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Abstract—We present a novel fifth-order finite volume
trigonometric weighted essentially non-oscillatory (TWENO)
scheme for the accurate and robust numerical solution of
one-dimensional convection–diffusion equations with potentially
non-smooth solutions. The proposed approach reformulates the
diffusion term into a first-order system, which is spatially
discretized using a nonlinear convex combination of one quartic
and two linear trigonometric polynomials within the TWENO
framework. Temporal integration is performed using a third-
order total variation diminishing (TVD) Runge–Kutta method
to ensure stability and accuracy. The primary advantages of the
present method are as follows: (1) The scheme allows for the
flexible selection of positive linear weights, thereby avoiding the
emergence of negative linear weights. (2) Unlike conventional
WENO schemes that rely on algebraic polynomials, the use
of trigonometric basis functions enhances robustness near
discontinuities and improves resolution properties. Extensive
numerical experiments are conducted to verify the effectiveness
of the proposed method, demonstrating its superior accuracy,
non-oscillatory behavior, and high-resolution capability in cap-
turing sharp gradients and discontinuities.

Index Terms—TWENO scheme, Finite volume scheme,
Convection-diffusion equation, TVD Runge-Kutta method.

I. INTRODUCTION

THE Convection-diffusion equation is a crucial partial
differential equation. It models various physical pro-

cesses, such as heat transfer in thin films, dispersion of
dissolved substances, and solute transport in liquids. As
a result, it is of great significance in numerous fields,
especially in environmental science and fluid mechanics.
In recent decades, several methods have been utilized to
solve the convection-diffusion equations, including finite
difference methods [1], finite element methods [2], and finite
volume methods [3]. When diffusion is the dominant factor,
these equations show elliptic or parabolic behavior. In such
cases, classical finite difference and finite element meth-
ods can provide stable and accurate solutions. However, in
convection-dominated scenarios where the equations exhibit
hyperbolic characteristics, conventional numerical methods
often encounter spurious oscillations and instability when
dealing with discontinuities or sharp gradients. To address
these challenges, advanced numerical methods have been
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introduced in [4], [5], etc. Furthermore, the weighted essen-
tially non-oscillatory (WENO) scheme is widely recognized
as an effective technique for shock capturing, particularly
in the numerical solutions of hyperbolic conservation laws
and related Hamilton-Jacobi equations. Over the past years,
researchers have extensively applied this method to handle
the hyperbolic conservation laws and first-derivative con-
vection terms in convection-dominated convection-diffusion
partial differential equations. Therefore, the WENO method
is suitable for solving convection-diffusion equations. In
1994, Liu et al. [6] developed an improved WENO scheme
within the finite volume framework. This scheme enhanced
the kth-order accuracy of the ENO scheme to the (k+1)th-
order accuracy in smooth regions. Subsequently, Jiang and
Shu [7] proposed an arbitrary (2k − 1)th-order accurate
finite difference WENO scheme and presented a framework
for designing smoothness indicators and nonlinear weights,
which is applicable to both finite difference and finite volume
WENO methods. Since then, numerous efficient WENO
schemes for hyperbolic conservation law equations have been
proposed using the idea of reconstruction [8], [9], [10], etc.

The development of trigonometric polynomial based re-
construction has significantly advanced the field of numerical
methods. Early work by Baron[11] introduced Neville’s
trigonometric interpolation. However, this approach was
not directly applicable for constructing higher-order ENO
schemes. In 1996, Christofi[12] proposed a method for local
trigonometric polynomial interpolation, which enabled the
progressive addition of interpolation points, paving the way
for the formulation of advanced trigonometric ENO methods.
More recently, Zhu and Qiu[13] developed a fifth-order
trigonometric WENO method specifically designed to handle
highly oscillatory problems. Building on this foundation, a
new scheme[14] was introduced as a limiter for the Runge–
Kutta discontinuous Galerkin (RKDG) method, utilizing the
same class of trigonometric polynomials as in [13]. Overall,
these trigonometric polynomial–based schemes have demon-
strated excellent performance both in smooth solution regions
and in the vicinity of contact discontinuities.

Subsequently, based on the reconstruction idea, Liu et al.
[15] proposed the direct finite difference WENO (DWENO)
scheme for solving nonlinear degenerate parabolic equations.
In this method, the diffusion flux is directly approximated
by a conservative flux difference. However, the scheme still
faces some challenges, such as the use of nonlinear mapped
weights and negative linear weights. To avoid the emergence
of negative ideal weights and mapped nonlinear weights,
Jiang [16] proposed a finite difference multi-resolution (MR-
WENO) scheme for solving degenerate parabolic equations.
This method allows the linear weights to be set as any
positive numbers whose sum is 1, thereby enhancing the
flexibility and stability of the numerical scheme. After that,
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Ahmat et al. [17] introduced a sixth-order finite difference
HWENO scheme, which requires only four points in the re-
construction procedure, resulting in remarkable compactness
and accuracy.

