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Abstract—In response to global aging challenges, establishing

a sustainable pension investment management system has
become crucial. This study proposes a defined-contribution (DC)
pension risk mitigation framework that integrates investment
and reinsurance strategies. Within this framework, we construct
an investment game model of non-zero-sum for two pension
investors with wealth maximization goals, allowing allocations to
risk-free assets, risky assets, and reinsurance contracts. The
higher-risk assets' time-varying market risk is modeled using the
HestonModel which is characterized by stochastic volatility with
mean-reversion. And the reinsurance surplus is denoted by a
jump-diffusion model to capture the sudden financial shocks.
Moreover, by utilizing standard dynamic programming and
exponential utility preferences, we can derive a closed solution to
the investment strategy throughout mathematical proofs. Our
new model innovatively combines jump-diffusion processes with
stochastic volatility from the Heston Model, expanding the
theoretical foundation for pension investment optimization
strategies. Practically, it offers pension managers a dynamic
asset allocation tool which can increase portfolios' resistance to
systemic risks.

Index Terms—DC pension plans, reinsurance and investment,
Non-zero-sum game, Jump-diffusion model, Heston stochastic
volatility model

I. INTRODUCTION
HE global aging population crisis is intensifying, and
pension investment management has emerged as an

important method to address this challenge. Defined
Contribution (DC) pension plans are a cornerstone of
modern pension systems, which are characterized by fixed
contribution rates. But the retirement benefits available to
participants remain subject to actuarial uncertainty, as the
final amounts depend on both pre-retirement contributions
and investment returns generated by fund managers'
portfolio allocations. As markets grow in complexity, the
efficacy of DC pension investment management directly
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impacts both the sustainability of pension systems and the
investors' quality of life in retirement. Hence, developing
pension investment optimization strategies has become a
focus for academia, financial institutions, and pension
trustees. To this end, some researchers have incorporated a
variety of investment models into DC pension portfolios
[1-5], and explored terminal wealth utility maximisation
under the constraints of inflation risk [6], stochastic wage
dynamics [7], and imperfect information [8-10].
With developments in research, dynamic portfolio

optimization for defined-contribution pension systems has
not only involved preliminary model uncertainty analysis,
but also come to consider the competitive-cooperative
behavior of multiple market participants, as well as the
allocation of diverse risk-return assets. As a form of
competition and cooperation, a non-zero-sum game differs
from the common game of traditional financial markets. In
this non-zero-sum game, the total benefits that all
competitors can obtain are not fixed; that is to say, each
participant can benefit, but this does not necessarily bring
losses to other participants. There is the possibility of
win-win cooperation between these participants [11-14].
Multiple investors can adopt competitive strategies in the
market by using a model of non-zero-sum game to seek the
optimal Nash equilibrium point for both themselves and
their competitors, so that each investor cannot unilaterally
change their strategy to affect returns [15]. Investors can
also adopt a cooperative strategy, treating their goals as a
whole [16]. Through cooperation, investors can obtain
better trading opportunities and increase overall returns on
investment.
In terms of applied research, Espinosa and Touzi (2015)

made a breakthrough by integrating competitive game
dynamics with methodological approaches in investment
portfolio optimization [17]. They adopted the exponential
utility function as an analytical tool and derived optimized
strategies for maximizing relative wealth among multiple
competing investors. Later, Zhu et al. (2019) proposed a
dynamic optimization framework for reinsurance and
investment leveraging the Heston model. This framework
uses jump-diffusion processes to derive time-consistent
equilibrium strategies for pension portfolios. It quantifies
the nonlinear interactions parameters and risk aversion
coefficients among stochastic volatility, and establishes a
mechanism that hedges the discrete market shocks and
optimizes long-term returns [18]. Within the framework of
stochastic Malliavin calculus, He (2024) derived optimal
strategies for players facing volatility-clustered inflation.
Power and exponential utility functions were applied to
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determine strategies that maximize the terminal surplus
relative to competing portfolios [19].
In financial practice, a large amount of the information

