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Abstract—In this paper, we introduce the constant propor-
tional Caputo fractional derivative (CPC), which is defined for
all differentiable functions that are locally integrable in the
L1 space of positive real numbers. The block pulse operational
matrix is used to express the derivatives in differential equations
that we solve using the block pulse method. Some initial
value problems are tackled using the Shehu transform method.
To model diseases more reliably and efficiently, we combine
the Shehu transform method with the homotopy perturbation
method for solving CPC differential equations.

Index Terms—CPC derivatives, block pulse method, orthog-
onal functions, Shehu transform.

I. INTRODUCTION

THe history of fractional calculus goes back more
than 3 decades, which came into existence as a

result of a query about the value of the derivative of the
non-integer order and has had significant developments
both in theoretical and practical aspects. The classical
derivatives (derivatives of integer order) can be interpreted
geometrically; for instance, the first derivative is defined
as the slope of the tangent, whereas the geometrical
interpretation of fractional calculus has not gained much
relevance. Due to this, the field of fractional calculus
showed a slow development up to 1900 after which this
field showed a rapid and expeditious development and shed
its light in several applications not only in mathematics
[18], [20], but also in science, engineering [15] and various
medical fields [5]. The first application of fractional calculus
was the Tautochrone problem proposed by Abel, which
deals with finding the least time of descent by which a
bead can move down a curve along the shortest path. Later
on, differential equations of arbitrary order emerged as
an important topic that is best suited for defining various
dynamical systems more specifically and precisely since
these operators are bestowed with some peculiar properties
such as memory effect, hereditary property, etc. Hence,
these operators are used in exploring the medical fields
[7], [21], [32] by which the control strategies can be
developed and modeled efficiently in such a way that the
treatments can be made possible with minimum cost and
maximum precision [19], [27]. Of the various models, the
SIR model for childhood diseases [5] and the SIERD model

Manuscript received July 23, 2024; revised May 29, 2025.
Prabha R is a research scholar in the Department of Mathematics, Amrita

School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore,
India (e-mail: r prabha@cb.students.amrita.edu).

Kiruthika S is an Assistant Professor in the Department of Mathematics,
Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coim-
batore, India (e-mail: s kiruthika@cb.amrita.edu).

have gained special attention in recent times because some
pandemic diseases can affect the whole world economically
and physically to a great extent [24]. Among the pandemic
diseases such as Covid-19 modeling [21] past experiences
such as social distancing, age, medical history and many
other constraints are needed to describe treatment so that
side effects are minimized [5], [26]. In addition to these
properties, derivatives of arbitrary order satisfy the power
law, exponential decay, and the generalized Mittag-Leffler
function [17], [28] form the base for the definitions for
various fractional operators [2], [4], [9], [25], [33].

The category of fractional operators is classified into
different groups based on specific characteristics, such as
whether they have a singular or non-singular kernel [16],
[23]. Initially, the definitions that captured researchers’ in-
terest were proposed by Riemann-Liouville and Caputo.
Among these, Caputo’s definition was found to be more suit-
able for addressing problems involving fractional differential
equations with initial conditions. Over time, several other
definitions were introduced by Weyl, Marchaud, Hadamard,
Caputo and Fabrizio, Atangana and Baleanu, among others.

Recently, a new fractional operator known as the pro-
portional derivative operator has been defined; this operator
emerges in control theory [11], [12], [27] and can be viewed
as an extension of conformable derivatives. The introduction
of this new derivative allows for a broader context in defining
various processes and systems. Additionally, this operator
can be applied to model various pandemic diseases [6], [21].

A.A. Kilbas et al. [2], H.J. Haubold et al. [16], and J.
F. Gomez-Aguilar [17] have investigated the Mittag-Leffler
function in the generalized form and its applications
whereas T.A. Prabhakar [26], [33], [34] utilized generalized
Mittag-Leffler memory to solve a singular integral problem.

To address fractional differential equations, A. Arikoglu
and I. Ozkol utilized a transform technique [1]. The Shehu
transform method was also employed in the article [3] to
work with the Atangana-Baleanu derivative. For solving
these fractional models, Maitama and Zhao investigated
the combination of the Shehu transform technique and
the homotopy perturbation method [30], while S. Momani
and Z. Odibat numerically compared many approaches for
solving fractional differential equations [31]. In addition,
Akgul [11] used the Sumudu transform to solve differential
equations that involve constant proportional Caputo
operators, highlighting several applications.

Li Yuanlu, N. Sun [22], and C.H. Wang [10] used the
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generalized block pulse matrix to solve fractional differential
equations. Furthermore, A. Saadatmandi et al. [8] expanded
the use of Legendre polynomials in differential equations by
generalizing the Legendre operational matrix for fractional
calculus. Baleanu et al. [11] introduced a new hybrid
operator called the proportional Caputo derivative. E.K.
Akgul et al. [14] applied the Laplace transform method to
an economic model using this hybrid derivative

The SIR epidemic model for childhood diseases was
examined by A.G. Selvam et al. [5], emphasizing its stability.
T.A. Yildiz et al. [32] proposed optimal cancer treatments
using fractional models, with and without singular kernels.
Additionally, K. Rajagopal et al. [21] developed a fractional
order model to address the novel coronavirus outbreak.