Inspired by the concept that any set of positive linear
weights (summing to 1) can be used in WENO schemes [10],
and considering that trigonometric WENO schemes [13],
[14] are more robust and have more advantages in handling
complex problems, we propose a finite volume trigonometric
WENO scheme to solve the convection-diffusion equation.

This paper is organized as follows: Section II describes the
construction of the trigonometric WENO scheme in detail.
Section III displays the numerical test results of the present
method. Section IV provides the conclusion.

II. DESCRIPTION OF FINITE VOLUME TRIGONOMETRIC
WENO SCHEME

In this study, we address the numerical solution of the
convection–diffusion equation, formulated as follows:

vt + s(v)x = z(v)xx, (x, t) ∈ [xl, xr]× [0, t], (1)

with the initial condition:

v(x, 0) = v0(x), (2)

where v := v(x, t). Then, we transform equation (1) as a
nonlinear system of first-order equations:{

vt + s(v)x = wx,

w = z(v)x.
(3)

For simplicity, we take a uniform mesh on the interval
[xl, xr] , where the target cell is Sk = [xk− 1

2
, xk+ 1

2
] with a

width h. By integrating (3) over the cell Sk, we obtain

dv̄(xk, t)

dt
=− 1

h

(
s(v(xk+ 1

2
, t))− s(v(xk− 1

2
, t))

)
,

+
1

h

(
w(v(xk+ 1

2
, t))− w(v(xk− 1

2
, t))

)
,

w̄(xk, t) =
1

h

(
z(v(xk+ 1

2
, t))− z(v(xk− 1

2
, t))

)
,

(4)

where 
v̄k(t) =

1

h

∫
Ik

v(η, t)dη,

w̄k(t) =
1

h

∫
Ik

w(η, t)dη.

are the cell averages. We approximate (4) using the fol-
lowing conservative scheme:

dv̄k(t)

dt
=− 1

h

(
ŝk+ 1

2
− ŝk− 1

2

)
+

1

h

(
ŵk+ 1

2
− ŵk− 1

2

)
,

w̄k =
1

h

(
ẑk+ 1

2
− ẑk− 1

2

)
.

where v̄k(t) and w̄k(t) are the numerical approximations
to the cell averages v̄ (xk, t) and w̄ (xk, t), respectively. The
numerical flux ŝk+ 1

2
is defined with Lax-Friedrichs flux as:

ŝk+ 1
2
=

1

2

(
s(v+

k+ 1
2

) + s(v−
k+ 1

2

)− α(v+
k+ 1

2

− v−
k+ 1

2

)
)
,

where α = maxv |s′(v)|. For the numerical fluxes ŵk+ 1
2

and
ẑk+ 1

2
, we adopt an alternating flux [18] as follows:

ŵk+ 1
2
= w−

k+ 1
2

, ẑk+ 1
2
= z+

k+ 1
2

.

The values v±
k+ 1

2

will be achieved by the fifth-order finite vol-
ume trigonometric WENO reconstruction. Now we describe
fifth-order accurate reconstruction procedures for v−

k+ 1
2

.
Step 1. We select three stencils of different sizes to recon-

struct trigonometric polynomials with varying degrees. Using
the symmetric stencil S1 = {Sk−2, Sk−1, Sk, Sk+1, Sk+2},
we reconstruct a quartic trigonometric polynomial p1(x) ∈
span{1, sin(x − xk), cos(x − xk) − sin(h

2 )
h
2

, sin(2(x −
xk)), cos(2(x− xk))− sin(h)

h }:

p1(x) = a0 + a1 sin(x− xk) + a2(cos(x− xk)−
sin(h2 )

h
2

)

