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Abstract - Fibonacci numbers and polynomials have been 

widely studied due to their importance in mathematics, physics, 

and business. The Coupled Fibonacci Sequence (CFS) and 

Multiplicative Coupled Fibonacci Sequence (MCFS) contain 

useful identities but depend on previous terms for computation. 

The Lucas Sequence (LS) also displays notable properties in 

number theory. This study investigates the second-order 

Coupled Lucas Sequence (CLS), in which two interdependent 

sequences evolve in tandem. Through mathematical analysis 

and simulations, we uncover patterns, periodicities, and 

structural relationships within the sequence. Additionally, the 

research explores its promising applications in cryptography, 

optimization, and algorithm design. A deeper understanding of 

CLS enhances number theory and offers insights into broader 

mathematical systems. This study contributes to mathematical 

research by revealing intricate connections between sequences 

and emphasizing the elegance and utility of coupled sequences 

across disciplines. 

Index Terms- LS, FS, CFS, MCFS, CLS. 

I. INTRODUCTION 

umerous fields, including algebra, combinatorics, 

approximation theory, geometry, graph theory, and 

number theory itself, have benefited from it., the Fibonacci 

numbers and polynomials play a crucial role. Perhaps the 

most well-known application of the Fibonacci numbers is in 

the rabbit breeding puzzle, which Leonardo de Pisa first 

presented in his book "Liber-Abaci" in 1202. Numerous 

authors have explored their various characteristics and 

broadened usefulness. The Fibonacci and Lucas numbers are 

undoubtedly two of the most fascinating mathematical 

sequences, as illustrated in Koshy's book [1]. A long list of 

identities can be  found in Vajda's book [2] and includes 

numerous identities. There is a long form of unity matrices 
and determinants to study Fibonacci numbers. A.K. 

Awasthi, Vikas Ranga, and  Kamal Dutt [14] discuss the  
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extension of Fibonacci sequences using specific 

multiplicative schemes. 

 
Fig 1. Fibonacci Spiral with golden ratio 

Fig 1, represents the Fibonacci Spiral, formed using squares 

with side lengths following the Fibonacci sequence (2 × 2, 3 

× 3, 5 × 5, 8 × 8,…). A quarter-circle arc inside each square 

creates a spiral-like curve, approximating the Golden Spiral, 

seen in nature, art, and architecture. It visually demonstrates 

the connection between the Fibonacci sequence and the 

Golden Ratio, showcasing proportional and symmetrical 

growth patterns. 

The "Coupled Lucas Sequence of Second Order" emerges 

as a captivating exploration within the domain of number 

theory, building upon the foundations laid by the classical 

LS. This innovative extension introduces a dynamic 

interplay between two distinct second-order LS, weaving a 

tapestry of numerical relationships that transcend the 

conventional boundaries of sequence theory. As a testament 

to the continuous evolution of mathematical inquiry, this 

study delves into the intricacies of the coupled sequences, 

unraveling a myriad of patterns, properties, and applications. 

By introducing coupling mechanisms between two such 

sequences, a new and intriguing mathematical entity 

emerges. This coupled relationship manifests as a 

simultaneous evolution of two interconnected sequences, 

influencing each other's progression in a harmonious dance 

of numerical dynamics. 

N 
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The origins of the Fibonacci and Lucas numbers as 

determinants of some tridiagonal matrices were investigated 

by Cahill and Narayan [3]. K.T. Atanassov [4] and Suman, 

Amitava, K. Sisodiya introduce respectively the interlinked 

second order recurrence relation and interlinked Jacobsthal 

Sequence by constructing two sequences {𝛼𝑖}𝑖=0
∞  and  

{𝛽𝑖}𝑖=0
∞  naming them as 2F Sequences. 

 

 

Fig 2. Structure of Coupled Sequence 

Fig. 2 illustrates a hierarchical relationship between 

sequences. At the top level is the "Coupled Sequence", 

which branches into two distinct types: Coupled Fibonacci 

Sequence. One branch leads to the "Coupled Fibonacci 

Sequence," suggesting it is a variant or extension of the 

traditional Fibonacci sequence, possibly modified by a 

coupling rule or relationship. Coupled Lucas Sequence has 

the branch leads to the "Coupled Lucas Sequence," 

indicating a similar variant or extension of the Lucas 

sequence, also with some form of coupling rule. This 

structure shows that the "Coupled Sequence" serves as a 

foundational concept that can lead to either a coupled version 

of the Fibonacci or Lucas sequences, depending on the 

branching path. 