In this study, we analyze the block pulse method by
applying it to the hybrid operator, presenting our findings as
a sum of block pulse matrices. We also evaluate the Shehu
transform of CPC derivatives and utilize these results to
solve both linear and nonlinear CPC differential equations.
The ability of the block pulse method to translate differential
equations into algebraic equations represented by block
pulse matrices is one of its main advantages, which greatly
simplifies the problem-solving process. The CPC derivative
is a newly developed operator, and ongoing research aims
to find solutions to differential equations of this type. As
part of this effort, we solve differential equations in both
linear and nonlinear contexts using this method. Our goal is
to produce results that are useful for practical applications
involving CPC derivatives by converting them into block
pulse matrices and subsequently solving the resulting
algebraic equations.

In particular, when applying the CPC derivative, the
results differ from those obtained using operators in other
studies [8], [22], since we find sums of orthogonal matrices
due to the hybrid nature of the operator. We also evaluate
the CPC derivative of some standard functions, obtaining
results expressed in terms of the Mittag-Leffler function,
which can be utilized in application problems, such as
solutions to nonlinear partial differential equations where
periodic functions like trigonometric functions are involved.
In this paper, we express the CPC differential equations in
terms of block pulse matrices, allowing for an analysis of
how the results differ when ordinary derivatives are replaced
with CPC derivatives in disease modeling (e.g., the SIR
model, SEIRD model). The numerical methods combined
with transforms for solving differential equations are gaining
much attention today. Furthermore, we evaluated the Shehu
transform of the CPC derivative using the duality property
referenced in earlier studies, where the authors cite AB, EA
evaluated the Sumudu transform of the CPC derivative. The
Shehu transform is subsequently applied to solve certain
differential equations, with the results illustrated through
examples. Finally, we present a method that combines the
homotopy perturbation method with the Shehu transform,
explaining how to solve a CPC differential equation using
this approach [1], [12], [22], [29], [31].

The paper is organized as follows. Section II presents the

study’s concepts and techniques, and the CPC derivative is
described using the operational matrix. The primary objective
of Section III is to solve some linear CPC differential
equations. In Section IV, some nonlinear CPC differential
equations are solved using the block pulse approach. The
evaluation of CPC derivatives for various standard functions
is discussed in sections V, VI, and VII. In section VIII,
the Shehu transform of this derivative is evaluated, and in
section IX, some differential equations are solved using the
Shehu transform method. The explanation of the homotopy
perturbation Shehu transform method for solving a CPC
differential equation is provided in section X. Finally, we
conclude the paper in section XI.

II. EXPRESSION OF CPC DERIVATIVES IN TERMS OF THE
BLOCK PULSE OPERATIONAL MATRIX

In this section, we express the CPC derivatives in terms
of an upper triangular matrix known as the block pulse
operational matrix [8], [10], [22], for which we have used
the concept of orthogonal functions [8].

The CPC derivative [11] of order α, 0 < α < 1 is given
by

CPC
0 D℘

t f(t) = K1(℘)
RL
0 I1−℘

t f(t) +K0(℘)
C
0 D

℘
t f(t)

(1)
where K1 and K0 are functions of α.
The Riemann Liouville derivative of order ℘ was expressed
using block pulse function as

RL
0 I1−℘

t f(t) =
1

Γ(1− ℘)

∫ t

0

(t− τ)
−℘

f(τ)dτ, (2)

where the integrand in this expression is the convolution of
t−℘ and the function f(t) which is absolutely integrable in
[0,T) that can be represented through orthogonal(block pulse)
functions ηm(t),m = 1, 2, .... The orthogonal functions are
represented graphically in the figures below:
For the block pulse operational matrix,

f(t) ≈ fT ηm(t), where T denotes the transpose of f(t)
(3)

fT = [f1 f2 f3 ....fm], ηm
T = [η1(t) η2(t) ....ηm(t)]

fi =
m

T

∫ t

0

f(t)ηi(t)dt =
m

T

∫ i
mT

i−1
m T

f(t)ηi(t)dt

ηi(t) =

{
1, i−1

m ≤ t ≤ i
m

0, elsewhere
i = 1, 2, ..

Therefore, the RL integral of the CPC derivative is
represented in equation 2 as

1
Γ(1−℘)

∫ t

0
(t− τ)

−℘
f(τ)dτ

≈ fT
1

Γ(1− ℘)

∫ t

0

(t− τ)
−℘

ηi(τ)dτ

The RL integral of order 1 − ℘ is solved in terms of con-
volution of two functions f1 = t−℘, f2(t) = ηi(t), ℘ > 0.
Then,

1

Γ(1− ℘)

∫ t

0

(t− τ)
−℘

ηi(τ)dτ

=
1

Γ(1− ℘)

∫ t

0

f1(t− τ)f2(τ)dτ
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Fig. 1. Block pulse functions

Using the Laplace transform on the equation’s
two sides, we get,

L
[

1
Γ(1−℘) (t− τ)

−℘
ηi(τ)dτ

]
= 1

Γ(1−℘)L
[∫ t

0
f1(t− τ)f2(τ)]

]
= 1

Γ(1−℘)F1(s)F2(s)

where F1(s) = L [t−℘] = Γ(1−℘)
s1−℘

F2(s) = L [ηi(t)] =
1
s

{
e

−(i−1)
m Ts − e

−i
m Ts

}
.

