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Abstract—This paper presents a fixed-time stabilization
project based on a super-twisting SMC (sliding mode
control) method. The scheme applied in fractional-order wind
power system can ensure the state trajectories converge
to equilibrium in limit time. Super-twisting algorithm can
effectively conquer the singularity issue and significantly obviate
the chattering phenomenon. Furthermore, the influence of
external disturbance is considered to design a robust controller.
For demonstrate the fixed-time stability of the controlled
system, the fractional-order and integer-order Lyapunov theory
are applied to verify the stability of reaching phase and sliding
phase, respectively. Simulation results imply that the proposed
control strategy can improve the robustness of the fractional-
order wind power system.

Index Terms—super-twisting algorithm, fractional-order
system, sliding-mode control, fixed-time stability.

I. INTRODUCTION

RECENTLY, fractional-order calculus as an important
mathematical tool has been widely used to model

the phenomena or processes with memory and hereditary
characteristics[1-4]. There are research results have proven
that fractional-order controllers are more robust and
effective against system uncertainties than integer-order
controllers[5-8]. At present, applications of fractional-order
systems have been reported in many areas, for instance, a
fractional-order dynamic model is employed to show the
electrical characteristics of fuel cells [9]; A fractional-order
capacitor with order within (1, 2) is studied in [10]; In
addition, fractional-order derivatives are utilized to depict the
cardiac tissue-electrode interface in [11], and so on.

Permanent magnet synchronous generator(PMSG) is the
key device of wind power system for electromechanical
energy conversion, it’s stability will profoundly affect the
safe operation of wind power systems. Now, many literatures
about the robust control of PMSG have been reported. For
instance, Zhu investigated the adaptive impulsive control
scheme for the chaotic-oscillation PMSG [12]; Through
design a robust nonlinear control scheme, a maximum
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power of PMSG has been obtained by Cheikh [13]; Seker
proposed a robust backstepping approach, which can ensure
the generator velocity tracking error uniformly draw near
to a small bound [14]; A fresh robust nonsingular terminal
sliding mode control program was gave in [15], to get
high precision position tracking of permanent magnet linear
synchronous motor; A robust amplitude control set model
predictive current control scheme is designed by Zhang, it
can enhance the prediction accuracy and control precision
for permanent magnet synchronous motor [16], and so on.

However, the abovementioned research results are only
focus on the integer-order PMSG model, the fractional-order
PMSG model is rarely involved. Meanwhile, the fixed-time
convergence of system’s state trajectories is more meaningful
than system’s asymptotic stability. Actually, fixed-time
stability imply the optimality in settling time, and fixed-time
control method has good robustness and anti-interference
characteristics. Subsequently, in view of these advantages
of fixed-time stability, it is very essential to realize the
stabilization of fractional-order system in fixed time.

SMC technology are extensively used in the robust
control of nonlinear system, for example, a sliding
mode control method is used in [17], that a class
of uncertain delayed fractional-order reaction-diffusion
memristor neural networks are researched; Zhou designed
a periodic delayed sliding mode surfaces in [18], which
can achieve the nonsingular prescribed-time control; Tu
used a dual-layer sliding mode scheme in [19], so a class
of nonlinear systems with actuator faults and disturbances
is studied; A finite-time sliding mode control method is
investigated in [20], then the nonlinear robotic systems with
unknown dynamics are discussed, and so forth.

As we all known that traditional sliding mode
control has a significant drawback, that is chattering
phenomenon. Chattering can be considered as a cause
of performance degradation or even instability, while,
system’s stability is a prerequisite for normal operation.
On the other hand, SMC has some advantages, such
as, fast response, insensitivity to parameter changes and
disturbances, and simple physical implementation, and
so on. So, it is challenging to improve traditional SMC
performance. Super-twisting algorithm (STA) has the
good points of the traditional high-order SMC, which can
effectively suppress chattering. Additionally, the STA can
quicken the approximation of the sliding variables approach
to sliding surface then optimize the settling time.

