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Abstract—In the present work, we address the coupling
problem between fluid flow and porous media flow. A hybrid
numerical method is proposed to solve the coupled Stokes-
Darcy problem with Beavers-Joseph-Saffman (BJS) interface
conditions. The method is presented in detail, rigorously tested,
and its error estimates are thoroughly analyzed, demonstrating
its robustness and effectiveness in handling the coupled system.

Index Terms—Stokes equations, Darcy’s law, Multigrid
method, Domain decomposition method.

I. INTRODUCTION

IN recent years, In practical applications, scenarios involv-
ing fluid dynamics across multiple regions with coupled

physical phenomena are common. A typical instance is the
interaction between free-flowing fluids and porous media
flows. The free-flow region, described by the Stokes equa-
tions, and the porous media domain, characterized by Darcy’s
law, are interconnected through specific boundary conditions.
This coupled approach provides an effective methodology for
addressing numerous engineering challenges. For instance,
this coupling model is closely related to applications in
oil exploration and extraction, groundwater contamination
contral, agricultural irrigation, and the transport of drugs in
blood flow in medicine. Therefore, studying and addressing
this coupling problem is of great significance.

Due to the importance of such coupling problems, many
researchers have focused their studies on numerical meth-
ods for solving them, including stabilized finite elemen-
t methods[1], [2], [3], [4], [5], domain decomposition
methods[6], [7], [8], [9], [10], [11], [12], two-gril and
multigrid methods[13], [14], [15], [16], local and parallel
methods[17], [18], [19], discontinuous finite element[20],
[21], [22], [23], Lagrange multiplier methods[24], [25], and
several other approaches[26], [27], [28], [29], [30]. Among
these methods, we are particularly interested in domain
decomposition methods and multigrid methods. Multigrid
methods stand out for their high efficiency, strong generality,
and low computational cost, but their implementation is com-
plex, and handing boundary conditions can be challenging.
On the other hand, domain decomposition methods offer
efficient parallelism and can reduce the complexity of global
problem-solving.

In 2024, Sun et al. proposed a decoupling method com-
bining two-grid and domain decomposition in [12]. They

Manuscript received February 10, 2025; revised June 26, 2025.
This work is subsidized by NSFC(Grant No.12001234, 12172202).
Qingbo Xu is a postgraduate student of School of Mathematical Sciences,

University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022,
Shandong, China (e-mail: xuqingbo1999@163.com).

Liyun Zuo is a lecturer of School of Mathematical Sciences, University
of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong,
China (e-mail: sms zuoly@ujn.edu.cn).

first used Robin-type domain decomposition to obtain an
approximate solution on a corase grid and then applied a
two-grid framework to construct a domain decomposition
method on a fine grid, significantly improving the algorithms
efficiency. In 2024,Zheng et al. extended the work in [31]
from the Stokes-Darcy equations in [12]. The paper was
published under the title: “Two-Grid Domain Decomposition
Method for Coupling Fluid Flow with Porous Media Flow”
in the IAENG International Journal of Applied Mathematics.
The two-grid domain decomposition method still exhibited
excellent convergence for the extended equations.

The convergence performance of the two-grid approach is
constrained by the precision of its coarse-grid discretization.
Therefore, we extend the two-grid domain decomposition
method in [12] to multigrid domain decomposition method.
This approach first obtains an approximate solution on the
coarse grid using a Robin-Robin domain decomposotion
method and updates the interface conditions based on the
corase grid solution. The Stokes and Darcy subsystems are
subsequently computed across progressively refined grids.
Theoretical error examination demonstrates the algorithm’s
convergence.

This manuscript proceeds in the following manner: Section
II presents the coupled Stokes-Darcy system incorporating
Beavers-Joseph-Saffman (BJS) boundary conditions at the
interface. Section III outlines the fundamental principles of
the domain decomposition approach. Section IV presents
the multigrid domain decomposition method. Section V
conducts an in-depth error analysis of the multigrid domain
decomposition method, focusing on its convergence. Section
VI offers a comprehensive summary of the study’s outcomes.

II. COUPLED STOKES-DARCY PROBLEM

This section investigates a Stokes-Darcy coupled system
defined on a bounded domain Ω ⊂ Rd (d = 2, 3). The com-
putational domain consists of two distinct subdomains: the
free-flow subdomain Ωe and the porous medium Ωc, which
intersect along their common boundary Γ = ∂Ωe ∩ ∂Ωc. It
is important to note that Ωe ∩Ωc = ∅ and Ωe ∪Ωc = Ω. Let
Γe = Ωe \ Γ and Γc = Ωc \ Γ.