Thus, we have

L
[

1
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

]
= 1

Γ(1−℘)
Γ(1−℘)
s1−α

1
s

[
e

−(i−1)
m Ts − e

−i
m Ts

]
.

Multiplying and dividing by 1− ℘ on the
right-hand side of the above equation, we get

L
[

1
Γ(1−℘) (t− τ)

−℘
ηi(τ)dτ

]
= 1

Γ(2−℘)
Γ(2−℘)
s2−℘

[
e

−(i−1)
m Ts − e

−i
m Ts

]
When we apply the inverse Laplace transform to
both sides of the equation above, we obtain

1
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

=
1

Γ(2− ℘)
[(t− i− 1

m
)
1−℘

u(t− i− 1

m
T )

−(t− i

m
)
1−℘

u(t− i

m
T )] (4)

where u(t) is the unit step function, and we use the result
of orthogonal function [22], so the equation 4 becomes

(t− i− 1

m
T )u(t− i− 1

m
T ) ≈ [0, 0, ...0, d1, ...dm−i+1] ηm(t)

(t− i

m
T )u(t− i

m
T ) ≈ [0, 0, ...0, d1, d2, ...dm−i] ηm(t)

where

t1−αu(t) ≊ [d1 d2 ... dm] ηm(t) = CT ηm(t)

and di’s can be represented as

di =
m

T

∫ T

0

f(t)ηi(t)dt

=
m

T

∫ i
mT

i−1
m T

t1−℘u(t)dt

=
m

T

∫ i
mT

i−1
m T

t1−℘dt

=
m

T

1

2− ℘

[
(
i

m
)
2−℘

T 2−℘ − (
i− 1

m
)
2−℘

T 2−℘

]
= (

T

m
)
1−℘

[
(i)

2−α − (i− 1)
2−℘

2− ℘

]
Then equation 3 is expressed as

1
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

≈ 1
Γ(2−℘) [0, 0, ...0, d1, d2 − d1, ...dm−i+1 − dm−i] ηm(t)

for i = 1, 2...m.

di − di−1 =

(
T

m
)
1−℘

[
(i)

2−℘ − 2(i− 1)
2−℘

+ (i− 2)
2−℘

2− ℘

]
for

i = 2, 3, ...,m− k

and d1 = ( T
M )

1−℘ 1
2−℘ .

Therefore,

1

Γ(1− ℘)

∫ t

0

(t− τ)
−℘

ηi(τ)dτ

≈ ( T
M )

1−℘ 1
Γ(2−℘)

1
2−℘ [0, 0...0, f1, f2...fm−i+1] ηm(t)

≈ ( T
m )

1−℘ 1
Γ(3−℘) [0, 0...0, f1, f2 ... fm−i+1] ηm(t)

where f1 = 1, fk = k2−℘ − 2(k − 1)
2−℘

+ (k − 2)
2−℘

k = 2, 3, ...m− i+ 1.

The RL integral of CPC derivative in equation 4 is obtained
in terms of block pulse function as

1
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

= K1(℘)
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

≈ ( T
m )

1−℘ K1(℘)
Γ(3−℘) [0, 0...0, f1, f2...fm−i+1] ηm(t)

= K1(℘)
Γ(1−℘)

∫ t

0
(t− τ)

−℘
ηi(τ)dτ

≈ ( T
m )

1−℘ K1(℘)
Γ(3−℘) .
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
f1 f2 . . fm
0 f1 . . fm−1

0 0 . . fm−2

. . . . .
0 0 . . f1

 ≈ F1−℘ηm(t)

where

F1−℘ = ( T
m )

1−℘ K1(℘)
Γ(3−℘)


f1 f2 . . fm
0 f1 . . fm−1

0 0 . . fm−2

. . . . .
0 0 . . f1


Thus, we have expressed the RL integral in the definition

of CPC derivative in terms of a block pulse matrix which is
an upper triangular matrix.

Proceeding as in the evaluation of RL integral, we have
expressed the Caputo derivative of order α in the definition
of CPC derivative regarding the operating matrix for block
pulse. Gα as

G℘ = K0(℘)(
m

T
)
℘
Γ(℘+ 2)


g1 g2 . . gm
0 g1 . . gm−1

0 0 . . gm−2

. . . . .
0 0 . . g1



where
g1 = 1, g2 = −h2 g1, ...... , gm = −

∑m
i=2 gi dm−i+1 and

the hi’s are given by
h1 = 1, hq = q℘+1 − 2(q − 1)

℘+1
+ (q − 2)

℘+1
,

q = 2, 3, ...m− i+ 1.
Thus, the CPC derivative of order ℘, 0 < ℘ < 1 can be
expressed as a sum of two block pulse operational matrices.

CPC
0 D℘

t f(t) = F1−℘ηm(t) +G℘ηm(t) (5)

Using the above result in equation (1), for ℘ = 1
2 by assuming

the values of K1(
1
2 ) = 1 and K0(

1
2 ) = 1, m = 4, T = 2.

