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Abstract—Critical illness insurance protects against complex
risks and high medical costs. This study proposes a premium
model using a modified call option framework, where benefits
are paid if medical expenses exceed a predefined claim limit.
We examine two cases based on Indonesia’s National Health
Insurance regulations: with and without an inpatient care
class upgrade. The model employs the Gamma process to
represent treatment costs and claim limits while analyzing the
impact of parameters on insurance premiums. Results show
that premiums increase with the cost-to-claim limit ratio in
the non-upgraded model. In contrast, in the upgraded model,
premiums rise as the claim limit increases, assuming expected
costs exceed the limit.

Index Terms—claim limits, critical illness, Gamma process,
insurance premium, option.

I. INTRODUCTION

ILLNESSES requiring intensive treatment and incurring
high costs have been widely acknowledged. The financial

burden of treating critical illnesses falls heavily on patients
and their families. For example, breast cancer patients,
in addition to bearing the costs of routine therapy, also
face additional expenses if they experience side effects
from the administered cancer treatment [1]. Critical illness
insurance protects against these complex risks and significant
treatment expenses. As a result, such insurance has become
vital in modern life. Determining premiums for critical
illness insurance is a key area of interest for researchers,
practitioners, and insurance companies looking to develop
more effective and sustainable insurance policies. In light
of changing circumstances, a meticulous and well-informed
approach to setting these premiums is both increasingly
important and challenging.

Global and technological developments will significantly
impact the future of the insurance industry. Various financial
product models will offer new ideas and techniques for
designing insurance products. One particularly intriguing
approach is the use of derivative financial models in
insurance [2]. Options, the most commonly used derivative
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financial instruments to hedge risk, grant the holder the
right to buy or sell the underlying asset at a specified time
and price [3]. Beyond derivative finance theory, portfolio
investment theory also serves as a foundation for modelling
insurance products, particularly in the realm of agricultural
insurance [4].

The option approach is commonly used to determine
premiums for various types of insurance, including life,
catastrophe, deposit, and agricultural insurance. Kirkby and
Nguyen [5] utilize the fundamental relationship between
insurance contracts and Asian options to analyze the structure
and value of equity-linked Guaranteed Minimum Death
Benefit (GMDB) plans, where the payoff is determined
by periodic Dollar Cost Averaging (DCA) investments in
a risky index, with premiums paid regularly. Furthermore,
the option approach is used in investment insurance to
guarantee a return on capital [6]. Prabakaran [7] applies the
Black-Scholes call option approach to calculate premiums for
catastrophe insurance. Furthermore, the rainfall index-based
barrier option approach can be applied to the agricultural
insurance model [8].

In health insurance, the option approach can also be
applied effectively. Chicaiza-Becerra and Cabedo [9] explore
alternative critical illness reinsurance products using the
option approach, highlighting how option coverage can be
replicated in insurance. Insurance and option contracts share
similar concepts since both are hedging products that require
a premium at the beginning of the contract. In addition,
both contract types compensate for events or potential
risks over a relatively short hedging period. For instance,
the Black-Scholes call option approach has been used to
make health insurance premiums for ADSE civil servants
in Portugal more realistic and adaptable [10].

In Indonesia, most critical illness insurance policies
provide a lump sum benefit [11]. Some insurance companies
offer an alternative scheme where benefits are paid based on
the actual treatment bill, subject to a maximum cost limit. For
example, the Social Security Agency on Health in Indonesia,
known as BPJS, covers claims by setting specific claim
limits. Often, the actual treatment costs exceed these covered
cost limits. Therefore, a new insurance scheme is needed to
cover medical bills exceeding the sum these existing schemes
assured. An alternative insurance solution involves an option
approach, where the insurance right is exercisable only if
the treatment costs exceed a certain limit (claim limit). This
paper introduces a modified option approach to estimate
critical illness insurance premiums, with the underlying cost
being treatment expenses for critical illnesses. In this study,
the treatment cost and claim limit are assumed to be random
and follow a Gamma process.

Section II offers a comprehensive and systematic definition
of the insurance premium and the algorithm for calculating
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insurance premiums. In Section III, we apply the premium
determination model to a critical illness case study and
examine the effect of changing the parameters’ values
on the premium amount. This organization ensures that
the developed model is structured and understandable and
significantly contributes to the field of insurance modelling.