According to the scheme  

𝛼𝑛+2 = 𝛽𝑛+1 + 𝛽𝑛,  𝑛 ≥ 0 

𝛽𝑛+2 = 𝛼𝑛+1 + 𝛼𝑛,  𝑛 ≥ 0 

Taking 𝛼0 = 𝑎, 𝛽0 = 𝑏, 𝛼1 = 𝑐, 𝛽1 = 𝑑  where a, b, c  and 

d are integers, As seen in [4, 6, 7], he expanded his work in 

the same approach. Hirschhorn provides explicit solutions in 

[5, 8] to Atanassov [7] long-standing difficulties on second 

and third order recurrence relations. Recently, order five 

coupled recurrence relations of this type were found by 

Singh, Sikhwal, and Jain [9]. Moreover, Carlitz et al. [10] 

provided a description for a unique sequence. 

II. CLS OF SECOND ORDER 

The sequences {Լ𝑖}𝑖=0
∞  and  {ℓ𝑖}𝑖=0

∞ will coincide and the 

sequence  {Լ𝑖}𝑖=0
∞  will turn into a generalized Lucas 

sequence if we set 𝒶 = 𝒷 and 𝒸 = 𝒹.  

Where,  

Լ0(𝒶, 𝑐) = 𝒶, Լ1(𝒶, 𝑐) = 𝒸  

Լ𝑛+2(𝒶, 𝒸) = ℓ𝑛+1(𝒶, 𝒸) + 2ℓ𝑛(𝒶, 𝒸),   

Լ𝑛 = 𝒶, 𝒷, 𝒹 + 2𝒸, 𝒷 + 2𝒶 + 2𝒹    

ℓ𝑛 = 𝒸, 𝒹, 𝒷 + 2𝒶, 𝒹 + 2𝒸 + 2𝒷 

Following are the first few terms. 

Table I  

First few terms of second order CLS 

𝑛 Լ𝑛 ℓ𝑛 

0 𝒶 𝒸 

1 𝒷 𝒹 

2 𝒹 + 2𝒸 𝒷 + 2𝒶 

3 𝒷 + 2𝒶 + 2𝒹 𝒹 + 2𝒸 + 2𝒷 

4 𝒹 + 2𝒸 + 4𝒷 + 4𝒶 𝒷 + 2𝒶 + 4𝒹 + 4𝒸 

5 6𝒹 + 8𝒸 + 5𝒷 + 2𝒶 5𝒹 + 2𝒸 + 6𝒷 + 8𝒶 

Taking Lucas sequence 

Լ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

We defined 2-L Sequences as coupled order recurrence 

relations for Lucas numbers and Lucas sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

Լ0 = 𝒶, Լ1 = 𝒷, ℓ0 = 𝒸, ℓ1 = 𝒹  

 

Fig 3. Structure of Scheme of  CLS 

Fig 3 illustrates the hierarchical structure of the scheme of 

CLS under addition. 2nd order CLS represents the basic CLS 

with one scheme, where the terms are derided by adding the 

last term and twice the second to last term of the sequence. 

III. MAIN IDENTITIES 

We can derive the following properties from the above 

terms: 
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Theorem 1: For every odd number 𝑛 ≥ 3. 

Լ𝑛 − Լ1

2
= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

OR 

Լ𝑛 − Լ1 = 2(Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

Proof: We will use a mathematical induction method to 

demonstrate this conclusion.  

For 𝑛 = 3, 

Լ3 − Լ1

2
=

ℓ2 + 2ℓ1 − Լ1

2
 

=
Լ1 + 2Լ0 + 2ℓ1 − Լ1

2
 

=
2Լ0 + 2ℓ1

2
 

    = Լ0 + ℓ1   

or 

Լ3 − Լ1 = 2(Լ0 + ℓ1) 

The result is accurate for 𝑛 = 2 

therefore we suppose the same for 𝑛. 

We will now demonstrate that for 𝑛 + 2. 

Լ𝑛+2 − Լ1

2
=

ℓ𝑛+1 + 2ℓ𝑛 − Լ1

2
 

=
Լ𝑛 + 2Լ𝑛−1 + 2ℓ𝑛 − Լ1

2
 

=
Լ𝑛 − Լ1

2
+

2Լ𝑛−1 + 2ℓ𝑛

2
 

= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) +( Լ𝑛−1 +
ℓ𝑛) 

= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−1 + ℓ𝑛) 

Therefore, the statement holds true for the case of 𝑛 + 2, 

completing the inductive step and proving the result. 

Example-1 based on Theorem 1 

Let {Լ𝑛}𝑛=0
∞  and {ℓ𝑛}𝑛=0

∞  be two infinite sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

We are given a sequence Լ𝑛 with initial terms 1 and 3, and a 

sequence ℓ𝑛 with initial terms 2 and 4. 