that goes into investment decision-making processes has
inherent uncertainties and is susceptible to exogenous
perturbations. Asset prices often exhibit discontinuous
dynamic jumps that deviate from the continuous Brownian
motion assumptions. The kind of jump risk in investment
decisions cannot in general be predicted by continuous
price fluctuations [20][21]. In certain circumstances, the
likelihood of investment decision failure greatly increases,
leading to a sudden decrease in the overall value of the
portfolio [22]. In this study we investigate and work
towards prevention of the risks associated with jumping
factors, which is of very great significance for investment
decision-making [23] [24].
Recently, scholars and practitioners have increasingly

concentrated on developing jump risk models, among
which the jump-diffusion models is one of the important
examples. These models assume that changes in asset
prices conform to both jump and diffusion characteristics
[20], and they can better capture the sudden changes in
investment value. In the field of reinsurance-investment
decision-making, proposed new models are increasingly
accounting for the characteristics of jump diffusion. Chen
et al. (2023) proposed that partial insider information
regarding risky asset prices could be probabilistically
forecasted. Moreover, they also suggested that a surplus
process enables analysis of stochastic differential games
in reinsurance-investment strategies [25]. Li et al. (2023)
extended this methodology by investigating reinsurance
and investment games with jump-diffusion characteristics
under the Constant Elasticity model [26]. Additionally,
based upon the default mechanism in Markovian models,
Li et al. (2024) explored the non-cooperative equilibria
through two jump-diffusion models which accounted for
normal market shocks [27].
Inspired by these studies, we explored the optimal

equilibrium combination of a DC pension system with
discontinuous risk by using a stochastic fluctuation
framework. Our work is partially similar to the concepts
proposed by Chen et al. (2023) [25] and Li et al. (2023)
[26]. However, Chen et al. (2023)[25] argued that
insurance companies have internal investment information
in advance, while Li et al. (2023) [26] analyzed jump-
diffusion characteristics within the framework of Constant
Elasticity of Variance (CEV), assuming that risk assets
maintain a constant drift rate. However, financial markets
often exhibit uncertainty, and empirical evidence also has
consistently demonstrated the stochastic nature of the
discontinuity of investment returns and risk. Notably, the
existing literature lacks investigations of the randomness
of the asset returns in DC pension plans which involve
jump-conditioned reinsurance strategies.
In this study, we build upon the Heston stochastic

volatility model, incorporating investment uncertainty and
characterizing the reinsurance surplus process for DC
pension systems through jump-diffusion risk modeling. A
novel non-zero-sum game theoretical model integrating
reinsurance and investment decisions is developed, with
the aim of optimizing a pension portfolio. Next, by using

dynamic programming and assuming exponential utility
preferences, we perform the mathematical derivations to
establish closed-form equilibrium investment strategies.
This method quantifies the interaction between random
fluctuation parameters. Within the proposed framework,
the value function is         , , ln .kW t m t A t m B t C tk k   
Compared with the models in the existing literature, this
strategy  *b tk achieves enhanced parsimony, along with
greatly lower computational complexity. This streamlined
formulation can enhance operational feasibility for the
practitioners implementing reinsurance-investment game
theoretical strategies for DC pension schemes.
The other parts of this study are as follows: section II,

we construct a non-zero-sum equilibrium model under the
Heston model, in which the reinsurance surplus process of
two DC pension investors follows a jump- diffusion model.
Section III, the Nash equilibrium strategies are derived,
assuming that the DC pension investment strategy adopts
an exponential utility approach regarding reinsurance and
capital allocation. Section IV discusses the method and
offers conclusions.

II. MODEL CONSTRUCTION

The choice of investment strategy has a significant
impact on the final returns following accumulation of DC
pension wealth. In order to investigate the mechanism of
wealth accumulation and the laws of income changes, it is
necessary to make reasonable abstractions of investment
methods. Based on this, we first assume that DC pension
investment consists of two investment methods: risk-free
investment, and venture capital. Risk-free investment has
stable returns but relatively low return rates, while venture
capital has greater volatility risks but higher potential
returns. Here,  0 t follows the dynamics:

 0 10  (1)
where the parameter 0r denotes the instantaneous

risk-free yield. The risky characteristics of the asset  t
are modeled with the Heston framework:

            

 

,1

0 00

d t t r t dt t t dW t   

 

    

 
(2)

where  r t  represents the projected earnings,  t is
the square of the instantaneous volatility,  1W t follows
standard Brownian motion. The evolution process of
volatility  t according to:

         ,2

00 0

d t t dt t dW t

l

      

  
(3)

