatial and temporal
domains using the cosine differential quadrature method and
finite difference method respectively, and constructed a
numerical scheme for solving the RLW equation through
Crank-Nicolson linearization technique. Gorgiilii et al. [5]
discretized both the spatial and temporal derivatives of the
RLW equation using the exponential B-spline Galerkin
method and Crank-Nicolson scheme respectively, with
numerical examples validating the method's accuracy. Yang
et al. [6] proposed a higher-order compact finite difference
scheme for the 1D RLW equation, and verified its accuracy
and reliability through numerical experiments. For numerical
solution of the MRLW equation, Raslan [7] proposed a novel
algorithm in 2009 employing the collocation method. Cai [§]
constructed a ten-point multi-symplectic explicit scheme for
the MRLW equation, in which the nonlinear term is absent at
the third temporal level. Gao [9] proposed a mixed Galerkin
finite element method for numerical investigation of the
MRLW equation. Jena et al. [10] proposed a numerical
method for the MRLW combining Butcher’s fifth-order
Runge-Kutta scheme with quartic B-spline functions. For the
study of GRLW equation, Xu et al. [11] developed a
two-level nonlinear conservative finite difference scheme for
the numerical solution of GRLW Equation. Hammad et al.
[12] proposed a Chebyshev-Chebyshev spectral collocation
method based on Kronecker and Hadamard products for
solving the GRLW equation. Through theoretical research,
Zheng et al. [13] obtained bifurcation solutions and exact
traveling wave solutions for the GRLW. Kumari et al. [14]
developed a numerical scheme for solving the GRLW
equation based on orthogonal collocation in the finite
element method and septic Hermite collocation.

The SPH method is a novel meshless method. It employs
discrete particles to simulate fluid flows, with each particle
carrying fundamental physical properties such as density,
viscosity, mass, velocity, and temperature [15]. SPH was
originally proposed by Lucy [16] in 1977, primarily for
solving astrophysical problems in three-dimensional
unbounded space. Due to its adaptive nature and the meshless
characteristic enabling accurate simulation of complex
geometric boundaries, the SPH method has been widely
adopted in free-surface fluid dynamics research. However,
due to the discontinuous nature of particles, SPH exhibits
relatively low computational accuracy. To overcome this
drawback, most researchers have conducted extensive studies
and proposed enhanced variants, including CSPM [17],
MSPH [18] and the KDF-SPH method, all of which
significantly improve numerical precision.

Through a comprehensive literature review, it is found that
existing studies have not yet applied KDF-SPH to solve
GRLW equation. Consequently, this study implements
KDF-SPH for the first time to simulate GRLW equation
numerically. The subsequent sections of this paper are
organized as follows: In section 2, we introduce various types
of the GRLW equation. Section 3 presents the theoretical
foundations of both SPH and KDF-SPH. In Section 4, the
GRLW equation is discretized to obtain a semi-implicit
discrete scheme. Section 5 conducts a stability analysis of the
discrete formulation derived in Section 4. In Section 6, we

employ the KDF-SPH method to numerically simulate the
GRLW equation and analyzes the obtained numerical results.
Finally, we draw some conclusions and propose future
perspectives in Section 7.

II. GRLW EQUATION

The GRLW equation can describe more complex nonlinear
wave phenomena. For example, under certain conditions, the
GRLW equation can admit soliton solutions, which are
waves that maintain constant shape and speed during
propagation. The GRLW equation can also be used to study
the collisions and interactions between multiple solitons. By
adjusting the nonlinear and dispersive terms, the GRLW
equation can model wave propagation behaviors in different
physical systems. This paper mainly studies the following
three forms of the GRLW equation.

A. RLW equation

When p =1 in equation (2), we consider RLW equation
defined on the spatial domain Q =[x,,x,] with Dirichlet
boundary conditions:

u, +u_+ouu_—pu_, =0,(x,t)eQx[0,T],
u(x,0)=U(x,0),x € Qx{t =0}, 3)
u(x,,t) =U(x,,t),u(x,,t) =U(xg,1),t =[0,T].