Then

F1−℘ = F0.5

= (
2

4
)
0.5 1

Γ(3− 0.5)


f1 f2 f3 f4
0 f1 f2 f3
0 0 f1 f2
0 0 0 f1


where f1 = 1, f2 = 0.8284, f3 = 0.5392, f4 = 0.4361.
Hence, we will get

F0.5 =


.5318 .4405 .2867 .2319
0 .5318 .4405 .2867
0 0 .5318 .4405
0 0 0 .5318


Also,

G0.5 = (
4

2
)
0.5

Γ(0.5)


g1 g2 g3 g4
0 g1 g2 g3
0 0 g1 g2
0 0 0 g1


where

g1 = 1, g2 = −h2g1, g3 = −h2g2 − h3g1,

g4 = −h2g3 − h3g2 − h4g1

The hi ’s are given by

h1 = 1, h2 = .8284, h3 = −.4607, h4 = .4364

Thus we get

g1 = 1, g2 = −.8284, g3 = 1.1469, g4 = −1.7681

After substituting these values in the matrix, we get

G0.5 =


1.8803 1.5576 2.1565 3.3246

0 1.8803 1.5576 2.1565
0 0 1.8803 1.5576
0 0 0 1.8803


Therefore,

CPC
0 D.5

t f(t) = F.5ηm(t) +G.5ηm(t)

III. SOLUTION OF SOME LINEAR CPC DIFFERENTIAL
EQUATIONS USING OPERATIONAL MATRIX METHOD

Example 1 Consider a linear CPC differential equation

CPC
0 Dβ

t f(t) = λg(t), where 0 < β < 1. (6)

Using 3, 5 in the above equation 6, we get

{F1−β +Hβ} ηm(t) ≈ λGT ηm(t)

Solving the algebraic equation, GT = 1
λ {F1−β +Hβ} we

will get the solution for 6.

Example 2 Consider the linear CPC differential equation
of the form

CPC
0 Dβ

t f(t) =
n∑

j=1

cj(t)
CPC
0 D

βj

t f(t) + c0(t)y(t) + g(t)

where 0 < β < 1 with initial conditions ym(0) = bm,
m = 0, 1, 2, ...⌈β⌉−1 β1 > β2 > ... > βn,

CPC
0 Dβ

t denotes
the CPC operator of order β, cj(t) is a known function for
j = 0, 1, 2,...n, the input and output functions being g(t) and
y(t), respectively.

Before proceeding to find the solution, we write the
solution in a modified form to reduce the given non-zero
initial conditions to zero initial conditions. Hence we write
the solution in the form y(t) = yδ(t) + n(t) where yδ(t) is
a familiar function that meets the initial conditions

ym(0) = bm, m = 0, 1, 2, ...⌈β⌉ − 1

and n(t) is a function whose value is not known.

CPC
0 Dβ

t f(t) = {F1−β +Gβ} ηm(t)

Let us take F1−β + Gβ = Sβ and also using the modified
initial conditions in the initial value problem, we get

CPC
0 Dβ

t h(t) =
n∑

j=1

cj(t)
CPC
0 D

βj

t h(t) + c0(t)h(t) + r(t)

with initial conditions

hm(0) = 0,m = 0, 1, 2, ...⌈β⌉ − 1
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The input response n(t) and CPC
0 Dβ

t h(t) can be articulated
using the block pulse functions as

r(t) ≈ RT ηm(t)
CPC
0 Dβ

t h(t) ≈ HT ηm(t)

where R = [r0, r1, ...rm]
T is a known but

H = [h0, h1, ...hm]
T is an unknown column vector of

order m× 1

Similarly, cj(t) for j = 0,1,2,... n can be as well stated using
the block pulse functions as

cj(t) ≈ Cj
T ηm(t)

where cj is a known column vector of order m× 1. Now,

CPC
0 D

βj

t h(t) = CPC
0 I

β−βj

t

[
CPC
0 Dβ

t h(t)
]

= CPC
0 I

β−βj

t

[
HT ηm(t)

]
= HTNβ−βjηm(t)

Substituting these equations in the modified CPC differential
equation, we get

HT ηm(t) =
m∑
j=1

Cj
T ηm(t)[ηm(t)]

T [
Nβ−βj

]T
H

+C0
T ηm(t)[ηm(t)]

T
[Nβ ]

T
H +RT ηm(t)

Using the properties of orthogonal functions, we get

ηm(t)[ηm(t)]
T
=


η1(t) 0 . . 0
0 η2(t) . . 0
0 0 . . .
. . . . .
0 0 . . ηm(t)


Set,

[
Nβ−βj

]T
H = Zj = [zj1, zj2....zjm] . Then,

ηm(t)[ηm(t)]
T [
Nβ−βj

]T
H

=


Xj1 0 . . 0
0 Xj2 . . 0
0 0 . . .
. . . . .
0 0 . . Xjm

 ηm(t)

= diag(Xj)ηm(t).