Within the free-flow subdomain Ωe, the fluid dynamics are
described by the Stokes system:{

−∇ · (T (ue, pe)) = fe,

∇ · ue = 0,
(1)

where
T (ue, pe) = −peI + 2νD(ue),

D(ue) =
1

2
(∇ue +∇Tue),

ue and pe are construed respectively as the fluid velocity and
the kinematic pressure in Ωe. Besides, fe is the external body
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force, and T (ue, pe) is the stress tensor with the identity
matrix I and kinematic viscosity of the fluid ν > 0.

In the porous medium Ωc, the fluid flow is governed by
the Darcy equation:{

∇ · uc = fc,

uc = −K∇φc,
(2)

Let uc denote the fluid flow rate within the porous medium
Ωc. For simplicity, we consider the hydraulic conductivity
tensor to be isotropic, denoted by K. The piezometric head,
φp, is defined as the sum of the elevation z and the ratio of the
dynamic pressure pc to the product of the fluid density ρ and
gravitational acceleration g, i.e., φp = z + pc

ρg . Furthermore,
the source term fc is chosen to fulfill the necessary conditions
for the problem’s well-posedness.∫

Ωc

fc = 0.

The coupling of Darcy’s law and the continuity condition
(2) generates an elliptic partial differential equation:

−∇ · (K∇φc) = fc. (3)

Assume the ue and φc satisfying homogeneous Dirichlet
boundary conditions:

ue = 0 on Γe, φc = 0 on Γc.

Three coupling conditions are enforced at the interface Γ:

ue · nc + uc · nc = 0,

− ne · (T (ue, pe) · ne) = gφc,

− τi · (T (ue, pe) · ne)

=
αν
√
d√

trace(
∏

)
· τi · ue, i = 1, · · · , d− 1,

(4)

Let ne and nc be the unit outward normals to the fluid
and porous medium at the common boundary Γ, respectively.
The vectors τi represent the set of orthogonal unit tangent
vectors to the interface Γ. The constant α is a parameter,
and

∏
is defined as the ratio of the product of the hydraulic

conductivity tensor K and the kinematic viscosity ν to the
acceleration due to gravity g, i.e.,

∏
= Kν

g .
To derive the weak form of the mixed formulation, we

define

He = {ve ∈ (H1(Ωe))
d : ve = 0 on Γe},

Hc = {ψc ∈ H1(Ωc) : ψc = 0 on Γc},
W = He ×Hc,

Qe = L2(Ωe).

We use (·, ·)ΩX
and ‖ · ‖L2(ΩX) to denote the standard L2-

scalar product of the spaces L2(ΩX)(X = e, c) and the
associated L2-norms of the space L2(ΩX), respectively.

III. DOMAIN DECOMPOSITION METHOD

This section provides an overview of the domain decom-
position method as described in [6]. The coupled Stokes-
Darcy equations are decoupled into two distinct subproblems
through this approach, with solutions being computed con-
currently in both the free-flow subdomain (Ωe) and porous
medium domain (Ωc). By employing domain decomposition,
the computational scale is significantly reduced, enabling the

use of standard software tools to solve each subproblem
independently.

We now introduce the essential Robin-type boundary con-
ditions at the interface. Given two positive constants λe and
λc, there are associated functions ge and gc defined on the
interface Γ that adhere to the following equation:

ne · (T (ue, pe) · ne) + λeue · ne = ge, (5)
λcK∇φc · nc + gφc = gc. (6)

By (4), we can get

ge = λeue · ne − gφc on Γ, (7)
gc = λcue · ne + gφc on Γ. (8)

It can be readily confirmed that the interface conditions (4)
are tantamount to the previously stated Robin-type conditions
(5)-(6) on the condition that the functions ge and gc meet the
necessary compatibility criteria at the interface Γ.