According to reference [19], the RLW equation has only
three conservation properties, namely the conservation of
mass( /, ),momentum( /, ) and energy( /, ) defined as follows

I, = J.: udx,
1, =[ 1w + pu,) Jax. @

1= Z[Lﬁ +3u?]dx.

The RLW equation is capable of modeling a wide range of
physical phenomena characterized by weakly nonlinear and
dispersive wave propagation. Typical applications include:
nonlinear transverse wave dynamics in shallow water
environments, dispersive longitudinal wave propagation
through elastic solid rods, and other related phenomena.

B. MRLW equation

When p=2 in equation (2), we consider MRLW
equation defined on the spatial domain Q =[x,,x,] with
Dirichlet boundary conditions:

u, +u, +6u2ux —u_, =0,(x,1) e Qx[0,T]
u(x,0)=U(x,0),x € Qx{t =0}, (5)
u(x,t)=U(x,1),(x,t) € 0Q2x[0,T].

According to reference [20], the MRLW equation also has
three conservation laws, namely the conservation of
mass( /; ), momentum( /, ) and energy( /, ) defined as follows
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I, = J.: udx,
1, = [ + Bu, Y. ©)
1= Z[u“ — B(u.)1dx.

The MRLW equation can effectively characterize the
evolution of weakly nonlinear dispersive waves, and resolve
the short-wavelength singularities inherent in conventional
long-wave equations. And this equation plays a significant
role in simulating long-wave disturbances and modeling
dispersive media with small amplitudes [21].

C. GRLW equation
When p>3 in equation (2), we consider the GRLW

equation subject to the following initial-boundary value
conditions:

u, +u +ou'u —pPu_, =0,(x,t) e Qx[0,T],
u(x,0)=U(x,0),(x,7) € Qx {t =0}, @)
u(x,t) =U(x,t),(x,t) € 0Qx[0,T].

In summary, the GRLW equation exhibits enhanced
universality and broader applicability, enabling the modeling
of a wider spectrum of nonlinear wave phenomena.

III. SPH METHOD

A. The traditional SPH method

The process of using SPH to solve partial differential
equations can be briefly outlined as follows [22]: First, the
computational domain is discretized into a collection of
particles with physical properties to simulate a continuous
medium. Then, the governing equation is transformed into
ordinary differential equation. Finally, the numerical solution
of the governing equation is obtained through weighted
integration using kernel function interpolation. SPH's core is
its interpolation approximation, primarily consisting of
kernel approximation and particle approximation.

Kernel approximation
For 1D problems, any continuous and smooth function
@(x) can be approximated by the following expression

0(x) = [ p(x)3(x-x)dx, (8)

where Q is the integration domain, and &§(x - x") is the Dirac
function.

The Dirac function in equation (8) can be replaced by a
kernel function, and the kernel approximation expression of
@(x) can be obtained. To distinguish it, we use (@(x)) to

represent it,
(@) = [ oW (x =", ek’ ©

where Q is the influence region of the kernel function,
W(x—x',h) represents the smoothing kernel function, and

h is the smoothing length.
To obtain the nth-order derivative of ¢(x), take the

nth-order derivative of equation (8) with respect to x,

dn@(x) r d" ’ ’

— )= xX\—W(x—x",h)dx'. 10
< et i RGO AR D (10)
Particle approximation

The region Q is discretized into a collection of particles
with physical properties. For the j-th particle in the domain,
its volume is ¥, and its density is p,. Using V, to represent

the volume of the infinitesimal element dx’, the kernel

approximation expressions (9) and (10) for the continuous
and smooth function ¢(x) can be translated as

Nom,
{o(x)) :Z_].(/’(xj)W(X—xj,h), (11)
<d;(igx)> - jﬁ;m_j‘/’(xj) i:n Wx—-x,h),  (12)

where N represents the total number of particles within the
support domain of the kernel function, and x#x; .

B. KDF-SPH Method

To perform a Taylor expansion of the smooth continuous
function ¢(x") at the point x [23],

x'=x,
; )", (13)

© (n) o hn
o) =3 P Dy = 3 g oy

where ¢ (x) denotes the n-th derivative of the function ¢

at the point x .

Y (x—xhy,
h
and perform the integration within the influence domain of

the kernel function, we can obtain the expression

Multiply both sides of equation (13) by

x'—x 2 " ;
(2 00m0) =3t 000,
n=0 .