II. CRITICAL ILLNESS INSURANCE PREMIUM USING THE
MODIFIED OPTION APPROACH

BPJS Kesehatan is Indonesia’s national social health
insurance agency. It manages the country’s health insurance
program and ensures that healthcare services are accessible
to the public through a social insurance system. BPJS
uses a payment method called capitation and a system
known as INA-CBGs (Indonesian Case-Based Groups) to
reimburse healthcare providers. The INA-CBGs system
categorizes treatment costs based on patient diagnoses and
medical procedures, which helps determine how much
BPJS will reimburse for each service. For example, breast
cancer patients receiving chemotherapy are assigned specific
INA-CBG codes: C-4-13-I, C-4-13-II, and C-4-13-III. The
last letter in these codes indicates the severity of the disease.
Within each severity level, healthcare services are further
divided into three classes: Class 1, Class 2, and Class 3.

The Indonesian Ministry of Health has introduced a new
Minister of Health Regulation (Permenkes RI No. 3 of 2023)
regarding the adjustment of INA-CBG tariffs for patients who
want to upgrade their inpatient care class. Patients entitled
to Class 1, 2, or 3 inpatient care who wish to upgrade
to a class above Class 1 (VIP) are required to pay up to
a maximum of 75% of the INA-CBGs tariff for Class 1.
However, this payment requirement will not apply if the total
cost of inpatient care does not exceed the INA-CBG tariff
that corresponds to the patient’s current entitlement.

In reality, the total cost of cancer treatment may exceed the
BPJS claim limit, primarily due to the exclusion of certain
necessary medications or supplementary services from BPJS
coverage. These may include multivitamins and supplements
that support the chemotherapy process. When treatment costs
surpass the claim limit, the excess must be borne by the
patient. Conversely, if the costs fall within the limit, they are
fully covered by BPJS. Thus, insurance products that provide
coverage beyond the BPJS claim limit are both relevant and
essential for cancer patients.

This study examines an insurance premium scheme model
that covers treatment costs not covered by BPJS. Two models
were developed: the insurance premium model without
inpatient class upgrading and the insurance premium model
with inpatient class upgrading. The premium determination
is based on a modified option approach.

An option is a financial product in the form of a contract
that grants the holder the right (but not the obligation) to buy
(call option) or sell (put option) a specific financial asset at a
predetermined price (strike price) within a specified period.
One of the primary purposes of an option is to protect the
value of the underlying financial asset from price declines. To
activate the option, the buyer must pay the seller a premium
at the beginning of the contract. The option right remains
valid until the maturity date. If the buyer exercises their
option right during the contract term, he will be compensated
according to the contract terms. For instance, in a put option,

the buyer can sell the underlying asset at the strike price,
irrespective of the asset’s current market price. In contrast, in
a call option, the buyer can purchase the underlying asset at
the strike price, regardless of the market price. This concept
of options can be applied to insurance modelling.

In this insurance model, we replicate the risk coverage
pattern of the options as follows:

1) The underlying cost of this insurance model is the total
cost of treatment.

2) The insured will not exercise his rights if the total cost
of treatment on the maturity date is less than the limit
of the BPJS claim. In contrast, if medical bills exceed
the limit of the BPJS claim, the insured will only pay
the strike price amount. We employ the European call
option, allowing the insured to exercise their option
rights only at maturity.

The future cost of treatment for critical illness is
uncertain and is influenced by various factors, leading
to potentially high treatment costs. Consequently, some
insurance companies limit their medical coverage to mitigate
potential losses resulting from unlimited expenses for treating
critical illnesses. This limitation on covered costs forms the
foundation of our modified option approach model. The
maximum amount of coverage allowed is called the claim
limit.

In this modified option approach, on the maturity date or
the end of the treatment period, the insured will exercise
their insurance right if the total cost of treatment during the
treatment period exceeds the BPJS claim limit (BT ), where
BT varies and is not constant. It is assumed that both the
total treatment cost (ST ) and the claim limit (BT ) follow a
Gamma process.

The Gamma process is utilized to model both the total cost
of cancer treatment and the BPJS claim limit, as it effectively
captures the positively valued and cumulatively increasing
nature of these costs over time. Cancer treatment involves
multiple stages—such as diagnosis, surgery, chemotherapy,
and follow-up care—and may include repeated therapies
and additional treatment for complications. Consequently,
treatment costs tend to rise over time. Likewise, the
BPJS claim limit is expected to increase accordingly to
accommodate these growing expenses.