Thus we obtain the variational formulation for the station-
ary Stokes-Darcy problem: for two given functions ge, gc
and two normal numbers λe, λc, find (ue, pe) ∈ He × Qe,
φc ∈ Hc such that

λcac(φc, ψ) + 〈gφc, ψ〉 = 〈gc, ψ〉+ λc(fc, ψ),

∀ ψ ∈ Hc, (9)
ae(ue, ve)− be(ve, pe) + λe〈ue · ne, ve · ne〉

+
∑ να

√
d√

trace(
∏

)
〈ue · τi, ve · τi〉

= 〈ge, ve · ne〉+ (fe, ve),

∀ ve ∈ He, (10)
be(ue, q) = 0,

∀ q ∈ Qe, (11)

The bilinear forms are

ae(ue, ve) = 2ν(D(ue),D(ve)),

ac(φc, ψ) = (K∇φc,∇ψ),

be(ue, q) = (∇ · ve, q),

Chen and colleagues have established the well-posedness of
the weak formulation (9)-(12) in [6].

For the Robin-Robin domain decomposition method, it is
crucial to analyze the subsequent finite element discretization
process. Let Th represent a standard quasi-uniform triangu-
lation of Ω with a mesh parameter h > 0. Additionally, we
denote the partition of Γ induced by Th as Bh.

Let He,h ⊂ He, Qe,h ⊂ Qe, and Hc,h ⊂ Hc be the finite
element subspaces defined on the partition Th. The P2-P1
finite element pair is used for the NS problem, while the P2
finite element is employed for the Darcy problem to ensure
compatibility.

He,h = {ve,h ∈ (H1(Ωe))
d : ve,h |T ∈ (P2(T ))d

∀T ∈ Te,h, ve,h |Γe= 0},
Qe,h = {qe,h ∈ L2(Ωe) : qe,h |T ∈ P1(T )

∀T ∈ Te,h},
Hc,h = {ψc,h ∈ H1(Ωc) : ψc,h |T ∈ P2(T )

∀T ∈ Tc,h, ψc,h |Γc= 0},

the Spaces He,h and Qe,h satisfy the inf-sup condition.
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The discrete trace space over the interface Γ is defined as:

Xh = {gh ∈ L2(Γ) : gh |τ∈ P2(τ) ∀ τ ∈ Bh, gh |∂Γ= 0}
= He,h |Γ ·nf = Hc,h |Γ .

Drawing upon the Robin conditions for the Stokes-Darcy
equation and the compatibility conditions (7)-(8), we can
outline the Robin-Robin domain decomposition method, as
described in [6]:

1) Initial values of g0
e and g0

c are guessed.
2) For n=0,1,2, find φnc,h ∈ Hc,h satisfy

λcac(φ
n
c,h, ψ) + 〈gφnc,h, ψ〉 = 〈gnc,h, ψ〉+ λc(fc, ψ),

∀ ψ ∈ Hc,h, (12)

and (une,h, p
n
e,h) ∈ He,h ×Qe,h satisfy

ae(u
n
e,h, ve)− be(ve, pne,h) + λe〈uee, hn · ne, ve · ne〉

+
∑ να

√
d√

trace(
∏

)
〈une,h · τi, ve · τi〉

= 〈gne,h, ve · ne〉+ (fe, ve),

∀ (ve, qe) ∈ He,h ×Qe,h, (13)
bs(u

n
e,h, q) = 0,

∀ q ∈ Qe, (14)

respectively.
3) Update gn+1

e,h , gn+1
c,h by the following way:

gn+1
e,h =

λe
λc
gnc,h − (1 +

λe
λc

)gφnc,h,

gn+1
c,h = −gne,h + (λe + λc)u

n
e,h · ne.

Theoretical convergence of the domain decomposition
scheme is guaranteed, as proved in [6]. Moreover, the method
guarantees an error bound that is independent of the mesh
parameter h, provided that λe < λc and the parameters
λe and λc are carefully selected to meet specified control
criteria. This Robin-Robin technique provides FEM solutions
for decoupled Stokes-Darcy systems with Robin BCs. as de-
scribed in equations (5)-(6). Specifically, for given functions
ge,h, gc,h and scalar parameters λe, λc, the method aims to
find the triplet (ue,h, pe,h) ∈ He,h × Qe,h and φc,h ∈ Hc,h

that satisfy the required conditions.