Thus our modified CPC differential equation becomes

HT ηm(t) =
m∑
j=1

Cj
T diag(Xj)ηm(t)

+C0
T
(
diag [Nβ ]

T
H
)
+RT ηm(t)

Hence we get

HT =
m∑
j=1

Cj
T diag(Xj) + C0

T
(
diag [Nβ ]

T
H
)
+RT

Taking transpose on both sides, we get

H =
m∑
j=1

Cjdiag(Xj) +
(
diag [Nβ ]

T
H
)
C0 +R

which stands for an algebraically solvable system of equa-
tions. Solving these equations, we will get the solution

h(t) = HTNβηm(t)

IV. SOLUTION OF NON-LINEAR CPC DIFFERENTIAL
EQUATIONS USING OPERATIONAL MATRIX METHOD

Consider the non-linear CPC differential equation

CPC
0 Dγ

t y(t) =
n∑

j=1

dj
CPC
0 D

γj

t y(t) + c0[y(t)]
m
+ g(t)

subject to the initial conditions

yk(0) = ck, k = 0, 1, 2, ...⌈γ⌉ − 1

where γ > γ1 > γ1 > ....γn,
CPC
0 Dγ

t denotes the CPC
fractional derivative , dj is a constant for j=0,1,2,...n. The
computation of [y(t)]

i is different from that of the linear
case when we use this method.

Set
CPC
0 Dγ

t y(t) ≈ NT ηm(t).

So y(t) ≈ NTFγηm(t).

Now,

NTFγ = [X1, X2, ....Xm]

[y(t)]
i

=
[
X1

i, X2
i, ..., Xm

i
]
ηm(t)

Substituting these into the above non-linear CPC differential
equation and proceeding as in the linear case, we get the
following.

NT ηm(t) =
n∑

j=1

djN
TFγ−γj

ηm(t)

+c0
[
X1

i, X2
i, ...Xm

i
]
ηm(t) +GT ηm(t)

V. CPC DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

In this section, we study and evaluate the CPC derivatives
of several functions like as trigonometric, exponential, and
hyperbolic functions. In the derivation of CPC derivatives of
the functions, we take K1(

1
2 ) = K0(

1
2 ) = 1.

A. CPC Derivative of sine function

CPC
0 D

1
2
t sint =

K1(
1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinτ dτ

+
K0(

1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 cosτ dτ

Evaluating the first integral on the right hand side,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinτ dτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 τ dτ − 1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ3

3!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ5

5!
τ dτ − · · ·
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=
Γ(1 + 1)

Γ(1 + 1
2 + 1)

t1+
1
2 − 1

3!

Γ(3 + 1)

Γ(3 + 1
2 + 1)

t3+
1
2

+
1

5!

Γ(5 + 1)

Γ(5 + 1
2 + 1)

t5+
1
2 − · · ·

= −
∞∑
k=1

(−t2)k

Γ(2k + 1
2 )
t−

1
2

= −t− 1
2

{
E2, 12

(−t2)− 1√
π

}
.

Evaluating the second term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 cosτdτ

=
Γ(0 + 1)

Γ(0 + 1
2 + 1)

t0+
1
2 − 1

2!

Γ(2 + 1)

Γ(2 + 1
2 + 1)

t2+
1
2

+
1

4!

Γ(4 + 1)

Γ(4 + 1
2 + 1)

t4+
1
2 − · · ·

= −
∞∑
k=1

(−t2)k

Γ(2k − 1
2 )
t−

3
2

= −t− 3
2

{
E2,− 1

2
(−t2)− Γ(−1

2
)

}
.

Thus we get

CPC
0 D

1
2
t sint

= −t− 1
2

{
E2, 12

(−t2)− 1√
π

}
−t− 3

2

{
E2,− 1

2
(−t2)− Γ(−1

2
)

}
.

B. CPC Derivative of cosine function

Evaluating the first integral term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 cosτ dτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 dτ

− 1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ2

2!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ4

4!
τ dτ − ..

=
Γ(1)

Γ( 32 )
t
1
2 − 1

2!

Γ(2 + 1)

Γ( 72 )
t
5
2

+
1

4!

Γ(4 + 1)

Γ( 112 )
t
7
2 − · · ·

= −t− 3
2

∞∑
k=1

(−t2)k

Γ(2k − 1
2

−t−
−3
2

{
E2,− 1

2
(−t2)− Γ(−1

2
)

}
.

Now evaluating the second term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinτdτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 τdτ − 1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ3

3!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ5

5!
dτ − · · ·

=
Γ(1 + 1)

Γ(1 + 1
2 + 1)

t1+
1
2 − 1

3!

Γ(3 + 1)

Γ(3 + 1
2 + 1)

t3+
1
2

+
1

5!

Γ(5 + 1)

Γ(5 + 1
2 + 1)

t5+
1
2 − · · ·

= −t− 1
2

∞∑
k=1

(−t2)k

Γ(2k + 1
2 )

= −t− 1
2

{
E2, 12

(−t2)− 1√
π
)

}
.

Thus we get

CPC
0 D

1
2
t cost = −t− 3

2

{
E2,− 1

2
(−t2)− Γ(− 1

2 )
}

−t− 1
2

{
E2, 12

(−t2)− 1√
π

}
.