A. Gamma Process

The Gamma process is a continuous-time stochastic
process with stationary and independent increments. For any
0 ≤ s ≤ t, the increment of the Gamma process follows a
Gamma distribution:

X(t)−X(s) ∼ Gamma (κ(t)− κ(s), θ)

where κ(t) is the shape function, which is an increasing
function, and θ is the scale parameter. The Gamma process
exhibits several unique properties [12], [13]:

1) X(0) = 0,
2) it has stationary and independent increments,
3) it features jumps, reflecting a cumulative process with

non-decreasing paths.
Furthermore, if {X(t)}t≥0 represents a Gamma process over
the time interval t, it can be expressed as

X(t) ∼ Gamma (κ(t), θ) .
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The Gamma process can be applied in reliability
and maintenance modelling, financial mathematics, and
insurance. It is widely used in financial mathematics to
model jumps in asset prices, cumulative risk assessment,
and financial derivatives pricing. In the insurance sector, the
Gamma process can be utilized to model medical treatment
costs, which serve as the basis for health insurance premium
determination. Additionally, the Gamma process can be
employed to model cumulative exposure to risk factors,
aiding in predicting health outcomes.

B. Insurance Premium Model Without Inpatient Class
Upgrading

In this model, the insurance company will provide an
insurance benefit equal to the difference between medical
bills and the BPJS claim limit. It can be illustrated as follows:

IBMO,T =

{
ST −BT , if ST > BT

0, if ST ≤ BT .

Thus, the insurance premium with a maturity date T is the
present value of insurance benefits, calculated by

PMO T = exp (−rT )E [max(ST −BT , 0)] . (1)

The cost of treatment for critical illnesses, indicated
as ST , is assumed to follow a Gamma process with
parameters κ1(t) > 0 and θ1 > 0. It is denoted as
ST ∼ Gamma(κ1(T ), θ1). The limit of the BPJS claim,
BT , is also assumed to follow a Gamma process and is
denoted BT ∼ Gamma(κ2(T ), θ2). Since YT = ST − BT

does not directly follow a Gamma distribution or any other
common distribution, E [max(ST −BT , 0)] does not have a
closed-form solution. Therefore, we use numerical simulation
to obtain the insurance premium under this modified option
framework.

1) Case 1: (θ1 = θ2 = θ): In the first case, θ1 = θ2 = θ
and κ1 > κ2 are assumed. The first step in the numerical
simulation for this case is to generate M samples of ST

and BT , which are each distributed as Gamma(κ1(T ), θ)
and Gamma(κ2(T ), θ), respectively. The premium value is
obtained by discounting E [max(ST −BT , 0)], with r being
the risk-free interest rate.
Algorithm for calculating insurance premiums using
a modified option approach with the assumption that
θ1 = θ2 = θ

Set the shape parameter value of ST (κ1);
Set the shape parameter value of BT (κ2);
Set the scale parameter value of BT and ST (θ);
Set the discount rate (r);
Set the maturity date (T );
For i = 1, . . . ,M

Generate ST ∼ Gamma(κ1T, θ);
Generate BT ∼ Gamma(κ2T, θ);
Set Y [i] = max(ST [i]−BT [i], 0);
Set E[Y ] =

∑M
i=1 Y [i]/M ;

end for.
Set PMO T = e−rTE[Y ].

If the insurance right can be exercised at the end of the
treatment period for n treatment period, then the pure single
premium paid at the start of the contract is the sum of the

premiums of the n-modified option with a varying maturity
date and is stated as

PMO =
n∑

T=1

PMO T . (2)

2) Case 2: (θ1 ̸= θ2): Suppose ST ∼ Gamma(κ1(T ), θ1),
BT ∼ Gamma(κ2(T ), θ2), and κ1 > κ2, then the insurance
premium with modified option approach is calculated
through a numerical simulation based on the following
algorithm.
Algorithm for calculating insurance premiums using
a modified option approach with the assumption that
θ1 ̸= θ2

Set the shape parameter value of ST (κ1);
Set the scale parameter value of ST (θ1);
Set the shape parameter value of BT (κ2);
Set the scale parameter value of ST (θ2);
Set the discount rate (r);
Set the maturity date (T );
For i = 1, . . . ,M

Generate ST ∼ Gamma(κ1T, θ1);
Generate BT ∼ Gamma(κ2T, θ2);
Set Y [i] = max(ST [i]−BT [i], 0);
Set E[Y ] =

∑M
i=1 Y [i]/M ;

end for.
Set PMO T = e−rTE[Y ].

C. Insurance Premium Model With Inpatient Class
Upgrading

In this second insurance premium scheme model, it is
assumed that if a BPJS participant wishes to upgrade their
inpatient care class, they must pay an amount equal to p
times the claim limit. According to the Minister of Health
Regulation (Permenkes RI No. 3 of 2023), the maximum
value of p is 0.75 or 75% of BT . However, BPJS participants
are not required to pay this amount if ST is less than BT .
Therefore, the insurance benefits received by the insured
under the scheme we have developed are as follows:

IBMOu,T =

{
pBT , if ST > BT

0, if ST ≤ BT .