+ a3 sin(2(x− xk)) + a4(cos(2 (x− xk))−
sin(h)

h
),

which satisfy

1

h

∫
Sk+l

p1(x)dx = v̄k+l, l = −2,−1, 0, 1, 2, (5)

where v̄k+l := v̄(xk+l) and the coefficients a0, . . . , a4 are
undetermined. For simplicity, we set xk = 0. Then, by
solving the linear system (5), we can derive the coefficients
as follows:

a0 = v̄k,

a1 =
h csc4

(
h
2

)
sec

(
h
2

)
64 cos(h) + 32

(
2 cos(2h)v̄k−1 − 2 cos(2h)v̄k+1

− v̄k−2 + v̄k+2

)
,

a2 = −
h csc5

(
h
2

)
64 cos(h) + 32

(
− 4 cos2(h)v̄k−1 + 4 cos(2h)v̄k

− 2 cos(2h)v̄k+1 + v̄k−2 + 2v̄k − 2v̄k+1 + v̄k+2

)
,

a3 =
h csc4

(
h
2

)
sec2

(
h
2

)
64(2 cos(h) + 1)

(
sec(h)v̄k−2 − sec(h)v̄k+2

− 2v̄k−1 + 2v̄k+1

)
,

a4 =
h csc5

(
h
2

)
sec3

(
h
2

)
128(2 cos(h) + 1)

(
− 2(cos(h) + 1)v̄k−1

+ 4 cos(h)v̄k − 2 cos(h)v̄k+1 + v̄k−2

+ 2v̄k − 2v̄k+1 + v̄k+2

)
.

On the other two stencils S2 = {Sk−1, Sk} and S3 =
{Sk, Sk+1} , we reconstruct two linear trigonometric poly-
nomials p2(x), p3(x) ∈ span {1, sin (x− xk)}:

p2(x) = b0 + b1 sin(x− xk),

p3(x) = c0 + c1 sin(x− xk),

which satisfy

1

h

∫
Sk+l

p2(x)dx = v̄k+l, l = −1, 0,

1

h

∫
Sk+l

p3(x)dx = v̄k+l, l = 0, 1.

where b0, b1 and c0, c1 are the coefficients of p2 and p3,
respectively. Similarly, the coefficients can be calculated as:

b0 = v̄k,

b1 = −1

2
h csc

(h
2

)
csc(h) (v̄k−1 − v̄k) ,
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c0 = v̄k,

c1 = −1

2
h csc

(h
2

)
csc(h) (v̄k − v̄k+1) .

Substituting the coefficients into the polynomial expres-
sions, we can compute p1(x), p2(x), and p3(x). Then, the
values of these polynomials at xk+ 1

2
are obtained as follows:

p1(xk+ 1
2
) =

1

h

(
a0h+ a1h sin

(
h

2

)
− 2a2 sin

(h
2

)
+ a3h sin(h)

)
,

p2(xk+ 1
2
) = b0 + b1 sin

(h
2

)
,

p3(xk+ 1
2
) = c0 + c1 sin

(h
2

)
.

Step 2. Now, we rewrite p1(xk+ 1
2
) as:

p1(xk+ 1
2
) = γ1(

1

γ1
p1(xk+ 1

2
)− γ2

γ1
p2(xk+ 1

2
)− γ3

γ1
p3(xk+ 1

2
))

+ γ2p2(xk+ 1
2
) + γ3p3(xk+ 1

2
).

(6)
where γ1, γ2, γ3 are linear weights. Note that, in equation (6)
, as long as the denominator γ1 ̸= 0, it holds for any positive
weight set γ1, γ2, γ3 satisfying the condition

∑3
i=1 γi = 1.

In this study, we set γ1 = 0.98, γ2 = γ3 = 0.01.
Step 3. Calculate the smoothness indicators βll(ll =

1, 2, 3). These indicators are used to measure the smoothness
of the polynomial pll(x) within the computational cell Ik.
The smaller these smoothness indicators, the smoother the
function is within Ik. Using the classic method of calculating
smoothness indicators given in the literature [7]:

βll =
r∑

m=1

∫
Sk

h2m−1
(dmpll(x)

dxm

)2
dx, ll = 1, 2, 3, (7)

where r = 4 for ll = 1, while r = 1 for ll = 2 or ll = 3.
By substituting the expression of pll into (7), we obtain:

β1(x) = −8

3
a3a1h(4h

4 + 1) sin

(
h

2

)(
(2h2 − 1) cos(h)

−2(h2 + 1)
)
+

8

3
a2a4h(4h

4 + 1) sin

(
h

2

)(
4h2

+(2h2 − 1) cos(h) + 1
)
+

1

2
a21h(h

4 + 1)
(
h3

−h2 sin(h) + h+ sin(h)
)
+

1

2
a22h(h

4 + 1)
(
h3

+(h2 − 1) sin(h) + h
)
+ 2a23h(16h

4 + 1)
(
4h3

+(1− 4h2) sin(h) cos(h) + h
)
+ 2a24h(16h

4

+ 1)
(
4h3 + (4h2 − 1) sin(h) cos(h) + h

)
,

β2(x) =
1

2
b21h(h+ sin(h)),

β3(x) =
1

2
c21h(h+ sin(h)).