λcac(φc,h, ψ) + 〈gφc,h, ψ〉 = 〈gc,h, ψ〉+ λc(fc, ψ),

∀ ψ ∈ Hc,h, (15)
ae(ue,h, ve)− be(ve, pe,h) + λe〈ue,h · ne, ve · ne〉

+
∑ να

√
d√

trace(
∏

)
〈ue,h · τi, ve · τi〉

= 〈ge,h, ve · ne〉+ (fe, ve),

∀ (ve, qe) ∈ He,h ×Qe,h, (16)
be(u

n
e,h, q) = 0,

∀ q ∈ Qe,
(17)

with the compatibility conditions:

ge,h = λeue,h · ne − gφc,h on Γ, (18)
gc,hλcue,h · ne + gφc,h on Γ. (19)

IV. THE MULITIGRID DOMAIN DECOMPOSITION METHOD

This section focuses on a decoupling strategy for the
Stokes-Darcy system. Drawing inspiration from the Robin-
Robin domain decomposition method [6] and the Multi-
grid domain decomposition approach [11], we develop
a Multigrid-based domain decomposition scheme for the
Stokes-Darcy problem with BJS interface conditions.

The Multigrid domain decomposition method for address-
ing the coupled Stokes-Darcy problem entails a two-phase
process, which is detailed below.

1) On a coarse grid with mesh size H and H = h0, we
recall domain decomposition method to solve problems (15)-
(17). Then we obtain the coarse grid result ge,h0

, gc,h0
.

2) An modified fine grid problem is constructed and solved
by finding (uhi+1

e , phi+1
e ) ∈ He,h×Qe,h, φhi+1

c ∈ Hc,h, such
that

λcac(φ
hi+1
c , ψ) + 〈gφhi+1

c , ψ〉 = 〈gc,hi
, ψ〉+ λc(fc, ψ),

∀ ψ ∈ Hc,h, (20)

ae(u
hi+1
e , ve)− be(ve, phi+1

e ) + λe〈uhi+1
e · ne, ve · ne〉

+
∑ να

√
d√

trace(
∏

)
〈uhi+1
e · τi, ve · τi〉

= 〈ge,hi , ve · ne〉+ (fe, ve),

∀ (ve, qe) ∈ He,h ×Qe,h. (21)

be(u
hi+1
e , q) = 0,

∀ q ∈ Qe,
(22)

The multigrid domain decomposition method combines
the strengths of the multigrid approach with the domain de-
composition framework, offering a powerful tool for solving
complex multi-domain and multi-physics problems. By lever-
aging the hierarchical structure of multigrid methods and
the localized treatment of domain decomposition techniques,
it efficiently manages strong interactions between different
models across distinct domains. This hybrid approach not
only enhances numerical stability but also improves conver-
gence rates, making it particularly effective for addressing
challenging coupling phenomena. Furthermore, for decou-
pled solutions, this method can significantly improve com-
putational efficiency by reducing both memory requirements
and processing time while maintaining high accuracy. Its ver-
satility and robustness make it a preferred choice for large-
scale simulations in scientific and engineering applications.

V. ERROR ANALYSIS

In this section, we reiterate the reasoning from [6] to
illustrate the convergence of the introduced Multigrid Do-
main Decomposition method. To concise the presentation,
we adopt the notation m . n signifying that m is bounded
above by Cm for some constant C, which may vary with
the specific context. We now review the error bounds for the
decoupled algorithm as detailed in [6]:

‖ue − ue,h‖1 . h2, ‖ue − ue,h‖ . h3,

‖φc − φc,h‖1 . h2, ‖φc − φc,h‖ . h3,

‖pc − pc,h‖ . h2.
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For the finite element approximation given by equations
(15)-(17), we express the error functions, which are related
to the discrepancies between the solution components on the
coarse and fine meshes, as follows:

%e,H = ge,h − ge,hi
, %c,H = gc,h − gp,hi

,

δe,H = ue,h − ue,hi
, δc,H = φp,h − φp,hi

,

ςe,H = pe,h − pe,hi
.

Then, by means of the triangle inequality, we can easily
obtain several basic error estimates about the numerical
solution of (15)-(17) on coarse and fine meshes

‖δe,H‖1 . H2, ‖δe,H‖ . H3,

‖δc,H‖1 . H2, ‖δc,H‖ . H3,

‖ςe,H‖ . H2. (23)

To implement the error estimation, the following lemma
is essential:

Lemma 1: Along the interface Γ, two error estimates on
%e,H and %c,H related with the interface conditions have the
forms of

‖%e,H‖Γ . (λs + g)H
5
2 , (24)

‖%c,H‖Γ . (λc + g)H
5
2 . (25)

Proof: According to the definition of %e,H , %p,H and
(18)-(19), we can derive the following formula

%e,H = λeδe,H · ne − gλc,H ,
%c,H = λcδe,H · ne + gλc,H .