P (14)

x'—x

n+l
where M, , :IQ( j W(x-x",h)dx" for n=0,1,2,..., are

the moments of the one-dimensional kernel function, and
they are constants independent of the kernel function.

Based on the properties of the kernel function, it is known
that M, = M, = 0. Therefore, the first-order derivative of

function ¢ at point x can be derived from equation (14) as

follows
<x }:x fp(X’)>
A L io(h).

hM,

9'(x)= (15)

Similarly, multiplying both sides of equation (13) by
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, 2
[x }:x] W(x—x',h) and integrating over the kernel support
domain Q yields

x—x) Ny
<( P j (P(X)> = ZFM o ®" () +o(hY),
n=0 .

where M, are also moments of the one-dimensional kernel

(16)

function, for n=0,1,2,..., defined as above.
Using the properties of the kernel function: M, =M, =0,

the second-order derivative of ¢(x) at point x can be
obtained from equation (16),

<(x ;x] (p(x'>>—Mz¢><x>
P"(x) =

2
h —M,
2

+o(h?).  (17)

IV. THE DISCRETIZATION OF THE GRLW EQUATION

Consider the following equation
u,+u, +ou’u —pPu_, =0. (18)

First, applying the Crank-Nicolson scheme [24] to
discretize equation (18) yields the rearranged expression

un+1 +%|: n+l +a(up)n )1+1:| ﬁunH
gt (19)
u —?[u +aW’)'u ”J pu’.

Then, for the point x, in the discretized domain, applying
KDF-SPH described in Section 3 to equation (19) yields

< mj xf _xi n+l
— u; Wy
u[n+l +£[f:1 pf h
2 hM,
N ﬁ xj - X; uy_HlVV[_
Jj=1 pj h ! j]
+alu! )" -
oy ZE
N m 2
zi ;HVVU- _Mzu[ml
i " (20)
h2M4 -
My X=X, N&xj—xiun
— h J 2 ) h Jy
dt[, 1 P; ra(?y =1 P
2 hM, hM;
2
Nom.(x —Xx.
2 Z][] ] wiW, —Mu!
Pk o\ h
WM,

where 7 and ; denote the i-th particle and the j-th particle in

the discretized domain, respectively.

Finally, assembling the equation (20) corresponding to
each discrete point in the domain Q forms a matrix, we can
obtain

[E+ ‘; [A+aBA] ,BC}U"” = [E —%[A +aBA]—,BC}U",

21
where E is an identity matrix,
_ﬂxl_xlwn my Xy — lelN ]
ph . Py h
hM, hM,
m X, —Xx, W, my Xy =X, W,
Sy At Py h
hM, hM, ’
m X, —Xy W, my Xy =Xy W
/o h Py h
| hM, hM, |
(/) 0 0
g=| © (”5) 0
0 0 (uf)
r Yom (x —x Y
G [esnee
/=t Fj
C 2
C= , where C, = h M‘; ,
o)
) h v
L 2 i)
WM,
Un+1 — |:u1n+1 u;’l+1 u]r\r]+1:|T ,U" :I:uln u;’ u]'\'] :IT .

V.STABILITY ANALYSIS

This section discusses the stability of matrix (21).
Assuming that u” in the term u”u_ is a local constant,
and letting the exact solution of the GRLW equation at the

n-th time level be U" and the numerical solution be u", the
error can be expressed as
en — Un _un , (22)

Therefore, the error in equation (21) can be expressed as

(vt [t
2 2

(23)
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Fig. 1. Spectral radius with respect to the number of particles and time interval

where D =[E—BC], F =[4A+aBA].
Let X:[D+%F] and Y:[D—%F] , the error equation

can be transformed into

en+1 — X71Ye" — Ze". (24)

To analyze the stability of this matrix (21), we need to
consider the properties of matrix Z . Specifically, we focus
on the eigenvalues of this matrix. If the modulus of all
eigenvalues of matrix Z is less than or equal to 1, in other
words, if p(Z) is less than or equal to 1, then matrix (21) is
considered to be stable [25].