The Initial terms of the sequence under CLS of second 

order will provide proving pattern as expressed in further 

proving.  

Table II 

Initial terms of the sequence under CLS of second order 

𝑛 ℓ𝑛 Լ𝑛 

0 2 1 

1 4 3 

2 5 8 

3 14 13 

4 29 24 

5 50 57 

6 105 108 

7 222 205 

8 421 432 

9 842 865 

10 1729 1684 

Now we will apply the theorem on this example 

Լ𝑛 − Լ1

2
= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

For 𝑛 = 3 in L.H.S. 

⇒                 
Լ3 − Լ1

2
=

13 − 3

2
 

⇒      = 5 

Now 𝑛 = 3  in R.H.S 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   = Լ0 + ℓ1 

= 1 + 4 

               = 5 

   =L.H. S 

For 𝑛 = 5 in L.H.S 

⇒                 
Լ5 − Լ1

2
=

57 − 3

2
 

⇒       = 27 

Now 𝑛 = 5  in R.H.S. 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   
= Լ0 + ℓ1 + Լ2 + ℓ3 

= 1 + 4 + 8 + 14 

       = 27 

       =L.H. S 
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Hence the conclusion is valid.  

For 𝑛 = 7 in L.H.S 

⇒                 
Լ7 − Լ1

2
=

205 − 3

2
 

⇒       = 101 

Now 𝑛 = 7  in R.H.S. 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   

 = Լ0 + ℓ1 + Լ2 + ℓ3+Լ4 + ℓ5 

= 1 + 4 + 8 + 14 + 24 + 50 

       = 101 

       =L.H.S 

For 𝑛 = 9 in L.H.S 

⇒               
Լ7 − Լ1

2
=

865 − 3

2
 

⇒       = 431 

Now 𝑛 = 9  in R.H.S. 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   

= Լ0 + ℓ1 + Լ2 + ℓ3+Լ4 + ℓ5 + Լ6 + ℓ7 

= 1 + 4 + 8 + 14 + 24 + 50 + 108 + 222 

       = 431  =L.H. S  

Example-2 based on Theorem 1 

Table III 

Initial terms of the Generalized CLS of second order 

𝑛 ℓ𝑛 Լ𝑛 

0 𝑎 𝑏 

1 𝑐 𝑑 

2 2𝑏 + 𝑑 2𝑎 + 𝑐 

3 2𝑎 + 𝑐 + 2𝑑 2𝑏 + 2𝑐 + 𝑑 

4 4𝑎 + 2𝑏 + 4𝑐 + 𝑑 2𝑎 + 4𝑏 + 𝑐 + 4𝑑 

5 2𝑎 + 8𝑏 + 5𝑐 + 6𝑑 8𝑎 + 2𝑏 + 6𝑐 + 5𝑑 

Now we will apply the theorem on this example 

Լ𝑛 − Լ1

2
= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

For 𝑛 = 3 in L.H.S. 

⇒                 
Լ3 − Լ1

2
=

2𝑏 + 2𝑐 + 𝑑 − 𝑑

2
 

⇒                               = 𝑏 + 𝑐 

Now 𝑛 = 3  in R.H.S 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   = Լ0 + ℓ1 

⇒                                           = 𝑏 + 𝑐 

   =L.H.S 

For 𝑛 = 5 in L.H.S 

⇒                 
Լ5 − Լ1

2
=

8𝑎 + 2𝑏 + 6𝑐 + 5𝑑 − 𝑑

2
 

⇒       = 4𝑎 + 𝑏 + 3𝑐 + 2𝑑 

Now 𝑛 = 5  in R.H.S. 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2   

      = Լ0 + ℓ1 + Լ2 + ℓ3 

      = 𝑏 + 𝑐 + 2𝑎 + 𝑐 + 2𝑎 + 𝑐 + 2𝑑 

⇒       = 4𝑎 + 𝑏 + 3𝑐 + 2𝑑 

       =L.H. S 

Hence, the conclusion is valid on both the examples for 

every odd number 𝑛 ≥ 3 

Theorem 2: For every even number 𝑛 ≥ 2. 

Լ𝑛 − ℓ1

2
= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

OR 

Լ𝑛 − ℓ1 = 2(ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

Proof: We will use a mathematical induction method to 

demonstrate this conclusion. 

For 𝑛 = 2, 

Լ2 − ℓ1

2
=

ℓ1 + 2ℓ0 − ℓ1

2
 

= ℓ0 

The result is accurate for 𝑛 = 2, therefore we suppose the 

same for n. 