Using the Young inequality we can launch

‖%e,H‖Γ = ‖λeδe,H · ne − gδe,H‖Γ
≤ λe‖δe,H · ne‖Γ + g‖δc,H‖Γ.

Based on the trace inequality, we are aware that there
exists a constant C such that

‖δe,H · ne‖Γ ≤ C‖δe,H‖
1
2 ‖δe,H‖

1
2
1 ,

‖δc,H‖Γ ≤ C‖δc,H‖
1
2 ‖δc,H‖

1
2
1 ,

then we can conclude that

λf‖δe,H · ne‖Γ + g‖δc,H‖Γ ≤ λeC‖δe,H‖
1
2 ‖δe,H‖

1
2
1

+ gC‖δc,H‖
1
2 ‖δc,H‖

1
2
1

≤ λeCH
3
2H + gCH

3
2H

. (λe + g)H
5
2 .

The error estimate of ‖%p,H‖Γ can be obtained in the same
way.

Building on the aforementioned groundwork, we can de-
rive the error estimate for the Multigrid domain decomposi-
tion method as follows:

Theorem 1: Let (ue,h, pe,h, φc,h) be the solution de-
rived from domain decomposition method, and assume that
(uhi+1
e , phi+1

e , φhi+1
c ) is the solution derived from Multigrid

domain decomposition method, the following error estimates
hold:

‖φp,h − φhi+1
c ‖1 .

λc + g

Jλc
H

5
2 , (26)

‖ue,h − uhi+1
e ‖1 . (λs + g)H

5
2 , (27)

‖pe,h − phi+1
e ‖

. (2ν + λeC
2
e +

να
√
dC2

e√
trace(

∏
)

+ ce)(λe + g)H
5
2 , (28)

Proof: On the fine grid,let h = hi+1 in (20)-
(22),subtracting (20)-(22) from (15)-(17) yields

λcac(φc,hi+1 − φhi+1
c , ψ) + 〈g(φc,hi+1 − φhi+1

c ), ψ〉
= 〈gc,h − gc,hi , ψ〉, ∀ ψ ∈ Hc,h. (29)

ae(ue,hi+1
− uhi+1

e , ve)− be(ve, pe,hi+1
− phi+1

e )

+ λe〈(ue,hi+1
− uhi+1

e ) · ne, ve · ne)〉

+
∑ να

√
d√

trace(
∏

)
〈ue,hi+1

− uhi+1
e · τi, ve · τi〉

= 〈(ge,h − ge,hi
), ve · ne〉, ∀ ve ∈ He,h. (30)

be(ue,hi+1 − uhi+1
e , q) = 0,

∀ q ∈ Qe. (31)

Let ψ = φc,hi+1 − φ
hi+1
c ∈ Hc,h in (29)

λcac(φc,hi+1
− φhi+1

c , φc,hi+1
− φhi+1

c )

+ 〈g(φc,hi+1
− φhi+1

c ), φc,hi+1
− φhi+1

c 〉
= 〈gc,h − gc,hi

, φc,hi+1
− φhi+1

c 〉. (32)

Utilizing the Cauchy-Schwarz inequality in conjunction
with the trace inequality, we can conclude that

‖φp,h − φhp‖21 ≤
1

K
ap(φp,h − φhp , φp,h − φhp),

ap(φp,h − φhp , φp,h − φhp)

≤ ap(φp,h − φhp , φp,h − φhp) +
g

ξp
‖φp,h − φhp‖2Γ,

then, from Lemma 1 , we get the following inequality,

‖φc,hi+1 − φhi+1
c ‖21 ≤

1

J
[ac(φc,hi+1 − φhi+1

c , φc,hi+1 − φhi+1
c )

≤ 1

J
[λcac(φc,hi+1

− φhi+1
c , φc,hi+1

− φhi+1
c )

+ g‖φc,hi+1 − φhi+1
c ‖2]

≤ 1

Jλc
< gc,h − gc,hi

, φc,hi+1
− φhi+1

c >

.
λc + g

Jλc
H

5
2 ‖φc,hi+1 − φhi+1

c ‖1.
(33)

We can get (26) by eliminating ‖φc,hi+1 − φhi+1
c ‖1 from

(33).
Setting ve = ue,hi+1

− uhi+1
e ∈ He,h, q = pe,hi+1

−
phi+1
e ∈ Qe,h and substituting into (29), we have

ae(ue,hi+1
− uhi+1

e , ue,hi+1
− uhi+1

e )