Analysis of the matrix Z reveals that its spectral radius
p(Z) depends on the number of particles in the discretized
domain and the time step. Figure 1 illustrates the influence of
N and dt on the value of p(Z) under different values of p.

As shown in the figure 1, p(Z) is always less than 1.
Therefore, the above analysis confirms that the matrix (21) is

stable, which implies that the scheme (19) is unconditionally
stable.

VI. NUMERICAL EXPERIMENT AND RESULTS

In this section, to assess the effectiveness of KDF-SPH, we
conduct systematic numerical experiments to test the
accuracy of KDF-SPH. The numerical experiments include
the propagation of solitary waves and the evolution of wave
profiles. The error analysis of the experimental results uses
the L, [19] and L, norm errors, defined as follows

(25)

(26)

L, :maxj|Uj—uj|,

where U, and u; denote the exact and numerical solutions
at x; , respectively, and dx denotes the distance between two

discrete points within the computational region Q.
SPH and KDF-SPH use the cubic B-spline kernel function
[26], defined as follows

E_R2+1R3, 0<R<I
3 2

W(x-x',h)=y,x é(z—Rf, ISR<2; (27)
0, R>2,

where d represents the dimension of the function. The
coefficient y, takes values of % for 1D space and % for
1

| x x|

2D space. And R:%: , r represents the distance

between the points x and x'.
Moreover, to verify the conservation properties of the
GRLW equation, this study calculates the values of 7,, I,

and /, . The three conservation laws of the RLW equation are

given by
N
L =dx) ul,
i=1
N
Lzdy [ () +p(w,)) ] (28)
i=1

N
=1

L=dey [@) +3w) |

i

Similarly, the three conservation laws /,, I, and I, ofthe
MRLW equation are given by

N
~ n
I, =dx2 u;,
i=1

L=dvy [y + p))) | (29)

L= a3 - Ay

A. RLW Equation

In this section, we conduct an in-depth investigation into
the dynamical behaviors of both single solitary wave motion
and two solitary waves motion of the RLW equation.
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Single solitary wave motion
Considering the RLW equation (3), its exact solution [27]
is given by

Ul(x,t) = 3csech’ [k(x—vt—xo)],(x,t) e Rx[0,T], (30)

where v is the solitary wave velocity, v=1+ac, and k is
the wave width, & :% /% . 3¢ represents the amplitude and
v

x, represents the initial position of the wave.

For this problem, Zaki [28] provides the analytical values
of 1,, I,and I, as follows

2 2
i 12¢ +48kc ,8’13
k 5

M~
Il

|
~
Il

_ 36¢° (4¢+5)
= 5 . (3D

k

Case 1 We take a=1, =1 x,=0, and choose the
spatial domain Q =[-40,60] . Firstly, the analytical values

of three invariants are computed for the RLW equation.
When ¢=0.03, the invariants are /, =2.1094, 1, = 0.1273

and [, =0.3888 . When ¢=0.1, the three invariants are
1, =3.9800, 7, =0.8105and I, =2.5790 . The three values

1,, I,,and I, for a single solitary wave of the RLW equation

with dx=0.5,dr=0.1and ¢=0.03, ¢c=0.1 at different
time are listed in TABLE 1. The results in the table
demonstrate agreement with their corresponding analytical
values and indicate that KDF-SPH conserves mass, energy,
and momentum. TABLE II displays the computed L, norm

error and L, norm error under two different amplitude

conditions ¢ =0.03 and ¢ =0.1. The table indicates that as
the value of ¢ decreases, the two error norms gradually
decrease, and the resulting error norms are also relatively
small. Figure 2 presents the absolute error obtained using
KDF-SPH and SPH. This space—time graph indicates that the
results obtained by KDF-SPH are closer to the analytical
solution and produce smaller absolute errors. Figure 3
demonstrates the matching effect between the exact solution
and the numerical solution at different time for N =101,
dt=0.1and ¢=0.03. This figure shows that the numerical
solution obtained by KDF-SPH exhibit excellent agreement
with the exact solution. Moreover, the solitary wave
propagates to the right over time while maintaining nearly
constant amplitude. The stable amplitude of solitary waves in
shallow water enables optimized breakwater design through
prediction of persistent impact forces, enhancing structural
durability.