Thus, the insurance premium with a maturity date T is
calculated by

PMOu T = exp (−rT )E [pBT ]1ST>BT
, (3)

where 0 < p ≤ 1 and 1ST>BT
is an indicator function.

Algorithm for calculating insurance premiums with
inpatient class upgrading using a modified option
approach
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Set the shape parameter value of ST (κ1);
Set the scale parameter value of ST (θ1);
Set the shape parameter value of BT (κ2);
Set the scale parameter value of ST (θ2);
Set the discount rate (r);
Set the maturity date (T );
Set the proportion of benefit paid by insurer (0 < p ≤
1);
For i = 1, . . . ,M

Generate ST ∼ Gamma(κ1T, θ1);
Generate BT ∼ Gamma(κ2T, θ2);
Set an indicator function (1 if ST > BT , else 0);
Set Y [i] = p×BT × indicator;
Set E[Y ] =

∑M
i=1 Y [i]/M ;

end for.
Set PMOu T = e−rTE[Y ].

III. NUMERICAL SIMULATION

Cancer, particularly breast cancer, is a critical illness and
stands out as a significant health concern in Indonesia, with
notable increases in the number of patients reported by
2020. According to [14], the three main types of cancer in
Indonesia are breast cancer, cervical cancer, and lung cancer.
Breast cancer, specifically, represented the highest proportion
(16.6) of the 396,914 reported cancer cases in Indonesia
in 2020 [15]. Cancer diagnosis is classified into benign
and malignant breast cancer. Accurate determination of the
breast cancer diagnosis plays a crucial role in guiding patient
treatment [16]. Among the various treatments for breast
cancer, chemotherapy has become a commonly utilized
option in medical practice. This treatment employs chemical
agents and medications to target and eliminate abnormal cells
in breast tissue and other areas where cancer cells may have
spread. Chemotherapy typically follows cycles lasting 21-28
days. Therefore, breast cancer becomes the focus of the
numerical simulation of this critical illness insurance model.

The first simulation employs numerical simulation with
106 iterations to forecast the price of cancer insurance
premiums without inpatient class upgrading assumption,
specifically for breast cancer. Furthermore, an analysis is
conducted to examine how changes in parameter values affect
premium pricing. The premiums are calculated at a risk-free
interest rate of 5%, with a maturity period of T = 1.
The premium values resulting from the first simulation are
illustrated in Figure 1 and Figure 2.

Figure 1 illustrates the effect of the shape parameter of
ST (κ1), the shape parameter of BT (κ2), and the ratio of
these two shape parameters on the premium values across
various scale parameters. It is assumed that θ1 = θ2 = θ and
κ1 > κ2. Figure 1 shows that an increase in κ1 or θ results
in a higher PMO T . However, an increase in κ2 decreases
the PMO T . In other words, the higher the average treatment
cost for breast cancer, the higher the insurance premium.
Conversely, the higher the average BPJS claim limit, the
lower the breast cancer insurance premium. It is also evident
that as the ratio between the average treatment cost and the
BPJS claim limit increases, the insurance premium becomes
higher (the higher the value of

κ1

κ2
, the higher the value of

PMO T ).

Fig. 1. Effects of κ1, κ2, and
κ1

κ2
in insurance premiums under assumption

of θ1 = θ2 = θ and κ1 ≥ κ2

Figure 2 presents the simulation results of premium values
under the assumption that θ1 ̸= θ2. It is evident from Figure 2
that the PMO T value increases with higher values of κ1,

κ1

κ2
,

and
θ1
θ2

. However, there is only a slight increase in premium

prices when θ1 is less than θ2. Conversely, the PMO T

value decreases as κ2 increases. This phenomenon indicates
that, in cases where θ1 > θ2, a higher average cost of
treatment significantly leads to higher breast cancer insurance
premiums. Conversely, an increase in the average BPJS claim
limit causes the premium price to decrease. Furthermore, the
greater the ratio between treatment costs and the BPJS claim
limit, the higher the breast cancer insurance premium.