VI. CPC DERIVATIVE OF THE EXPONENTIAL FUNCTION

CPC
0 D

1
2
t e

t =
K1(

1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 eτdτ

+
K0(

1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 eτdτ

On evaluating the first integral term on the right hand side,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 eτdτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 dτ +

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ

1!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ2

2!
dτ + · · ·

=
Γ(0 + 1)

Γ(0 + 1
2 + 1)

t0+
1
2 +

1

1!

Γ(1 + 1)

Γ(1 + 1
2 + 1)

t1+
1
2

+
1

2!

Γ(2 + 1)

Γ(+2 + 1
2 + 1)

t5+
1
2 + · · ·

=
∞∑
k=1

tk−
1
2

Γ(k + 1
2 )

= t−
1
2

{
E1, 12

(t)− 1√
π

}
.

The evaluation of the second integral gives the same
expression as above. Hence we can conclude that

CPC
0 D

1
2
t e

t = 2t−
1
2

{
E1, 12

(t)− 1√
π

}
.
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VII. CPC DERIVATIVE OF THE HYPERBOLIC FUNCTIONS

A. CPC Derivative of the hyperbolic sine function

CPC
0 D

1
2
t sinht =

K1(
1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinhτ dτ

+
K0(

1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 coshτ dτ

1
Γ( 1

2 )

∫ t

0
(t− τ)−

1
2 sinhτ dτ

=
Γ(1 + 1)

Γ(1 + 1
2 + 1)

t1+
1
2 +

1

3!

Γ(3 + 1)

Γ(3 + 1
2 + 1)

t3+
1
2

+
1

5!

Γ(5 + 1)

Γ(5 + 1
2 + 1)

t5+
1
2 + · · ·

=
∞∑
k=1

(t2)k

Γ(2k + 1
2 )
t−

1
2

= t−
1
2

{
E2, 12

(t2)− 1√
π

}
.

Evaluating the second term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 coshτdτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 dτ +

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ2

2!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ4

4!
dτ + · · ·

=
Γ(0 + 1)

Γ(0 + 1
2 + 1)

t0+
1
2 +

1

2!

Γ(2 + 1)

Γ(2 + 1
2 + 1)

t2+
1
2

+
1

4!

Γ(4 + 1)

Γ(4 + 1
2 + 1)

t4+
1
2 + · · ·

= t−
3
2

{
E2,− 1

2
(t2)− Γ(−1

2
)

}
.

Thus we have got

CPC
0 D

1
2
t sinht = t−

1
2

{
E2, 12

(t2)− 1√
π

}
+t−

3
2

{
E2,− 1

2
(t2)− Γ(−1

2
)

}
.

B. CPC Derivative of the hyperbolic cosine function

0CPCD
1
2
t cosht =

K1(
1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 coshτ dτ

+
K0(

1
2 )

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinhτ dτ

Evaluating the first integral term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 coshτ dτ

=
1

Γ( 12 )

{∫ t

0

(t− τ)−
1
2 dτ +

∫ t

0

(t− τ)−
1
2
τ2

2!
dτ

}
+

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ4

4!
τ dτ + · · ·

=
Γ(0 + 1)

Γ(0 + 1
2 + 1)

t0+
1
2 +

1

2!

Γ(2 + 1)

Γ(2 + 1
2 + 1)

t2+
1
2

+
1

4!

Γ(4 + 1)

Γ(4 + 1
2 + 1)

t5+
1
2 + · · ·

= t−
3
2

∞∑
k=1

(t2)k

Γ(2k − 1
2

= t−
−3
2

{
E2,− 1

2
(t2)− Γ(−1

2
)

}
.

Now evaluating the second term,

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 sinhτdτ

=
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2 τdτ +

1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ3

3!
dτ

+
1

Γ( 12 )

∫ t

0

(t− τ)−
1
2
τ5

5!
dτ + · · ·

=
Γ(1 + 1)

Γ(1 + 1
2 + 1)

t1+
1
2 +

1

3!

Γ(3 + 1)

Γ(3 + 1
2 + 1)

t3+
1
2

+
1

5!

Γ(5 + 1)

Γ(5 + 1
2 + 1)

t5+
1
2 + · · ·

= t−
1
2

∞∑
k=1

(t2)k

Γ(2k + 1
2 )

= t−
1
2

{
E2, 12

(t2)− 1√
π
)

}
.

Thus we have got

CPC
0 D

1
2
t cosht

= t−
3
2

{
E2,− 1

2
(t2)− Γ(−1

2
)

}
+ t−

1
2

{
E2, 12

(t2)− 1√
π

}
.