TABLEI
VALUES OF THE CONSERVED QUANTITIES WITH dx =0.5, dt =0.1 AT DIFFERENT MOMENTS
Ti ¢=0.03 c=0.1
e 11 Iz [3 11 Iz 13
t=1 2.1074 0.1273 0.3888 3.9791 0.8101 2.5781
t=5 2.1081 0.1273 0.3888 3.9760 0.8090 2.5745
t=10 2.1082 0.1273 0.3887 3.9720 0.8077 2.5701
t=15 2.1077 0.1272 0.3886 3.9681 0.8063 2.5656
t=20 2.1060 0.1272 0.3886 3.9642 0.8050 2.5612
TABLE I
ERROR NORMS WITH DIFFERENT NUMBERS OF PARTICLES N AT =1 FOR dt=0.1 AND ¢=0.03, ¢=0.1
N c=0.03 c=0.1
L, L, L, L,
101 1.5974x107* 4.6161x10°° 2.9903x107° 7.9436x107*
201 4.1234x107° 1.2827x107° 5.6603x107* 2.4436x10™*
401 1.2753x107° 4.4787x10°° 2.3050x107* 1.0552x10™*
801 7.5144x10°° 2.4747%x10°° 1.8571x10™* 7.2239%107°
0.0008
0.0020 0.0015 0.0006
> > 0.0008
T 0. 0.0010 ©
8_ 0.0015 8_ 0.0006 0.0004
c
g 00010 0.0005 % 0.0004 0.0002
e e 20
§ 0.0005 3 0.0002 1
0.0000 0.0000

(a) Absolute error from SPH
Fig. 2. Space-time graph of absolute error through SPH and KDF-SPH at df=0.1 and N =101 for ¢=0.03 from t=0to?=20

60 40 20 0

X
(b) Absolute error from KDF-SPH

0

—20 40
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—Exact

@ KDF-SPH(t=1s)
M KDF-SPH(t=5s)
@ KDF-SPH(t=10s)
® KDF-SPH(t=15s)
A KDF-SPH(t=20s)

0.06

; ;

u(x,t)

0.02

0.00

—40 =20 0 20 40 60
Fig. 3. A comparison graph of the exact solution and numerical solution

Case 2 Based on the conditions of the equation (3), the
boundary condition is changed to u(x,,)=u(x,,t)=0 for
t€[0,7], while other conditions remain unchanged. The
parameters are selectedas ¢ =2, f=1,x,=0, c=1/6, and
the spatial domain Q =[-50,50]. TABLE III compares the
L, norm errors of KDF-SPH with the numerical method

from reference [29] at different time with dx =0.05 and
dt =0.1. As shown in TABLE III, KDF-SPH achieves better
results and higher accuracy than reference [29].

waves in the numerical simulation graph. Figure 4 illustrates
the evolution of the collision and interaction between wave A
and wave B from ¢#=0s to t=20s. At t =0s, wave A is
positioned ahead of wave B. Since the wave speed of wave B
is greater than that of wave A, wave B gradually catches up to
wave A over time until the two waves collide and merge into
a single wave. As time progresses, wave B surpasses wave A
(as seen at t=6.5s), and both waves eventually continue
propagating forward. Additionally, the graph shows that after
the collision of wave A and B, some of the three invariants
experience a certain degree of loss. This numerical
simulation case study can be effectively applied to model the
interaction processes of oceanic solitary waves (such as
tsunamis or internal solitary waves) and predict their
amplitude variation patterns following collision and
superposition. These findings provide important guidance for
designing wave-resistant coastal and marine structures (like
breakwaters and offshore platforms). They help prevent
structural damage caused by dangerous wave actions, making
these constructions safer and more durable.

4 B 4 B
3 3
§2 2 A
1 1
0 0

—-40 -20 0 20 40 —-40 -20 0 20 40
X X

(b) t=3s

u(x,t)

(a) t=0s

TABLE III

THE COMPARISON OF ERROR NORMS FOR CASE 2

time Chen™’ KDF — SPH
=02 8.7931x10*  4.8966x10™
t=04 1.3187x10°  9.7979x107*
t=0.6 1.7480x10°  1.2251x10°°
t=0.8 2.1970x107°  1.9618x107°
t=1.0 2.6359x107  2.2538x107

4 4
3

52 1
1
0

-40 -20 0 20 40
X

-40 -20 0 20 40
X

Two solitary waves motion
The interaction of two solitary waves is studied. The initial
condition satisfies the following equation [30]

u(x,0) = 22: G,sech’[k,(x—x,)], (32)

Where G, =3c,, k, =% 1 i
+¢

and v, =1+¢,.