Step 4. To introduce the nonlinear weights ωll(ll =
1, 2, 3), first measure the absolute difference of smoothness
indicators as follows:

τ =
1

4
(|β1 − β2|+ |β1 − β3|)2,

Then the specific definition of the nonlinear weights ωll is
shown as follows:

ωll =
ω̌ll∑3

m=1 ω̌m

, ω̌ll = rll

(
1 +

τ

ε+ βll

)
, ll = 1, 2, 3.

Here, ϵ is a relatively small positive number introduced to
avoid the denominator becoming zero. We set ϵ = 10−10 in
all our numerical tests.

Step 5. We replace the linear weights in equation (6) with
the nonlinear weights from equation (II), so that we can
obtain

v−
k+ 1

2

=ω1(
1

γ1
p1(xk+ 1

2
)− γ2

γ1
p2(xk+ 1

2
)− γ3

γ1
p3(xk+ 1

2
))

+ ω2p2(xk+ 1
2
) + ω3p3(xk+ 1

2
).

(8)
Similarly, we use the mirror symmetry to obtain the

reconstruction of v+
k+ 1

2

.
Finally, after spatial discretization, we solve the semi-

discretization (II) using the third-order TVD Runge–Kutta
method [19] and obtain :

v(1) = vn +∆tL(vn),
v(2) =

3

4
vn +

1

4
v(1) +

1

4
∆tL(v(1)),

vn+1 =
1

3
vn +

2

3
v(2) +

2

3
∆tL(v(2)).

(9)

III. NUMERICAL TESTS

In this section, we provide numerical tests to exhibit that
the proposed method has high-order accuracy and performs
well in capturing sharp fronts. For stability, we define the
time step as:

∆t =
CFL

max|s′(v)|
h + max|z′(v)|

h2

with CFL = 0.4.
Additionally, we consider three numerical methods for

comparison: the present TWENO scheme, DWENO scheme
[15], MRWENO scheme [16]. Finally, we define the error
and convergence order as follows:

L1error =
1

N

N∑
k=1

|vnk − Vk|,

L∞error = max
1≤k≤N

|vnk − Vk|,

L2error =

√√√√ 1

N

N∑
k=1

|vnk − Vk|2,

Order = log2

(
EN

E2N

)
.

Here, vk is the numerical solution, and Vk is the exact
solution. EN and E2N are the L1, L∞, or L2 errors when
using N and 2N elements, respectively.

A. Example 1

We test the accuracy of the fifth-order finite volume
scheme on the linear equation:

vt + vx = vxx, 0 ≤ x ≤ 2π,
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with the initial condition:

v(x, 0) = sin(x),

and periodic boundary condition. The analytical solution is

v(x, t) = e−t sin(x− t).

Table I presents the numerical errors and convergence orders
achieved using the TWENO scheme at time t = 2. As can be
observed, TWENO method can achieve fifth-order accuracy
in the smooth region.

TABLE I
THE L∞ , L1 AND L2 NORM ERRORS AND CONVERGENCE ORDERS.

N L∞ error order L1 error order L2 error order

10 5.52 e-05 3.57 e-05 4.08 e-05

20 1.66 e-06 5.04 1.07 e-06 5.05 1.18 e-06 5.10

40 3.81 e-08 5.44 2.43 e-08 5.46 2.70 e-08 5.46

80 7.34 e-10 5.69 4.67 e-10 5.69 5.19 e-10 5.69

B. Example 2

In the following, we consider the Burgers equation:

vt + (
v2

2
)x =

1

Re
vxx, 0 ≤ x ≤ 1,

with the initial condition:

v(x, 0) = sin(πx).

The boundary conditions v(0, t) = 0 and v(1, t) = 0 are
considered in this example. Here, Re denotes the Reynolds
number. We show that the numerical solutions for Re =
1, 10, 100, 10000 exhibit the correct physical behavior at
different times in Figure 1. Notice that as the Reynolds
number increases, the propagation front becomes steeper.
Figure 2 presents numerical solutions at Re = 10000, Re =
20000 and t = 0.6. We observe that there are non-physical
oscillations present in the numerical solutions in regions with
large gradients.

C. Example 3

We study the Buckley-Leverett equation of the form (1).
The diffusion flux z(v) is defined as follows:

z(v) =


0, v < 0,

ϵ

(
2v2 − 4

3
v3
)
, 0 ≤ v ≤ 1,

2

3
ϵ, v > 1.