Inspired by the above discussion, researching the
fixed-time control of fractional-order PMSG model with
super-twisting algorithm is a meaningful and valuable
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work. In order to deal with the chattering problem and
realize fixed-time stability, a novel sliding mode surface is
designed, and appropriate control laws are provided for the
unknown bounded of external disturbance in this paper. The
integer-order and fractional-order Lyapunov theory are both
used to demonstrate the fixed-time stability of reaching and
sliding phase.

The remaining part of this article is arranged as follows:
In section 2, relevant definitions, lemmas are presented.
Problem description and main results are given in section
3. Simulation results are displayed in section 4. In the end
conclusion is included in section 5.

II. FRACTIONAL CALCULUS AND RELEVANT LEMMAS

Fractional calculus is the general form of integer ones,
it extends the contents of differentiation and integration
to non-integer orders. The Caputo definition is the most
frequently used definition of fractional calculus.

Definition 1 (see [21]). The Caputo fractional derivative
of order α is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ,m− 1<α<m
dm

dtm f(t), α = m
(1)

wherein Γ(·) is the Gamma function, m is the smallest
integer number that larger than α. In the remaining part of
the text, for brief, we will use Dα to replace 0D

α
t .

Lemma 1 (see [22]). For an integrable and continuous
function x(t), the following inequality is assured regarding
t ≥ t0:

1

2
Dαx2(t) ≤ x(t)Dαx(t), ∀α ∈ (0, 1) (2)

Lemma 2 (see [23]). If the following system model is
considered:

ẋ = f(x), x(0) = x0, x ∈ Rn, f(0) = 0 (3)

where f(x): D → Rn is continuous on an open
neighborhood D ⊂ Rn. Suppose there is a continuous
positive definite function V (x): D → R, and exists positive
constants η > 0 and 0 < γ < 1, such that

V̇ (x) + ηV γ(x) ≤ 0 (4)

then, the system (3) is locally finite-time stable. Depending
on the initial state x(0) = x0, the settling time T satisfies
the following inequality as

T ≤ V 1−γ(x0)

η(1− γ)
(5)

especially, when D = Rn and V (x) is also radially
unbounded, the state of system(3) is globally finite-time
stable.

Lemma 3 (see [24]). For a fractional-order system
Dqx(t) = f(t, x(t)), the origin is fixed-time stable if there
exists a positive definite function V (t, x(t)) , V (t), such
that

DqV (t) ≤ λ1Γ(1− γ)

Γ(2− q)Γ(q − γ + 1)
V 1−q+γ(t)

− λ2Γ(1− ω)

Γ(2− q)Γ(q − ω + 1)
V 1−q+ω(t) (6)

with λ1 > 0, λ2 > 0, 1 < γ < q + 1 and q − 1 < ω < q.
The settling time is estimated by

T =
[Γ(1 + q)

λ1

] 1
q

+
[Γ(1 + q)

λ2

] 1
q

(7)

which is independent of the initial conditions.
Lemma 4 (see [25]). If z1, z2, ..., zn > 0, r > 1 and

0 < l ≤ 1, then the following inequalities hold
n∑

i=1

zri ≥ n1−r
( n∑

i=1

zi

)r

,

n∑
i=1

zli ≥
( n∑

i=1

zi

)l

(8)

Lemma 5 (see [26]). If f(t) ∈ C1([t0,+∞), R) is a
continuously differentiable function, then

Dq|f(t)| ≤ sgn(f(t))Dqf(t), 0 < q < 1 (9)

where sgn(·) is the sign function.

III. SYSTEM DESCRIPTION AND MAIN RESULTS

As the core device in wind power systems, permanent
magnet synchronous generator (PMSG) mainly responsible
for electromechanical energy conversion, and its stability will
profoundly affect the safe operation of wind power systems.
Consequently, the key control issue of wind power is how
to maintain the stable operation of PMSG with the externa
disturbance.