For this example, the parameters are chosen as a =1,
p=1 ¢ =1/2, ¢c,=3/2, x, =-10, x, =-20. The spatial
domain Q =[-50,50] for the numerical simulation , with the
number of particles N =501, time step df=0.01, and
simulation time from t=0s to ¢t =20s. For / =1and 2, two
solitary waves are labeled as wave A and wave B. Based on
the above chosen parameters, The amplitude of wave A is
G, =3/2, and its wave speed is v, =3/2 . The amplitude of

wave Bis G, =9/2, and its wave speed is v, =5/2. This
enables the accurate identification of the positions of the two

(c) t=5s (d) t=6.5s

B
3 3
2 £ A
1 1
0 o 20 40
X

u(x,t)

40 20 -40 20 0 20 40
X
(e) 1=8s f) t=10s
4 4
% <
52 52
1 1
0 0
—40 —20 0 20 40 -40 -20 0 20 40
X X
(g) t=15s (h) t=20s

Fig. 4. The numerical simulation of the collision between two solitary waves

Volume 55, Issue 8, August 2025, Pages 2588-2599



TAENG International Journal of Applied Mathematics

B. MRLW Equation

Single solitary wave motion
The exact solution of the MRLW equation (5) is given by
[31] as follows

U(x,t) =~esechlk(x—(c+1)t—x,], (x,t) € Qx[0,T]. (33)

where k = ¢ .
Vﬁ@+D

For this problem, the computational forms of the above
three invariants /,, /,,and I, are given by

2
ﬂ\/2’12:£+2ﬁck’1 _4c 2epk

kP k3 07 3k 3

1= (34)

Case 1 We take ¢ =0.05, x, =40 with the spatial domain
Q) =[0,100]. Based on Equation (34), the analytical values

are calculated as [, =3.2192, 1, =0.4655, 1, =0.0080 .
TABLE IV shows the invariants and error norms for the
MRLW equation at different times with ¢ =0.05, dx=0.1
and df = 0.05. The results are close to the analytical values
and remain nearly constant. TABLE V presents the L, and

maintains solitary wave stability in this critical region. Figure
6 presents a comparison plot between the analytical solution
and the numerical solution of the equation for N =1001 and
dt =0.1. The result shows good agreement between the two
solutions.

Case 2 Based on the conditions of the equation (5), the

boundary condition is changed to u(x,,t)=u(x,,t)=0,
and the spatial domain Q =[0,100]. Other conditions remain

unchanged. When N = 2001 and dt = 0.001, the result of this
study is compared with the results from reference [32] for
different time, as show in TABLE VI. This table presents
the L, and L errors obtained by KDF-SPH and the method

proposed in reference [32]. In reference [32], the selected
number of particles is 2048. The method presented in this
paper yields a smaller error result than that in Reference [32],
even when a smaller number of particles is used. Through
systematic numerical experiments and comprehensive
analysis of the results, we can conclusively demonstrate that
the KDF-SPH method proposed in this study exhibits
significantly better simulation performance compared to the
method proposed in reference [32].

|

L, error norms for different particle numbers N at ¢ =35s 0008
using the SPH and the KDF-SPH. The proposed method 0.010 0.006
yields smaller error norms compared to the SPH method, & 0.008
demonstrating its effectiveness for the MRLW equation. 8 0.006 0.004
Figure 5 shows a 3D plot of the absolute error from 7 =0s to % 0.002
t=20s using the KDF-SPH with N =101 and dr=0.05. o "% '
The maximum error occurs near the peak of the solitary wave. g 0.002
This observed phenomenon likely results from the extremely 0.000
steep wave profile inducing near-infinite spatial gradients 80 60 40 0
that dramatically amplify truncation errors in discrete X 0
numerical methods, combined with the complete breakdown Fig. 5. The absolute error from 7 =0s to 7= 20s
of the dynamic dispersion-nonlinearity balance that normally o ' ’