We will now demonstrate that for 𝑛 = 2, 

Լ𝑛+2 − ℓ1

2
=

ℓ𝑛+1 + 2ℓ𝑛 − ℓ1

2
 

=
Լ𝑛 + 2Լ𝑛−1 + 2ℓ𝑛 − ℓ1

2
 

=
Լ𝑛 − ℓ1

2
+

2Լ𝑛−1 + 2ℓ𝑛

2
 

= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … +Լ𝑛−3 + ℓ𝑛−2) + (Լ𝑛−1

+ ℓ𝑛) 
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= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−1 + ℓ𝑛) 

Thus, the outcome is accurate for 𝑛 + 2. 

Example based on Theorem 2 

Let {Լ𝑛}𝑛=0
∞  and {ℓ𝑛}𝑛=0

∞  be two sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

We are given a sequence Լ𝑛 with initial terms 2 and 4, and a 

sequence ℓ𝑛 with initial terms 1 and 3. 

Table IV 

Second-order CLS's initial few terms 

𝑛 ℓ𝑛 Լ𝑛 

0 1 2 

1 3 4 

2 8 5 

3 13 14 

4 24 29 

5 57 50 

6 108 105 

7 205 222 

8 432 421 

9 865 842 

10 1684 1729 

Now we will apply the theorem on this example 

Լ𝑛 − ℓ1

2
= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2) 

For 𝑛 = 4 in L.H.S. 

⇒                 
Լ4 − ℓ1

2
=

29 − 3

2
 

⇒       = 13 

Now 𝑛 = 4  in R.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2 = ℓ0 + Լ1 + ℓ2 

= 1 + 4 + 8 

            = 13 

            =L.H. S 

For 𝑛 = 6 in L.H.S. 

We have the result as per requirement. 

⇒                 
Լ6 − ℓ1

2
=

105 − 3

2
 

⇒       = 51 

Now 𝑛 = 6  in R.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2 

            = ℓ0 + Լ1 + ℓ2+Լ3 + ℓ4 

             = 1 + 4 + 8 + 14 + 24 

            = 51 

            =L.H.S 

For 𝑛 = 8 in L.H.S 

⇒                 
Լ8 − ℓ1

2
=

421 − 3

2
 

⇒       = 209 

Now 𝑛 = 8  in R.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2 

 = ℓ0 + Լ1 + ℓ2+Լ3 + ℓ4 + Լ5 + ℓ6 

 = 1 + 4 + 8 + 14 + 24 + 50 + 108 

 = 209 

 =L.H.S 

For 𝑛 = 10 in L.H.S 

⇒                 
Լ10 − ℓ1

2
=

1729 − 3

2
 

⇒       = 863 

Now 𝑛 = 10  in R.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … Լ𝑛−3 + ℓ𝑛−2 

= ℓ0 + Լ1 + ℓ2+Լ3 + ℓ4 + Լ5 + ℓ6+ + Լ7+ℓ8 

= 1 + 4 + 8 + 14 + 24 + 50 + 108 + 222 + 432 

            = 863 

            =L.H. S 

Hence the conclusion is valid. 

Theorem-2 can also be proved using the values of Table-III.  

Theorem 3: For every odd number 𝑛 ≥ 3. 

ℓ𝑛 − ℓ1

2
= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 

OR 

ℓ𝑛 − ℓ1 = 2(ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 
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Example based on Theorem 3 

Let {Լ𝑛}𝑛=0
∞  and {ℓ𝑛}𝑛=0

∞  be two sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

We are given a sequence Լ𝑛 with initial terms 2 and 3, and a 

sequence ℓ𝑛 with initial terms 1 and 2. 

Table V 

Initial terms of the second-order CLS 

𝑛 ℓ𝑛 Լ𝑛 

0 1 2 

1 2 3 

2 7 4 

3 10 11 

4 19 24 

5 46 39 

6 87 84 

7 162 179 

8 347 336 

9 694 671 

10 1343 1388 

Now we will apply the theorem on this example 

ℓ𝑛 − ℓ1

2
= (ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 

For 𝑛 = 5 in R.H.S 

⇒                 
ℓ5 − ℓ1

2
=

46 − 2

2
 

 = 22 

 =L.H.S 

Now 𝑛 = 5 in L.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2   
= ℓ0 + Լ1 + ℓ2 + Լ3 

 = 1 + 3 + 7 + 11  

  = 22 

 =R.H. S     

For 𝑛 = 7 in R.H.S 

We have the result as per requirement. 