− be(ue,hi+1 − uhi+1
e , pe,hi+1 − phi+1

e )

+ λe〈(ue,hi+1 − uhi+1
e ) · ne, (ue,hi+1 − uhi+1

e ) · ne〉

+
∑ να

√
d√

trace(
∏

)
〈ue,hi+1

− uhi+1
e · τi, ue,hi+1

− uhi+1
e · τi〉

= 〈ge,h − ge,hi
, (ue,hi+1

− uhi+1
e ) · ne〉, (34)
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by the Korn′s inequality, there exists Ce that makes

‖ue,hi+1
−uhi+1

e ‖21 ≤
C2
e

2ν
ae(ue,hi+1

−uhi+1
e , ue,hi+1

−uhi+1
e ),

then we can get

‖ue,hi+1 − uhi+1
e ‖21

≤ C2
e

2ν
[ae(ue,hi+1

− uhi+1
e , ue,hi+1

− uhi+1
e )

+ λe‖(ue,hi+1
− uhi+1

e ) · ne‖

+
∑ να

√
d√

trace(
∏

)
‖ue,hi+1

− uhi+1
e · τi‖]

≤ C2
e

2ν
〈ge,h − ge,hi

, (ue,hi+1
− uhi+1

e ) · ne〉

.
C2
e

2ν
‖ge,h − ge,hi

‖‖ue,hi+1
− uhi+1

e ‖1 (35)

Let q = pe,hi+1
− phi+1

e ∈ Qe,h, there exist ve ∈ He,h

such that

‖pe,hi+1
− phi+1

e ‖ ≤
−be(ve, pe,hi+1

− phi+1
e )

‖ve‖1
.

It can also be inferred from (33) that

‖pe,hi+1
− phi+1

e ‖

≤ 1

‖ve‖1

[
|ae(ue,hi+1 − uhi+1

e , ve)|

+ λe|〈(ue,hi+1
− uhi+1

e ) · ne, ve · ne〉|

+
∑ να

√
d√

trace(
∏

)
|〈(ue,hi+1

− uhi+1
e ) · τi, ve · τi〉‖

]
≤ (2ν + λeC

2
tr +

να
√
dC2

tr√
trace(

∏
)
)‖ue,hi+1 − uehi+1‖1

+ Ctr‖ge,h − ge,hi
‖Γ

. (2ν + λeC
2
tr + Ctr +

να
√
dC2

tr√
trace(

∏
)
)(λe + g)H

5
2 .

which completes the proof of (28).
Drawing from Theorem 1 and the triangle inequality, we

can establish the error estimate for the solution obtained by
the Multigrid domain decomposition method in relation to
the exact solution as detailed below.

Corollary 1: Let (u
hi+1
e , phi+1

e , φhi+1
c ) ∈ (He,h×Qe,h×

Hc,h), and (ue,h, pe,h, φc,h) ∈ (He×Qe×Hc) be the solution
of Mulitigrid domain decomposition method and (9)-(10),
respectively. Choosing H = h

2
5 , we have

‖φc,hi+1
− φhi+1

c ‖1 . h,

‖ue,hi+1
− uhi+1

e ‖1 + ‖pe,hi+1
− phi+1

e ‖ . h.

The accuracy of the Multigrid Domain Decomposition
algorithm has been established. Additionally, the theoretical
framework can be broadened to encompass higher-order
elements, provided the continuous solution exhibits suffi-
cient regularity. In conclusion, future studies may enhance
the algorithm’s accuracy through more rigorous analytical
investigations.

VI. CONCLUSION

This manuscript presents a multigrid domain decompo-
sition algorithm specifically designed for solving coupled
Stokes–Darcy equations. We conduct a comprehensive con-
vergence analysis that demonstrates the algorithm’s robust
convergence rates and numerical stability. The results show
that our proposed approach achieves high convergence ac-
curacy while maintaining computational efficiency, mak-
ing it particularly suitable for large-scale simulations. The
method’s scalability further enhances its practical value for
complex coupled problems.

The algorithm’s modular design suggests significant po-
tential for extension to other multi-domain, multi-physics
systems. Future work will focus on applications to more so-
phisticated interface conditions, including the Stokes–Darcy
system with Beavers–Joseph interface conditions. Such ex-
tensions could substantially broaden the method’s applicabil-
ity across computational science and engineering domains,
particularly for problems requiring accurate modeling of
fluid–porous media interactions.
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