In view of the merits of fractional calculus, this paper
investigates the fractional-order mathematics model of
PMSG, it is depicted as follows

Dαx1 = −x1 + x2x3 + ũd

Dαx2 = −x2 − x1x3 + θx3 + ũq

Dαx3 = −T̃L + σ(x2 − x3) (10)

where ũd, ũq , T̃L are transformed d-axis and q-axis voltages,
as well as the rotor input torque, respectively. θ and σ are
system’s structure parameters. α ∈ (0, 2) is system fractional
order, when α = 0.98, θ = 110, σ = 16, ũd = −0.45, ũq =

0.68, T̃L = 2.5, then system (10) behave chaotically, when
the initial condition x0 = [1, 3, 2]T , the strange attractors
and state trajectories are displayed in Figure 1 and Figure 2,
respectively.
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Figure 1. The strange attractors of PMSG system (10)
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Figure 2. The state trajectories of PMSG system (10)

Considering the effect of controller, the controlled system
described as follows

Dαx1 = −x1 + x2x3 + ũd + d1(t) + u1(t)

Dαx2 = −x2 − x1x3 + θx3 + ũq + d2(t) + u2(t)

Dαx3 = −T̃L + σ(x2 − x3) + d3(t) + u3(t) (11)

where d(t) = [d1(t), d2(t), d3(t)]
T represents bounded

external disturbance, which satisfied |ḋi(t)| ≤ ϵ. u(t) =
[u1(t), u2(t), u3(t)]

T denotes fixed-time controller to be
designed in the next content.

When the system’s parameters are selected as
eq.(10), the system has three equilibrium, that are
E1(−0.451, 0.152,−0.005), E2(108.95,−10.382,−10.538),
E3(109.05, 10.541, 10.386). All of them are unstable saddle
point. Now, we taking the equilibrium point E∗

i (x
∗
1, x

∗
2, x

∗
3),

i = 1, 2, 3 as the control objective, thus, defining the
tracking error as e1 = x1 − x∗

1, e2 = x2 − x∗
2, e3 = x3 − x∗

3.
The error dynamics model described as follows

Dαe1=−e1−x∗
1+(e3+x∗

3)(e2+x∗
2)+ũd+d1(t)+u1(t)

Dαe2=−e2−x∗
2−(e3+x∗

3)(e1+x∗
1)+θ(e3+x∗

3)+ũq

+d2(t)+u2(t)

Dαe3=−T̃L+σ(e2+x∗
2−e3−x∗

3)+d3(t)+u3(t) (12)

In this paper, our goal is to design a super-twisting sliding
mode control strategy to stabilize the error system (12) in
limit time. Generally, two steps are contained in the design
of a fixed-time sliding mode controller. The first step is to
establish a sliding surface, the sliding variable can converge
to origin in limit time. The second step is to design a
controller to guarantee the occurrence of the sliding motion.

Now, we put forward a novel fractional-order integral type
sliding surface as follows

si = Dα−1ei +

∫ t

0

(k1ei|ei|β1 + k2ei|ei|β2)dτ (13)

where i = 1, 2, 3. k1, k2 > 0 are positive real numbers,
1− α < β1 < 1, −1 < β2 < 0.

In case the system trajectories arrived in sliding surface,
the following equations are satisfied

si = 0, ṡi = 0 (14)

that is, taking the time derivative of the fractional-order
sliding surface (13), we have the expected sliding mode
dynamics as follows

Dαei = −k1ei|ei|β1 − k2ei|ei|β2 (15)

Theorem 1 Considering the sliding mode dynamics (15),
the system is stable and the state trajectories converge to
equilibrium in fixed time.

Proof. From the eq.(15), if ei → 0 in a given time imply
that the state trajectories can tends to equilibrium in a fixed
time, so we just need to verify the finite-time stability of
error system (15).

Choosing the following Lyapunov function for error
system (15),

V1(t) =

3∑
i=1

|ei| (16)

Taking the α-order differentiation of eq.(16), and
according to lemma 4 and 5, it yields

DαV1≤
3∑

i=1

sgn(ei)D
αei

=−
3∑

i=1

k1|ei|β1+1 −
3∑

i=1

k2|ei|β2+1

≤−3−β1k1

( 3∑
i=1

|ei|
)1+β1

−3−β2k2

( 3∑
i=1

|ei|
)1+β2

(17)

further, we have

DαV1 = −3−β1k1V
1+β1

1 −3−β2k2V
1+β2

1 (18)

choosing γ = α + β1, ω = α + β2, and λ1 =
−3−β1k1Γ(2−α)Γ(α−γ+1)