⇒                 
ℓ7 − ℓ1

2
=

162 − 2

2
 

 = 80 

 =L.H. S 

Now 𝑛 = 7 in L.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2   

 = ℓ0 + Լ1 + ℓ2 + Լ3+ℓ4 + Լ5 

 = 1 + 3 + 7 + 11 + 19 + 39  

 = 80 

 =R.H. S  

For 𝑛 = 9 in R.H.S 

⇒                 
ℓ9 − ℓ1

2
=

694 − 2

2
 

⇒ = 346 

 =L.H.S 

Now 𝑛 = 9  in L.H.S 

ℓ0 + Լ1 + ℓ2 + Լ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2   

 = ℓ0 + Լ1 + ℓ2 + Լ3+ℓ4 + Լ5+ℓ6 + Լ7 

 = 1 + 3 + 7 + 11 + 19 + 39 + 87 + 179  

 = 346 

 =R.H. S 

Hence the conclusion is valid. 

Theorem-3 can also be proved using the values of Table-III 

Theorem 4: For every even number 𝑛 ≥ 2. 

ℓ𝑛 − Լ1

2
= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 

Or 

ℓ𝑛 − Լ1 = 2(Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 

Example based on Theorem 4 

Let {Լ𝑛}𝑛=0
∞  and {ℓ𝑛}𝑛=0

∞  be two sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

We are given a sequence Լ𝑛 with initial terms 2 and 2, and a 

sequence ℓ𝑛 with initial terms 1 and 1.  

First few terms of second order CLS will provide proving 

pattern as expressed in further proving. 

The table number VI also provide required results of  
ℓ𝑛  and  Լ𝑛. 
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Table VI 

First few terms of second order CLS 

𝑛 ℓ𝑛 Լ𝑛 

0 1 2 

1 1 2 

2 6 3 

3 7 8 

4 14 19 

5 35 28 

6 66 63 

7 119 136 

8 262 251 

9 523 500 

10 1002 1047 

Now we will apply the theorem on this example 

ℓ𝑛 − Լ1

2
= (Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2) 

For 𝑛 =6 in L.H.S 

⇒                 
ℓ6 − Լ1

2
=

66 − 2

2
 

⇒ = 32 

 =R.H.S 

Now 𝑛 = 6  in R.H.S 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2

= Լ0 + ℓ1 + Լ2+ℓ3 + Լ4 

= 2 + 1 + 3 + 7 + 19 

            =32 

            =L.H.S 

For 𝑛 =8 in L.H.S 

⇒                 
ℓ8 − Լ1

2
=

262 − 2

2
 

⇒ = 130 

 =R.H.S 

Now 𝑛 = 8  in R.H.S 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2 

= Լ0 + ℓ1 + Լ2+ℓ3 + Լ4 + +ℓ5 + Լ6 

= 2 + 1 + 3 + 7 + 19 + 35 + 63 

            =130 

            =L.H. S 

For 𝑛 =10 in L.H.S 

⇒                 
ℓ10 − Լ1

2
=

1002 − 2

2
 

⇒ = 500 

 =R.H.S 

Now 𝑛 = 10  in R.H.S 

Լ0 + ℓ1 + Լ2 + ℓ3 + ⋯ … … … ℓ𝑛−3 + Լ𝑛−2 

= Լ0 + ℓ1 + Լ2+ℓ3 + Լ4 + +ℓ5 + Լ6+ℓ7 + Լ8 

= 2 + 1 + 3 + 7 + 19 + 35 + 63 + 119 + 251 

            =500 

            =L.H. S 

Hence the conclusion is valid. 

Theorem-4 can also be proved using the values of Table-III 

Theorem 5: For every positive integer 𝑛. 

Լ𝑛+2Լ𝑛+1 − ℓ𝑛+2ℓ𝑛+1

ℓ𝑛+2ℓ𝑛 − Լ𝑛+2Լ𝑛

= 2 

or 

Լ𝑛+2Լ𝑛+1 − ℓ𝑛+2ℓ𝑛+1 = 2(ℓ𝑛+2ℓ𝑛 − Լ𝑛+2Լ𝑛) 

Proof: We will prove this result by method of mathematical 

induction  

For 𝑛 = 1, 

Լ3Լ2 − ℓ3ℓ2

ℓ3ℓ1 − Լ3Լ1

=
(ℓ2 + 2ℓ1)Լ2 − (Լ2 + 2Լ1)ℓ2

(Լ2 + 2Լ1)ℓ1 − (ℓ2 + 2ℓ1)Լ1

 

=
ℓ2Լ2 + 2ℓ1Լ2 − Լ2ℓ2 − 2Լ1ℓ2

Լ2ℓ1 + 2Լ1ℓ1 − ℓ2Լ1 − 2ℓ1Լ1

 