Here, 0 represents the mean reversion speed; 0 is
the long-term equilibrium level; 0  represents the
volatility of the fluctuation process, which satisfies the
Feller condition 22 ;   2W t also behaves as normal

Brownian motion, and  1W t correlates with  2W t via the

asset returns and volatility formation process;  1,1   is

the correlation coefficient between the two.
The DC pension system requires policyholders to pay
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pension fees at a fixed rate based on their salary income
before retirement, establishing the basic framework for
pension accumulation. But in practice, the policyholder's
salary is not fixed. Wages are influenced by all kinds of
factors such as macroeconomic fluctuations, industry
cycles, and personal career development. These factors
often exhibit random and unstable characteristics. In order
to accurately simulate the accumulation process in DC
pensions, we assume that salary distributions satisfy the
following equation:

 
         1

dY t
r t t dt t dW tLY t

          (4)

Here, the function t provides the structural basis for
 t , whereas L is the impact of risk on wage income.

The Brownian motion  1W t denotes exogenous economic

shocks affecting income stability.
In addition, under the dual pressure of demographic

transformation and policy adjustment, the decrease in
population has led to a decline in pension bases. Delayed
retirement policies implemented by numerous countries
have heightened concerns among policyholders regarding
long-term financial liquidity. These compounding factors
have greatly amplified withdrawal risks for DC pension
policyholders, which may destabilize the pension fund
accumulation and potentially induce systemic financial
strain. To address this challenge, DC pension managers
could implement reinsurance strategies to transfer partial
risks to some specialized reinsurance institutions, thereby
establishing some risk diversification and loss-sharing
mechanisms. Under this framework, we mathematically
posit that the surplus process  tk of pension investors

adopting reinsurance strategies follows the stochastic
differential equation (SDE) below. This SDE quantifies
the dynamic evolution process of pension surpluses under
reinsurance coverage, thereby establishing an actuarial
foundation for risk mitigation. Formally, the process is
defined as:

 
( ) ( )

1

N tk kd t dt dB t d Z ik k k k i
     


（） (5)

where k is the risk premium income from reinsurance
contracts; 0k  represents the volatility parameter of the
reinsurance strategy;  B tk follows a standard Brownian

motion, statistically independent of other factors;
 

1

N tk kZi
i



characterizes the pension surplus payout, modeled as a
compound Poisson process.
Let  tk characterize the reinsurance strategy, where

the rate of return is   1 ,k k k k      0k  quantifies
the risk margin factor in proportional reinsurance treaties.
Let  characterize the density of the Poisson  .N t The
reinsurance proportional rate paid by the pension fund is

    1 1tk k k k     ，and the reinsurance companies'
safety loading coefficient is represented by .k k  Upon
surrender compensation, the pension investment manager
pays out  100 %tk .

Let
 

;
1

N tk kC t Zk i
i

 


（） then, the surplus process of the DC

pension reinsurance strategy  :a tk
        1d t t dtk k k k k k k           

( ) ( ) ( ) ( )t dB t t dC tk k k k k   

      1 dt dB t dC tk k k k k k        (6)
In the DC pension system, the accumulation of wealth

in investment accounts is a dynamic process influenced by
multiple factors. The wealth accumulation process, which
is closely related to the strategic choices of investment
managers, affects the future level of pension security for
insured individuals. To construct an accurate model for
wealth accumulation, it is necessary to identify the core
driving factors of wealth changes. In order to accomplish
this, we make a few more assumptions.  kM tk

 is defined

as the accumulated assets in the DC pension investment
account, where  0kM mkk  represents the initial wealth value.

Changes in pension wealth are sourced from return income
from reinsurance business, income from portfolio
management, and total amount of fixed contributions for
pension. Let the reinsurance rate of return be  ,tk the
random wage contribution rate be , and the investment
volume of risky assets be  .b tk We can then accordingly
mathematically formulate wealth accumulation through a
stochastic differential:

     
        

   0
0

d t d tk kdM d t b t M t b t Y t dtkkk k k t t


 
      

 

        1 dt dB t dC t b tk k k k k k k          

            t1 kr t dt t dW t M b t rdt Y t dtkk              


          t 1kM r b t t dt a tk k k k kk          


         1Y t dt b t t dW tk k k        

( ) ( ) ( ) ( )t dB t t dC tk k k k   (7)

Definition 1 (Admissible Strategy). A DC pension
reinsurance-investment strategy    ,t a bk kk  is deemed

admissible if it satisfies:
1. Adaptiveness: let  tk

denote an adaptive controller

related to    0,t t T  and     2 2 ;0
TE t b t dtk k    

2. Solvability: Eq.(7) is defined for  , ,m sk
  for

which there exists a single solution,     
.