Γ(1−γ) , λ2 = 3−β2k2Γ(2−α)Γ(α−ω+1)
Γ(1−ω) . Then

eq.(18) can be rewritten as

DαV1 =
λ1Γ(1− γ)

Γ(2− α)Γ(α− γ + 1)
V 1−α+γ
1

− λ2Γ(1− ω)

Γ(2− α)Γ(α− ω + 1)
V 1−α+ω
1 (19)

according to lemma 3, it is obviously that the
error ei will converge to 0 in a fixed time

T1 =
[

−Γ(1+α)Γ(1−α−β1)
3−β1k1Γ(2−α)Γ(1−β1)

] 1
α

+
[

Γ(1+α)Γ(1−α−β2)
3−β2k2Γ(2−α)Γ(1−β2)

] 1
α

.
The proof is completed.

Once the sliding surface has been proposed, next, we will
investigate a control strategy to drive the state trajectories of
the error system (12) to sliding mode surface in limit time
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and stay on it forever. The investigated controllers have the
following form

u1 = e1 + x∗
1 − (e3 + x∗

3)(e2 + x∗
2)− ũd − k1e1|e1|β1

−k2e1|e1|β2 −m1|s1|
1
2 sgn(s1)−

∫ t

0

m2sgn(s1)dτ

u2 = e2+x∗
2 + (e3+x∗

3)(e1+x∗
1)−θ(e3 + x∗

3)−ũq

−k1e2|e2|β1 − k2e2|e2|β2−m1|s2|
1
2 sgn(s2)

−
∫ t

0

m2sgn(s2)dτ

u3 = T̃L − σ(e2 + x∗
2 − e3 − x∗

3)− k1e3|e3|β1 − k2 ×

e3|e3|β2−m1|s3|
1
2 sgn(s3)−

∫ t

0

m2sgn(s3)dτ (20)

where m1, m2 are positive numbers, which will be
determined in the next content.

Theorem 2 Considering the error system (12), if the
system is controlled by the control law (20), then the state
trajectories of system (12) will converge to si = 0 (i =
1, 2, 3) in fixed time.

Proof. To prove the closed-loop stability of the controller,
the first derivative of the sliding surface (13) is given as

ṡi = Dαei + (k1ei|ei|β1 + k2ei|ei|β2) (21)

we can introduce a new tuple [ηi1, ηi2] to rewrite (21) for
further simplification:

ηi1 = si

ηi2 = −m2

∫ t

0

sgn(si)dτ + di(t) (22)

taking the first derivative of eq.(22), we obtain

η̇i1 = −m1|ηi1|
1
2 sgn(ηi1) + ηi2

η̇i2 = −m2sgn(ηi1) + ḋi(t) (23)

through introducing a new state vector ςi = [ςi1, ςi2]
T =

[|ηi1|
1
2 sgn(ηi1), ηi2]

T , then (23) can be rewritten by ςi1 and
ςi2 as

ς̇i1 =
1

2|ςi1|
(−m1ςi1 + ςi2)

ς̇i2 =
1

2|ςi1|
(−2m2ςi1) + ḋi(t) (24)

as aforementioned, ḋi(t) has upper bound, thus it can be
descried as

ḋi(t) = δ(t)sgn(ηi1) = δ(t)
ςi1
|ςi1|

(25)

where δ(t) is a bounded function and satisfies 0 < δ(t) < ϵ,
eq.(24) can be rewritten as[ ς̇i1

ς̇i2

]
=

1

2|ςi1|

[ −m1 1
−2m2 + 2δ(t) 0

][ ςi1
ςi2

]
(26)

If the new state vector ςi = [ςi1, ςi2]
T → 0 in fixed time,

then ηi1 and ηi2 will tend to zero in given time, that is sliding
surface si can arrive at origin in limit time.