=
2ℓ1Լ2 − 2Լ1ℓ2

Լ2ℓ1 − ℓ2Լ1

 

= 2 [
ℓ1Լ2 − Լ1ℓ2

Լ2ℓ1 − ℓ2Լ1

] 

= 2 

The result is accurate for 𝑛 = 1,  

Therefore we suppose the same for n .We will now 

demonstrate that for 𝑛 + 1,  
Լ𝑛+3Լ𝑛+2 − ℓ𝑛+3ℓ𝑛+2

ℓ𝑛+3ℓ𝑛+1 − Լ𝑛+3Լ𝑛+1
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Լ𝑛+3Լ𝑛+2 − ℓ𝑛+3ℓ𝑛+2

ℓ𝑛+3ℓ𝑛+1 − Լ𝑛+3Լ𝑛+1

 

=
(ℓ𝑛+2 + 2ℓ𝑛+1)Լ𝑛+2 − (Լ𝑛+2 + 2Լ𝑛+1)ℓ𝑛+2

(Լ𝑛+2 + 2Լ𝑛+1)ℓ𝑛+1 − (ℓ𝑛+2 + 2ℓ𝑛+1)Լ𝑛+1

 

=
ℓ𝑛+2Լ𝑛+2 + 2ℓ𝑛+1Լ𝑛+2 − Լ𝑛+2ℓ𝑛+2 − 2Լ𝑛+1ℓ𝑛+2

Լ𝑛+2ℓ𝑛+1 + 2Լ𝑛+1ℓ𝑛+1 − ℓ𝑛+2Լ𝑛+1 − 2ℓ𝑛+1Լ𝑛+1

 

=
2ℓ𝑛+1Լ𝑛+2 − 2Լ𝑛+1ℓ𝑛+2

Լ𝑛+2ℓ𝑛+1 − ℓ𝑛+2Լ𝑛+1

 

= 2 [
ℓ𝑛+1Լ𝑛+2 − Լ𝑛+1ℓ𝑛+2

Լ𝑛+2ℓ𝑛+1 − ℓ𝑛+2Լ𝑛+1

] 

= 2 

Hence the result is true for 𝑛 + 1. 

Example-1 based on Theorem 5 

Let {Լ𝑛}𝑛=0
∞  and {ℓ𝑛}𝑛=0

∞  be two sequences. 

Լ𝑛+2 = ℓ𝑛+1 + 2ℓ𝑛, 𝑛 ≥ 0 

ℓ𝑛+2 = Լ𝑛+1 + 2Լ𝑛, 𝑛 ≥ 0 

We are given a sequence Լ𝑛 with initial terms 1 and 1, and a 

sequence ℓ𝑛 with initial terms 2 and 2. 

Table VII 

Introductory terms of the second-order CLS 

𝑛 ℓ𝑛 Լ𝑛 

0 2 1 

1 2 1 

2 3 6 

3 8 7 

4 19 14 

5 28 35 

6 63 66 

7 136 119 

8 251 262 

9 500 523 

10 1047 1002 

Now we will apply the theorem on this example 

Լ𝑛+2Լ𝑛+1 − ℓ𝑛+2ℓ𝑛+1

ℓ𝑛+2ℓ𝑛 − Լ𝑛+2Լ𝑛

= 2 

Put  𝑛 = 1, 

Լ3Լ2 − ℓ3ℓ2

ℓ3ℓ1 − Լ3Լ1

=
(11 × 4) − (10 × 7)

(10 × 2) − (11 × 3)
 

=
44 − 70

20 − 33
 

= 2 

Put  𝑛 = 2, 

Լ4Լ3 − ℓ4ℓ3

ℓ4ℓ2 − Լ4Լ2

=
(24 × 11) − (19 × 10)

(19 × 7) − (24 × 4)
 

=
(264) − (190)

(133) − (96)
 

= 2 

Put  𝑛 = 3, 

Լ5Լ4 − ℓ5ℓ4

ℓ5ℓ3 − Լ5Լ3

=
(39 × 24) − (46 × 19)

(46 × 10) − (39 × 11)
 

=
(936) − (874)

(460) − (429)
 

= 2 

Put  𝑛 = 5, 

Լ7Լ6 − ℓ7ℓ6

ℓ7ℓ5 − Լ7Լ5

=
(119 × 66) − (136 × 63)

(136 × 28) − (119 × 35)
 

=
7854 − 8568

3808 − 4165
 

=
714

357
 

= 2 

Put  𝑛 = 6, 

Լ8Լ7 − ℓ8ℓ7

ℓ8ℓ6 − Լ8Լ6

=
(262 × 119) − (251 × 136)