0,
kM tk t T



When both the DC pension reinsurance and investment
strategies satisfy the aforementioned conditions, the
strategy combination is deemed admissible. All qualifying
strategies are collectively designated as the set Mk , which
includes all theoretically sound and operationally viable
viable strategic combinations available to DC investment
managers pursuing dual objectives: risk mitigation and
return maximization. This framework establishes a robust
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theoretical foundation for subsequent investigation into
optimal strategy selection and Nash equilibrium solutions.

III. NASH EQUILIBRIUM

A. Nash equilibrium solution
Under conditions of constrained market resources and

complex investment environments, the investment returns
achieved by DC pension fund investors emerge not merely
from their isolated portfolio strategies, but fundamentally
through strategic interactions with other participants in the
financial market. This study utilizes relative performance
evaluation metrics to operationalize the game-theoretic
interdependencies among DC pension investors [26]. We
develop a stochastic differential game model to analyze
the co-opetition dynamics in return maximization. The
solution of the Nash equilibrium reveals a stable strategy
profile and market equilibrium conditions for DC pension
investment systems.

 , j , , ,k t m mk jk 
 

       : 1, , ,
jk kE k M T k M T M Tk k jk kt m mk j 

  
     

   

 

       1, , ,2
jk k kVar k M T k M T M Tt m m k k jk kk j 

  
     

  

 

Here,  , 1,2 ,k j k j  ， k quantifies the degree of risk
avoidance of investors, where kk quantifies the degree of
attention of investors' comparative wealth, reflecting their
behavioral focus on peer-comparative performance.
Let    

,k j jkM M t k M tk jk k
    represent the accumulation

process of comparative wealth of a DC pension investor.

     
,k j jkdM t dM t k dM tk jk k 

  

              1kM t r b t t t Y t dtk k k k k k kk     
            

  

             1b t t dW t t dB t t dC tk k k k k k     

              1jk M t r b t t t Y t dtj j j j k jjk j                  
  

             1k b t t dW t k t dB t k t dC tk j k j j j k j j     

          
,k jrM t t b t k b tk k j k kk  


      


 

         1 1t k tk k k k k j j j j              

             1 1Y t k dt t b t k b t dW tj j k k k j         

       t dB t k t dB tk k k k j j j    

       t dB t k t dB tk k k k j j j    

       t dC t k t dC tk k k j j   (8)

And for an admissible strategy    , , 0, ,t m s Tk
 

   
* *, ,ˆ , , : , ,

k j k jt m E M Tk t mk kk 
 
  
 
 

    

 
*,

, ,2
k jkVar M Tt m kk 

   
 
 

  (9)

In the field of DC type pension investment management,
due to limited market resources and synergistic effects in
investment strategies, the game between DC investment
managers is essentially a non-zero-sum game, where one
party's gains are not entirely based on the other party's
losses; there is a possibility for a win-win scenario through
strategic coordination. Meanwhile, due to the interference
of random factors on pension investment, such as market
fluctuations and economic cycles, this game also exhibits
the structural properties of stochastic differential games.
Accordingly, strategy selection and income changes for a
pension investment game need to be characterized by
dynamic differential equations. Therefore, the following
Problem 1 is introduced to solve the Nash equilibrium.
Essentially, the goal is to find a portfolio of investment
strategies that follow the condition that neither investment
manager can achieve higher pension accumulation returns
or risk control effects by separately adjusting reinsurance
and investment strategies. This should hold true across any
time interval and for any potential strategy adjustments.
Problem 1: Obtaining the objective for the pension

managers requires solving for the Nash equilibrium state,

 ,1 2 1 2
     ，so that for any  ,1 2 1 2   ，there is:

   

   

* *, ,ˆ ˆ, , , , ,1 11 1
* *, ,ˆ ˆ, , , , .2 22 2

k j k jt m t m

k j k jt m t m

 

 


 


 

   
 