Selecting the Lyapunov function as

V2i(t) = (ςi1 − ςi2)
2 + ς2i1 = ςTi PςTi (27)

where P is a positive definite matrix and defined as

P =
[ 2 −1
−1 1

]
(28)

the first derivative of eq.(27) is

V̇2i = 4ςi1ς̇i1− 2ς̇i1ςi2 − 2ςi1ς̇i2 + 2ςi1ς̇i2

= 4ςi1
1

2|ςi1|
(−m1ςi1+ςi2)− 2

1

2|ςi1|
(−m1ςi1+ςi2)ςi2

−2ςi1
1

2|ςi1|
(−2m2+2δ(t))ςi1+2ςi2

1

2|ςi1|
(−2m2

+2δ(t))ςi1 (29)

considering the upper bound of ḋi(t), we obtain

V̇2i ≤ − 1

2|ςi1|

(
4m1ς

2
i1 − 4ςi1ςi2 − 2m1ςi1ςi2 + 2ς2i2

−4m2ς
2
i1 + 4ϵς2i1 + 4m2ςi1ςi2 − 4ϵςi1ςi2

)
=− 1

2|ςi1|
ςTi Qςi (30)

where Q = QT , and it is expressed as

Q=
[ 4m1 − 4m2 + 4ϵ −2−m1 + 2m2 − 2ϵ
−2−m1 + 2m2 − 2ϵ 2

]
(31)

through setting the gain parameter m2 = 0.5m1, eq.(31) can
be rewritten as

Q =
[ 2m1 + 4ϵ −2− 2ϵ

−2− 2ϵ 2

]
(32)

It is obviously that when m1 > (2+2ϵ)2−8ϵ
4 , then Q is

positive definite. Meanwhile, the following inequality holds:{
λmin(P )||ςi||22 ≤ V2i(t) ≤ λmax(P )||ςi||22

|ςi1| ≤ ||ςi||2 ≤
√

V2i(t)
λmin(P )

(33)

further, eq.(30) can be rewritten as

V̇2i ≤
−1

2|ςi1|
ςTi Qςi ≤

−1

2|ςi1|
λmin(Q)||ςi||22

≤ −1

2|ςi1|
λmin(Q)

V2i

λmax(P )

≤ −λ0.5
min(P )λmin(Q)

2λmax(P )
V 0.5
2i = −µV 0.5

2i (34)

according to lemma 2, the state trajectories of error system
(12) will converge to si = 0 in a fixed time T2 =

V 0.5
2i (t0)
0.5µ .

The proof is completed.
From theorem 1 and theorem 2, we know that the error

system (12) can be stabilized in a fixed time T1 + T2.

IV. SIMULATION RESULTS

In this section, simulation results are given to verify
the effectiveness and feasibility of the proposed control
scheme. The system parameters are given by eq.(10), the
parameters of fractional-order sliding surface are β1 = 0.5,
β2 = −0.5, k1 = k2 = 1. The controller parameters
are set as m1 = 2, m2 = 1, and ϵ = 2. The external
disturbance d(t) = [0.2 sin t, 0.2 sin t, 0.2 sin t]T , The PMSG
system (10) has three equilibrium points, respectively are
E1(−0.451, 0.152,−0.005), E2(108.95,−10.382,−10.538),
E3(109.05, 10.541, 10.386). Taking E2 as an example, when
activated the controller in t = 20s, we can observe that
the state trajectories of controlled PMSG system (11) can
converge to equilibrium point E2 in a given time, which are
shown in Figure 3.
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Figure 3. The state trajectories of PMSG system (11) with
controller activated

The above simulation results sufficiently demonstrate that
the presented super-twisting sliding mode control method
is effective in stabilizing fractional-order nonlinear wind
power system, the state trajectories of controlled system can
converge to equilibrium points in a fixed time.

V. CONCLUSION

In this paper, a super-twisting SMC strategy is investigated
for stabilizing fractional-order wind power system. Under
the action of the designed controller, the controlled system
showed good ability to resist external disturbance, and has
fast convergence. To deal with the chattering phenomenon
of traditional sliding mode scheme, super-twisting algorithm
has been used in this paper, which can quicken the
approximation of the sliding variables approach to sliding
surface, and finally optimize the settling time. In order to
demonstrate the stability of two stages in sliding mode
control, fractional and integer Lyapunov stability theorem
both are used. Simulation results confirmed the feasibility
and effectiveness of the designed control project.
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