(251 × 63) − (262 × 66)
 

=
31178 − 34136

15813 − 17292
 

=
2958

1479
 

= 2 

Put  𝑛 = 7, 

Լ9Լ8 − ℓ9ℓ8

ℓ9ℓ7 − Լ9Լ7

=
(523 × 262) − (500 × 251)

(500 × 136) − (523 × 119)
 

=
137026 − 125500

68000 − 62237
 

=
11526

5763
 

= 2 
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Put  𝑛 = 8, 

Լ10Լ9 − ℓ10ℓ9

ℓ10ℓ8 − Լ10Լ8

=
(1002 × 523) − (1047 × 500)

(1047 × 251) − (1002 × 262)
 

=
524046 − 523500

262797 − 262524
 

=
546

273
 

= 2 

Hence, the conclusion holds true for all positive integers n, 

confirming its validity through mathematical induction and 

consistent logical reasoning throughout. 

Example-2 based on Theorem 5 

Table VIII 

Initial terms of the Generalized CLS of second order 

𝑛 ℓ𝑛 Լ𝑛 

0 𝑏 𝑎 

1 𝑑 𝑐 

2 2𝑎 + 𝑐 2𝑏 + 𝑑 

3 2𝑏 + 2𝑐 + 𝑑 2𝑎 + 𝑐 + 2𝑑 

4 2𝑎 + 4𝑏 + 𝑐 + 4𝑑 4𝑎 + 2𝑏 + 4𝑐 + 𝑑 

5 8𝑎 + 2𝑏 + 6𝑐 + 5𝑑 2𝑎 + 8𝑏 + 5𝑐 + 6𝑑 

Now we will apply the theorem on this example 

Լ𝑛+2Լ𝑛+1 − ℓ𝑛+2ℓ𝑛+1

ℓ𝑛+2ℓ𝑛 − Լ𝑛+2Լ𝑛

= 2 

Put  𝑛 = 2, 

To perform this calculation, we need to do it separately. 

Լ4Լ3 = (4𝑎 + 2𝑏 + 4𝑐 + 𝑑)(2𝑎 + 𝑐 + 2𝑑) 

= 8𝑎2 + 4𝑎𝑏 + 12𝑎𝑐 + 10𝑎𝑑 + 2𝑏𝑐 + 4𝑐2 + 9𝑐𝑑 + 4𝑏𝑑
+ 2𝑑2 

ℓ4ℓ3 = (2𝑎 + 4𝑏 + 𝑐 + 4𝑑)(2𝑏 + 2𝑐 + 𝑑) 

= 4𝑎𝑏 + 8𝑏2 + 10𝑏𝑐 + 12𝑏𝑑 + 4𝑎𝑐 + 2𝑐2 + 9𝑐𝑑 + 2𝑎𝑑
+ 4𝑑2 

ℓ4ℓ2 = (2𝑎 + 4𝑏 + 𝑐 + 4𝑑)(2𝑎 + 𝑐) 

= 4𝑎2 + 8𝑎𝑏 + 4𝑎𝑐 + 8𝑎𝑑 + 4𝑏𝑐 + 𝑐2 + 4𝑐𝑑 

Լ4Լ2 = (4𝑎 + 2𝑏 + 4𝑐 + 𝑑)(2𝑏 + 𝑑) 

8𝑎𝑏 + 4𝑏2 + 8𝑏𝑐 + 4𝑏𝑑 + 4𝑎𝑑 + 4𝑐𝑑 + 𝑑2 

Subtract ℓ4ℓ3 from Լ4Լ3 

Լ4Լ3 − ℓ4ℓ3 = (8𝑎2 − 8𝑏2 + 2𝑐2 − 2𝑑2 + 8𝑎𝑐 + 8𝑎𝑑
− 8𝑏𝑐 − 8𝑏𝑑) 

= 2(4𝑎2 − 4𝑏2 + 𝑐2 − 𝑑2 + 4𝑎𝑐 + 4𝑎𝑑 − 4𝑏𝑐 − 4𝑏𝑑) 

Subtract ℓ4ℓ2 from Լ4Լ2 

ℓ4ℓ2 − Լ4Լ2 = (4𝑎2 − 4𝑏2 + 𝑐2 − 𝑑2 + 4𝑎𝑐 + 4𝑎𝑑 − 4𝑏𝑐
− 4𝑏𝑑) 

Լ4Լ3 − ℓ4ℓ3

ℓ4ℓ2 − Լ4Լ2

 

= (4𝑎2 − 4𝑏2 + 𝑐2 − 𝑑2 + 4𝑎𝑐 + 4𝑎𝑑 − 4𝑏𝑐 − 4𝑏𝑑) 

=
2(4𝑎2 − 4𝑏2 + 𝑐2 − 𝑑2 + 4𝑎𝑐 + 4𝑎𝑑 − 4𝑏𝑐 − 4𝑏𝑑)

(4𝑎2 − 4𝑏2 + 𝑐2 − 𝑑2 + 4𝑎𝑐 + 4𝑎𝑑 − 4𝑏𝑐 − 4𝑏𝑑)
 

= 2 

Hence the conclusion is valid for all positive integers 𝑛. 