TABLE I
TABLE OF THE CPC DERIVATIVES OF ORDER 1

2
FOR SOME SPECIAL

FUNCTIONS

f(t) CPC
0 D

1
2
t f(t)

sint −t−
1
2

{
E2, 1

2
(−t2)− 1√

π

}
−

t−
3
2

{
E2,− 1

2
(−t2)− Γ(− 1

2
)
}
.

cos t −t−
3
2

{
E2,− 1

2
(−t2)− Γ(− 1

2
)
}
−

t−
1
2

{
E2, 1

2
(−t2)− 1√

π

}
.

et 2t−
1
2

{
E1, 1

2
(t)− 1√

π

}
.

sinh t t−
1
2

{
E2, 1

2
(t2)− 1√

π

}
+

t−
3
2

{
E2,− 1

2
(t2)− Γ(− 1

2
)
}
.

cosh t t−
3
2

{
E2,− 1

2
(t2)− Γ(− 1

2
)
}

VIII. SHEHU TRANSFORM OF CPC DERIVATIVES

The Shehu transform of a function h(t) is defined as

H [h(t)] = V (s, u) =

∫ ∞

0

e
−st
u h(t)dt

whereas the Sumudu transform of CPC derivative [13] is
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given by

S
[

CPC
0 Dβ

t f(t)
]
= K1(β)G(u)s

1−β

+K0(β)(G(u)− f(0))s−β

where G(u) is the Sumudu transform of f(t). Now the
relationship between the Sumudu and Shehu transform is
given by

V (s, r) =
u

s
G(
u

s
)

Hence, Shehu transform of CPC
0 Dβ

t f(t) is given by

H
[

CPC
0 Dβ

t f(t)
]
=
u

s
S
[

CPC
0 Dβ

t f(t)
]

=
u

s

[
K1(β)G(

u

s
)(
u

s
)
1−β

+K0(β)
[
G(
u

s
)− h(0)

]
(
u

s
)
−β

]
= K1(β)(

u

s
)
1−β

V (s, u) +K0(β)(
u

s
)
−β
V (s, u)

−K0(β)h(0)(
u

s
)
1−β

=
[
K1(β)

u

s
+K0(β)

]
(
u

s
)
−β
V (s, u)

−K0(β)h(0)(
u

s
)
1−β

Thus, the Shehu transform of CPC derivative is given by

H
[

CPC
0 Dβ

t f(t)
]
=

[
K1(β)

u

s
+K0(β)

]
(
u

s
)
β
V (s, u)−K0(β)h(0)(

u

s
)
1−β

Here, we find out the Shehu transform of the function t−β

which is required for solving the initial value problems.

H [f(t)] = V (s, u) =

∫ ∞

0

e
−st
u f(t)dt =

∫ ∞

0

e
−st
u t−βdt

Now substituting st
u = v, we get

V (s, u) =

∫ ∞

0

e−v(
u

s
)
1−β

v−βdv

= (
u

s
)
1−β

∫ ∞

0

e−vv−βdv

= (
u

s
)
1−β

Γ(1− β).

IX. SOLUTION OF SOME CPC DIFFERENTIAL EQUATIONS
USING SHEHU TRANSFORMS

Example 1 Consider the problem that follows:

CPC
0 Dη

t z(t) = j(t, z(t)), t > 0, z(0) = c, c ∈ R

Let Z(s,m) and J(s,m) be the Shehu transforms of z(t) and
j(t, y(t)) respectively. Taking Shehu transforms on both sides
of the differential equation, we get[
K1(η)

m

s
+K0(η)

]
(
m

s
)
−η
Z(s,m)−K0(η)z(0)(

m

s
)
1−η

= J(s,m)[
K1(η)

m

s
+K0(η)

]
(
m

s
)
−η
Z(s,m)

= K0(η)c(
m

s
)
1−η

+ J(s,m)

Z(s,m) =
J(s,m)[

K1(η)
m
s +K0(η)

]
(ms )

−η +
K0(η)c(

m
s )[

K1(η)
m
s +K0(η)

]
The solution can be obtained by applying the inverse
transform on both sides.

Example 2 Examine the initial value problem that follows.
CPC
0 Dλ

t l(t) = sint, t > 0, l(0) = 0

First, we find the Shehu transform of sint. By the definition
of Shehu transform,

H [f(t)] =

∫ ∞

0

e
−st
w f(t)dt

H [sint] =

∫ ∞

0

e
−st
w sintdt

=
1

( s
w )

2
+ 1

[
−s
w
sint− cos

st

w

]∞
0

.

After applying the limits, we will get the Shehu transform
of sint as

H [sint] =
1

( s
w )

2
+ 1

.

Let us consider the given differential equation. Taking Shehu
transforms on both sides, we get[
K1(λ)

w

s
+K0(λ)

]
(
w

s
)
−λ
L(s, w)−K0(λ)l(0)(

w

s
)
1−λ

=
1

( s
w )

2
+ 1

[
K1(λ)(

w

s
)
1−λ

+K0(λ)(
w

s
)
−λ

]
Hence we will get

L(s, w) =
1

( s
w )

2
+ 1

[
K1(λ)(

w
s )

1−λ
+K0(λ)(

w
s )

−λ
]

=

[
1 + (

s

w
)
2
]−1[

K1(λ)(
w

s
)
1−λ

+K0(λ)(
w

s
)
−λ

]−1

=

[
1− (

s

w
)
2
+ (

s

w
)
4
− ...

]
K1(λ)(

w

s
)
−λ

[
K0(λ)

K1(λ)
+
w

s

]−1

=

[
1− (

s

w
)
2
+ (

s

w
)
4
− ...

]
K0(λ)(

w

s
)
−λ

[
1 +

K1(λ)

K0(λ)

w

s

]−1

= K0(λ)(
w

s
)
−λ

[
1− (

s

w
)
2
+ (

s

w
)
4
− ...

] [
1− rw

s
+ ...