TABLE IV

VALUES OF THE CONSERVED QUANTITIES , L, ERROR AND L ERROR WITH dx = 0.1, dt=0.05 AND ¢ =0.05 AT VARIOUS TIME LEVELS

time I, I, I L, L,
t=1 3.2186 0.4654 0.0080 7.6050%107° 3.2102x107™*
t=5 3.2175 0.4651 0.0080 3.8414x10™* 1.6299x10™*
t=10 3.2161 0.4646 0.0080 7.7691x107* 3.3145%x10™
t=15 3.2145 0.4642 0.0079 1.1812x107 5.0704x10™*
t=20 3.2127 0.4637 0.0079 0.6019x107 6.9081x10™
TABLE V
ERROR NORMS WITH ¢ =0.05, t=5 AND dtf =0.1 FOR DIFFERENT NUMBERS OF PARTICLES N
SPH KDF - SPH
N L, L, L, L,
101 1.9745x10 7.6143x10°° 7.4997x107 2.8332x107
201 1.5063x107 5.6630x107° 2.0867x107° 9.3461x107*
401 1.3949x107° 5.1648x107 9.2126x10™* 4.4321x10™*
801 1.3677x107 5.0396x10™° 7.6324%x107* 3.2001x107*
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(a) Space-time graph of the exact solution
Fig. 6. Space-time graph of the exact solution and the numerical solution at df=0.1 and N=1001 from r=0sto t=20s
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(b) Space—time graph of the numerical solution

TABLE VI
THE COMPARISON OF ERROR NORMS FOR CASE 2
' HanyN .Hassan"" KDF - SPH
time
LZ Loo LZ Loo

t=2 1.67083x10™* 4.67942x107 3.03585x107 1.22263x107
t=4 2.44839x107* 6.84808x107° 6.07609x107 2.38171x107°
t=6 2.33647x107* 6.51000x107 9.10839x107° 3.47722x107
t=8 3.11637x10™* 8.71898x107° 1.21226x10™* 4.53936x107°
t=10 4.78729x107* 1.34767x10™* 1.51112x10™* 5.66905x107

Two solitary waves motion
In this part, we study the collision of two solitary waves.
The initial condition is given by [12]

u(x,0) = Zzl\/a sechlk, (x—x,)], (35)

c

m

where k=

I+c,

Reference [12] provides the specific analytical values of
the three invariants related to this problem.

(36)

We take ¢, =02, ¢,=0.1, x, =15 and x, =35 . The
domain spans Q =[0,100], discretized by 501 particles. The

simulation time ranges from ¢ =0sto ¢ =20s with df=0.1.
The analytical values of the three invariants are calculated as
1, =6.7364, 1, =1.7177, I, =0.1003 . TABLE VII presents

the simulated values of the three invariants /,, /,, and ;.

Comparison with the analytical values shows that the relative
motion between two waves leads to a loss in the three
invariants. Figure 7 displays the detailed simulation results of
the interaction between two solitary waves at different time.
The wave peak amplitude exhibits minor attenuation,

indicating that wave interactions cause slight energy
dissipation. For practical applications, controlling solitary
wave interactions optimize breakwater energy dissipation in
shallow waters.

TABLE VII

VALUES OF THE CONSERVED QUANTITIES AT DIFFERENT TIME
time 1, I, I,
t=0 6.7317 1.7386 0.1051
t=4 6.6906 1.7100 0.0998
=8 6.6505 1.6832 0.0950
t=12 6.6133 1.6582 0.0906
t=16 6.5785 1.6351 0.0867
t=20 6.5460 1.6136 0.0833

0.4
£
= 0.3
fa
0.2
0.1
0.0

Fig. 7. Simulation graph of the interaction between two solitary waves from
t=0sto t=20s
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C. GRLW Equation