IV. CONCLUSION 

The exploration of the second-order Coupled Lucas 

Sequence provides deep insights into the broader domain of 

sequence theory, particularly in relation to classical 

sequences such as the Fibonacci and Generalized Fibonacci–

Lucas sequences. Historically, these sequences have been 

celebrated for their intriguing properties and wide-ranging 

applications across number theory, computer science, 

cryptography, and even natural phenomena. This study 

continues that tradition, advancing our understanding of 

recursive sequences and expanding the scope of their 

practical relevance. 

The Lucas sequences, much like the Fibonacci sequences, 

are defined by recurrence relations. However, the defining 

characteristic of the Second-Order Coupled Lucas Sequence 

lies in its coupling mechanism, which interweaves two 

independent sequences into a unified structure. This 

coupling introduces both complexity and elegance, as each 

term in one sequence depends not only on the preceding 

terms of its own sequence but also on the corresponding 

terms of the other. This interdependence creates intricate 

patterns and dependencies, resulting in behaviors 

significantly more complex than those found in traditional 

Fibonacci or Lucas sequences. 

Through theoretical analysis, it has been demonstrated 

that these coupled sequences exhibit unique identities and 

properties that set them apart from other well-known 

sequences. By employing a combination of inductive 

reasoning and computational methods, researchers can 

uncover new identities and relationships within the Coupled 

Lucas Sequence. Inductive reasoning, in particular, is 

instrumental in predicting novel outcomes, as it enables the 

extrapolation of known patterns to reveal previously 

unrecognized properties of the sequence. 

The initial values of the two sequences in the Coupled 

Lucas Sequence of Second Order play a significant role in 

determining their behavior. These initial values act as seeds 

that define the growth and evolution of the sequences over 

time. Small changes in these initial conditions can lead to 

vastly different outcomes, revealing the sensitivity and 

complexity of the system. The recurrence relations, which 

govern the progression of the sequences, ensure that each 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2668-2677

 
______________________________________________________________________________________ 



term is calculated based on a fixed formula, but the 

interaction between the two sequences adds an additional 

layer of unpredictability and complexity to the system. 

One of the most fascinating aspects of this research is the 

way the simultaneous evolution of the two sequences creates 

a harmonious relationship between them. Each term is 

intricately linked not only to the preceding terms of its own 

sequence but also to the corresponding terms in the coupled 

sequence. This interconnectedness suggests that the 

sequences are working together in tandem, with each one 

influencing the other's progression in a delicate balance. This 

relationship adds a deeper level of structure to the sequences, 

offering potential insights for other areas of mathematics, 

particularly in the study of dynamical systems and 

complexity theory. 

The investigation has also uncovered practical 

applications of the Coupled Lucas Sequence of Second 

Order. Beyond its theoretical significance, this sequence can 

be applied in fields such as cryptography, where the complex 

relationships between terms can be utilized to generate 

secure encryption keys. Furthermore, the sequence’s 

intricate patterns and behaviors hold potential in computer 

science, particularly in algorithms related to recursive 

functions and optimization problems. 

In conclusion, the study of the coupled Lucas sequence of 

the second order has revealed a rich mathematical structure 

that seamlessly combines theoretical elegance with practical 

applications. The interplay of recurrence relations and 

coupling mechanisms introduces new complexities, 

challenging our understanding of traditional sequences and 

opening up fresh avenues for research and discovery. By 

further exploring the properties of these sequences, 

mathematicians can gain deeper insights into recursion, 

interdependence, and complexity, enriching the broader field 

of sequence theory. The potential for uncovering new 

identities and applications within this framework is vast, 

promising exciting developments in both theoretical and 

applied mathematics. 

Furthermore, the practical applications of the coupled 

sequence span various domains. Although inherently 

mathematical, the coupling mechanism shows promise for 

use in cryptography, optimization, and other fields where the 

dynamic interplay of numerical relationships can be 

leveraged for practical purposes. This highlights the 

importance of pure mathematical exploration, demonstrating 

that abstract concepts can lead to meaningful real-world 

applications. 
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