In the second numerical simulation, we assume the insured
will receive an upgrade in the inpatient care class. If the
medical expenses exceed the claim limit, the insurer will
provide benefits amounting to pBT . The insurance premium
is calculated based on a simulation with 106 iterations, the
proportion of the claim limit paid of 50%, a risk-free interest
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Fig. 2. Effects of κ1, κ2, and
κ1

κ2
in insurance premiums under assumption

of θ1 ̸= θ2 and κ1 ≥ κ2

rate of 5%, and a maturity period of T = 1. Figures 3 and
4 illustrate the premium outcomes derived from the second
numerical simulation.

Figure 3 demonstrates how κ1, κ2, and their ratio
κ1

κ2
influence the value of PMOu T across different values of
θ, assuming that θ1 = θ2 = θ. As κ1, κ2, and

κ1

κ2
increase, PMOu T also increases. A higher κ1 enhances the
likelihood of ST > BT , while an increase in κ2 leads to
greater insurance benefits in a health insurance model with
inpatient care upgrades, subsequently raising the premium.
Moreover, a higher

κ1

κ2
ratio further increases the probability

of ST > BT . Additionally, Figure 3 shows that increasing θ
results in an overall rise in PMOu T .

In general, when θ1 ̸= θ2, increasing κ1, κ2, and the ratio
κ1

κ2
results in an increase in PMOu T (Figure 4). A significant

increase is observed when θ1 > θ2. However, if θ1 is less
than θ2, increasing κ2 tends to decrease PMOu T slightly. It
occurs because θ1 < θ2 means that the variance of ST is

Fig. 3. Effects of κ1, κ2, and
κ1

κ2
in insurance premiums with inpatient

class upgrading under assumption of θ1 = θ2 = θ and κ1 ≥ κ2

smaller than that of BT . Additionally, as κ2 increases, the
BT value is raised, lowering the chances of ST being greater
than B − T . Thus, this results in lower insurance premiums
for models with inpatient class upgrades.

IV. DISCUSSION AND CONCLUDING REMARKS

The option approach with ”at-cost” insurance benefits
presents an appealing alternative for computing critical
illness insurance premiums. This model’s simplicity in
formulation and interpretation is noteworthy. However,
modifications to the conventional call option approach are
imperative to shield insurance companies from the potential
ramifications of exceptionally high critical illness treatment
expenses.

Our study proposes a call option approach model
that integrates a modification disguised as an insurance
claim limit. Based on real-world regulations regarding the
governance and implementation of the National Health
Insurance (Jaminan Kesehatan Nasional) in Indonesia, we
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Fig. 4. Effects of κ1, κ2, and
κ1

κ2
in insurance premiums with inpatient

class upgrading under assumption of θ1 ̸= θ2 and κ1 ≥ κ2

developed two critical illness insurance premium models:
one without an inpatient class upgrade and another with
an inpatient class upgrade. We employ the Gamma process
to model critical illness treatment costs and claim limits.
Nonetheless, it is essential to acknowledge that various other
models for estimating critical illness treatment costs are also
viable and warrant consideration.

The results of this study indicate that the parameters in
the developed model, namely κ1, κ2, θ1, and θ2, have a
significant influence on determining the premium for critical
illness insurance. κ1 and κ2 represent the shape parameters
of the Gamma process, while θ1 and θ2 represent the scale
parameters of the Gamma process. Additionally, an increase
in the average cost of treatment leads to a rise in critical
illness insurance premiums. Conversely, increasing the BPJS
claim limit reduces critical illness insurance premiums.
However, in the insurance model with an inpatient care class
upgrade, a higher BPJS claim limit increases the insurance
premium. The greater the ratio between treatment costs and

the BPJS claim limit, the higher the premium for critical
illness insurance. Finally, if θ1 is smaller than θ2, changes in
the critical illness insurance premium will not be substantial.

The cost of treating critical illnesses, such as cancer,
continues to rise in line with advancements in medical
technology, inflation, and the increasing complexity of
treatments. Periodic adjustments to claim limits and
premiums are essential steps that BPJS must undertake in
response to the escalating costs of critical illness treatments.
Through adaptive policies, BPJS can ensure the sustainability
of its programs, improve service accessibility, and maintain
long-term participant satisfaction. Furthermore, BPJS could
offer rider insurance products for critical illness coverage to
enhance service quality and provide more specific benefits.
The model we have developed can serve as both a reference
and an alternative framework for calculating premiums for
such rider insurance. For other insurance companies, this
model can also serve as a guide for calculating premiums for
insurance with deductible schemes or for covering treatment
costs not covered by other insurance.

Due to the limitations of the available data, this study
does not address the parameter estimation methods for the
model or its application to real-world data. Further research
is crucial to deepen theoretical and practical understanding,
improve accuracy, and extend the findings to a broader
context.
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