]
In the above equation we have let K1(λ)

K0(λ)
= r. By using the

term by term multiplication, we will get the above equation
as

L(s, u) = K0(λ)

[
(
w

s
)
−λ

− r(
w

s
)
1−λ

+ (
r2

s2
)(
w

s
)2−λ + · · ·

]
−
[
(
w

s
)
−2−λ

− r(
w

s
)
−1−λ

+ r2(
w

s
)
−λ

]
Taking the inverse Shehu transform on both sides, we will
get

l(t) = K0(λ)

[
t−λ−1

Γ(−λ)
− r

t−λ

Γ(1− λ)
+
r2

s2
t1−λ

Γ(2− λ)
· · ·

]
−[

t−3−λ

Γ(−2− λ)
− r

t−2−λ

Γ(−1− λ)
+ · · ·

]
Thus the solution is obtained as the sum of powers of t
of various orders. In the next section, the combination of
homotopy perturbation with Shehu transform is applied to
solve a CPC differential equation.
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X. EXPLANATION OF HOMOTOPY PERTURBATION SHEHU
TRANSFORM METHOD(HPSTM) WITH CPC FRACTIONAL

DERIVATIVE

To clarify the specific steps involved in this approach, let’s
look at the following expression:

CPC
0 Dβ

t ψ(δ, t) +Rψ(δ, t) +Nψ(δ, t) = η(δ, t), (7)

0 < β ≤ 1 with initial condition

ψ(δ, 0) = g(δ) (8)

where CPC
0 Dβ

t is the hybrid fractional operator, R,N are
the differential operators of linear and nonlinear orders
respectively, ψ(δ, t) is a familiar function and η(δ, t) is an
function.

The HPSTM approach entails the following steps
Step 1: Implementing the Shehu transform on both sides of
(7), we get

H[ CPC
0 Dβ

t ψ(δ, t)] +H[Rψ(δ, t)] +H[Nψ(δ, t)]

= H[η(δ, t)]

i.e[K1(β)
u

s
+K0(β)]

u

s

β
V (s, u)−K0(β)]

u

s

1−β
ψ(δ, 0)

= H[η(δ, t)−Rψ(δ, t) +Nψ(δ, t)]

[K1(β)
u

s
+K0(β)]

u

s

β
V (s, u)

= K0(β)]g(x)
u

s

1−β
+H[η(δ, t)−Rψ(δ, t) +Nψ(δ, t)]

Taking K0(β)= K1(β) = 1, we get

(
u

s
+ 1)

u

s

β
V (s, u) = g(δ)

u

s

1−β
+H[η(δ, t)

−Rψ(δ, t) +Nψ(δ, t)H[ψ(δ, t)]

=
g(δ)us

1−β

(us + 1)us
β

+
1

(us + 1)(us )
β

×H {[η(δ, t)−Rψ(δ, t) +Nψ(δ, t)]}

Step 2: Taking the inverse Shehu transform on both sides
of the above equation,

ψ(δ, t) = H(δ, t)−H−1

{
1

(u
s
+ 1)(u

s
)β
H[Rψ(δ, t) +Nψ(δ, t)]

}
.

(9)
Step 3: To apply the homotopy perturbation Shehu transform
method, we express the solution as a power series in terms
of the homotopy p ϵ [0,1] as

ψ(δ, t) =
∞∑

n=0

pnψn(δ, t) (10)

and the nonlinear term is decomposed as

Nψ(δ, t) =

∞∑
n=0

pnHn(ψ) (11)

where Hn(ψ) are the He’s polynomials and their values are
computed by the following expression

Hn(ψ0, ψ1, ....ψn) =
1

n!

∂n

∂pn

N n∑
j=o

pjβj


p=0

, n = 0, 1, 2.....

(12)

Now applying equations (10), (11), (12) in (9), we
get

∞∑
n=0

pnψn(δ, t) = H(δ, t)− pH−1 1

(us + 1)(us )
β

H[R
∞∑

n=0

pnψn(δ, t) +
∞∑

n=0

pnHn(ψ)].

Comparing the coefficients of the powers of p, we get

p0 : ψ0(δ, t) = H(δ, t)

p1 : ψ1(δ, t) = −H−1

[
1

(us + 1)(us )
β
H[Rψ0(δ, t) +H0(ψ)]

]
p2 : ψ2(δ, t) = −H−1

[
1

(us + 1)(us )
β
H[Rψ1(δ, t) +H1(ψ)]

]
(13)

Proceeding like this, we get the series
ψ(δ, t) =

∑∞
n=0 ψn(δ, t) which gives the exact solution of

the CPC differential equation.

XI. CONCLUSION

Fractional differential equations can be solved numerically
using a variety of techniques, such as the power series
approach, variational iteration method, and homotopy per-
turbation method. In this paper, we analyze a different
numerical approach, called the operational matrix method,
which is used to find the solution to a constant proportional
Caputo differential equation. This method assists in the
approximation of signals by transforming the given equations
into integral equations. Additionally, we establish the Shehu
transform of the CPC derivative to facilitate the application
of this result in the solution of differential equations using
the homotopy perturbation Shehu transform method. The
solutions derived from this approach can be valuable in the
design of models for various diseases.
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