(10)

We consider the advection flux s(v) to have an s-shaped
form given by

s(v) =
v2

v2 + (1− v)2
, (11)

as well as the flux s(v) with gravitational effects

s(v) =
v2

v2 + (1− v)2
(
1− 5(1− v)2

)
. (12)

Initially, we simulate the initial-boundary value problem
using the fluxes defined in equations (10), (11). The initial
data is considered as

v(x, 0) =

{
1− 3x, 0 ≤ x ≤ 1

3 ,
0, 1

3 < x ≤ 1,

with the boundary condition v(0, t) = 1. In Figure 3 we
present the results for three WENO schemes with N = 200 at
different times. Here, the reference solutions are computed by
using the HWENO scheme [17] for all computations. We can
notice that the TWENO scheme demonstrates better results
and higher efficiency in this test case.

Subsequently, we simulate the Buckley-Leverett equation
using the fluxes (10),(11) and (10),(12). The initial condition
for this Riemann problem is given by:

v(x, 0) =

{
0, 0 ≤ x < 1− 1√

2
,

1, 1− 1√
2
≤ x ≤ 1,

with boundary conditions v(0, t) = 0 and v(1, t) = 1.
Figures 4 and 5 display the numerical solutions for the
three schemes at different times with N = 200. In this
example, the TWENO scheme yields good results and higher
resolution in this example.

D. Example 4

In this final test, we solve the strongly degenerate parabolic
equation of the form (1), we take the diffusion flux as s(v) =
ϵv2 with ϵ = 0.01 and the advection flux as

z(v) =

 ε(v + 0.25), v < −0.25
ε(v − 0.25), v > 0.25
0, |v| ≤ 0.25

with initial conditions

v(x, 0) =


1, − 1√

2
− 0.4 < x < − 1√

2
+ 0.4,

−1, 1√
2
− 0.4 < x < 1√

2
+ 0.4,

0, otherwise .

The boundary condition is v(±2, t) = 0 considered in this
case. The numerical results for the three methods at different
time levels with N = 400 grid points are shown in Figure
6. The TWENO scheme exhibits optimal performance across
varying time intervals in this test case.

IV. CONCLUSION

The proposed fifth-order finite volume TWENO scheme
demonstrates superior accuracy, robustness, and resolution
when solving one-dimensional convection-diffusion equa-
tions with non-smooth solutions. By leveraging trigonometric
polynomial reconstructions and an effective temporal dis-
cretization via the third-order TVD Runge-Kutta method.
The method not only overcomes challenges associated with
negative weights but also enhances stability near disconti-
nuities. Numerical experiments confirm the scheme’s high-
order convergence and its potential as a powerful tool for
complex problems. Moreover, it is adaptable for the numer-
ical computation of multi-dimensional convection-diffusion
equations.
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Fig. 1. Example 2. Numerical solutions for the Burgers equation at different times and Reynolds numbers. (a) Re = 1,(b) Re = 10,(c) Re = 100,(d)
Re = 10000.
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Numerical

(a) Re = 10000, t = 0.6
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Numerical

(b) Re = 20000, t = 0.6

Fig. 2. Example 2. Numerical solutions for the Burgers equation at t = 0.6 and Re = 10000, 20000.(a) Re = 10000, t = 0.6,(b) Re = 20000, t = 0.6.
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Fig. 3. Example 3. The solution of the Buckley–Leverett equation at t = 0.2 and t = 0.5, using N = 200.(a) t = 0.2,(b) t = 0.5.
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Fig. 4. Example 3. The solution of the Buckley–Leverett equation at t = 0.2 and t = 0.5, using N = 200.(a) t = 0.2,(b) t = 0.5.
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Fig. 5. Example 3. The solution of the Buckley–Leverett equation at t = 0.1 and t = 0.2, using N = 200.(a) t = 0.1,(b) t = 0.2.
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Fig. 6. Example 4. The solution of the strongly degenerate parabolic
equation at t = 0.4, 0.8, using N = 400.(a) t = 0.4,(b) t = 0.8.

REFERENCES

[1] M. Dehghan and A. Mohebbi, “High-order compact boundary value
method for the solution of unsteady convection–diffusion problems,”
Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 683–
699, 2008.

[2] R. Lin, X. Ye, S. Zhang, and P. Zhu, “A weak galerkin finite
element method for singularly perturbed convection-diffusion–reaction
problems,” SIAM Journal on Numerical Analysis, vol. 56, no. 3, pp.
1482–1497, 2018.

[3] C. Cancès, C. Chainais-Hillairet, A. Gerstenmayer, and A. Jüngel,
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