The exact solution of the GRLW equation (7) is given by
[33] as follows

1

U(x, 1) = [Asech® (k(x—vi - x,))]", (37)
where A:M’ v=1+ac, kzﬁ %,

We take =1, f=1, c=0.03, x, =40 and choose the
spatial domain Q =[0,100]. When p =3,4,5 in equation (7),
TABLE VIII presents the L, and L, error norms computed
using the SPH and KDF-SPH methods with N =101 at
t=0.1s, t=0.5sand t=1s. For p=3,4,5 in equation (7),
TABLE IX shows the L, and L_ error norms. These norms

are calculated using both SPH and KDF-SPH with different
numbers of particles and a time step d¢f =0.1 at t =1s. The
numerical results in these two tables indicate that KDF-SPH
yields smaller error norms than the traditional SPH, which
confirms its accuracy. Concurrently, these experimental
results substantiate that the improved SPH method enhances
both numerical accuracy and simulation efficacy to a certain
extent.

VII. CONCLUSION AND FUTURE PERSPECTIVES

Based on the study of using SPH to solve nonlinear partial
differential equations, we find that its accuracy is relatively
low. Therefore, this paper proposes a meshless method based
on the KDF-SPH approximation. Firstly, the GRLW equation
is discretized to derive a discrete numerical scheme and
unconditional stability is confirmed by plotting the eigen
values of the matrix of iterations. Then, KDF-SPH is applied
to simulate single solitary wave propagation, the collision of
double solitary waves, and the development of wave patterns,
thereby validating its effectiveness. Both the L, error norm

and L, error norm demonstrate that KDF-SPH achieves

high accuracy. Moreover, the calculation of the three
conservation invariants for the test problem demonstrates that
the proposed method exhibits good conservation properties
for the GRLW equation. Under identical numerical
conditions, the results obtained by KDF-SPH in this study
show higher numerical accuracy compared to both traditional
SPH and existing methods reported in the literature. These
comparisons confirm the proposed method achieves higher
numerical accuracy and shows better suitability for solving
the GRLW equation. In conclusion, the proposed meshless
method exhibits good performance as a numerical solver for
the GRLW equation, showing the practical applicability and
the computational effectiveness. And KDF-SPH exhibits
better advantages over the traditional SPH.

Building upon the excellent performance of the KDF-SPH
method in solving the GRLW equation, future research can
be expanded in multiple dimensions. The method can be
extended to two-dimensional or higher-dimensional GRLW
equation to simulate more complex wave phenomena in
practical engineering applications.  Additionally, its
applicability could be further explored for a broader range of
nonlinear PDEs. Regarding the phenomenon observed in this
study where the maximum absolute error in solitary wave
simulations predominantly occurs near the wave peak,
subsequent research should conduct more in-depth
theoretical investigations and develop targeted solutions.
Theoretically, emphasis should be placed on establishing
rigorous convergence criteria and error bounds under
strongly nonlinear conditions to further refine the theoretical
framework. Future work should particularly focus on
examining the capability of this method in handling
wave-breaking phenomena and its coupling mechanisms with
structural response models, which are of critical importance
for offshore engineering applications. The proposed
development directions maintain the meshless advantages
while potentially overcoming current limitations in
computational scale and physical fidelity for industrial-scale
problems. In summary, this method holds boundless potential
for diverse applications.

TABLE VIII
COMPARISON OF ERROR NORMS AT DIFFERENT TIMES FOR DIFFERENT METHODS
p Methods Error norm t=0.1 t=0.5 t=1
SPH L, 1.0486x107° 5.2425x107° 1.0479x1072
p=3 L, 4.0108x107 2.0360x107 3.9227x1073
KDF — SPH L, 3.8985%x107* 1.9503x10° 3.9026x107°
L, 1.6359x107* 8.0954x10™ 1.6005x1073
SPH L, 1.7197x1073 8.5981x107 1.7182x1072
p=4 L, 7.3676x10”* 3.5858x10°° 7.2875x107°
KDF — SPH L 6.3404x10°* 3.1746x10° 6.3583x10°
L, 2.8338x107* 1.4688x107* 2.8836x107
PH L 2.3498x107 1.1759%1072 2.3482x1072
p=5 L, 1.1007x107° 5.2464%107 1.0595x1072
KDF — SPH L, 8.7696x107* 4.3972x107° 8.8222x107
L, 4.4063x107* 2.1438x107 4.4305%107
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