   
 

B. Optimal solution of the model
In solving the Nash equilibrium, conventional static

analysis methods are difficult to apply due to the dynamic
decision and uncertain payoff mechanisms involved in
stochastic differential games. To construct an analytical
framework, it is necessary to introduce tools that can
quantify the strategic value. Therefore, the value function
is defined to measure the comprehensive expected value of
investors, accounting for future stochastic returns across
different strategy combinations:

 
 

 
* *,

ˆ, , , ,
k kkW t m J t mk kk 
 

 

 
 

*,
ˆsup , ,

k j
J t mkk

k k







 
 (10)

Here,
 

 
*,

ˆ , ,
k j

t mkk 
 

 is defined by Eq.(9), *
k denotes

the strategies of competing investors  1,2 .k The strategy
is a stable solution derived from the optimal decision
conditions of both parties in the game. Next, we need to
introduce spatial definitions for further derivations and
property analysis of value functions and equilibrium
strategies:

       1,2,2 0, , , ,.,. .C T t m s tk    denotes first-order

derivative of  0,1 , and  ; ,m sk  characterizes second-order
derivative of mk concerning R and s on , respectively.
The rigorous condition enables us to perform reasonable

derivatives on the function of value when constructing the
HJB equation using dynamic programming principles; it

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2696-2705

 
______________________________________________________________________________________ 



also enables us to solve for the equilibrium strategy via the
optimization methods. Meanwhile, the continuous second-
order differentiability is necessary to prove the existence,
uniqueness, and stability of equilibrium strategies; the
resulting theoretical deductions may enhance practical
pension investment management in terms of analyzing
different scenarios.
For a comprehensive evaluation of investment strategy

shifts on the value function and equilibrium results, we
need to introduce a mathematical tool that can quantify the
adjustment effect of small investment strategies in DC
pension stochastic differential investment games; that is to
say, we must define variational operators. The variational
operators can be used to reflect some changes in the
accumulation process and the Nash equilibrium conditions
of pension wealth, as a reaction to small changes in
investors' reinsurance and investment strategies. The
variational operator can be defined as:

 ,k jA   :     1,2,2, , 0k t m C Tk     ， .

   
,

, ,
k j kA t mk 
 



      
,

, , , , ,,
k jk kt m H m t t mk k kk j    
 

  

           21, ,
2

kr t t m t b t k b tk k k j        

       2 2 2 2 2 2 0t k t t t kk j k k jj jk k k          

     1 2, , , ,
2

k kt m s t t mk k      

        , ,kt b t k b t t mk k j k     

      , , , ,k k j kE t m t Z k t Z t mk k k j k            


    , ,k k jE t m t Z k t Zk k k j         


    , , , ,k k jt m E t m k t Zk j k k j          
 

      , , , , , ,k k k kt m E t m t Z t mk k k k k             
  

Here,
         ,

,,
k jH m t rm t b t k b tk k k k jk j    
 

 

         1 1t k tk k k k k j j j j               

    1Y t kk j k     

Variational operators establish the core link between the
investment strategy optimization and equilibrium solution
by quantifying changes in the value function under policy
perturbations. By leveraging the definition of operator
molecules formalized within the theoretical framework
and the mathematical derivations of stochastic differential
games for investment in the literature (Li et al., (2012)
[28]; Li (2023) [26]), we can establish theoretical support
for the methodology.
Theorem 1.

If  , ,kV t m sk and     1,2,2, , 0,kg t m C Tk 
  , 1,2k

satisfy:    , , 0,t m Tk 
   ,

        
* * 2, ,

sup , , , ,
2

k j k jk kkA V t m A g t mk k
k k

 
  
 

   
 



     
*,

, , , , 0k jk kg t m A g t mk k k  
 

  (11)

 , ,kV T m mk k   (12)

 
 

*,
, , 0

k j kA g t mk  
 

 (13)

 , ,kg T m mk k   (14)

     * *, ,* arg sup , ,
2

k j k jk kA V t m Ak k
k k


   
 

   




        
*2 ,

, , , , , ,k jk k kg t m g t m A g t mk k k k  
  


 
   (15)

And the equilibrium strategy *
k follows the

conditions:

   , , , ,k kW t m V t mk k   ,
 

   
* *,

, ,, ,
k j kE M T g t mt m kkk 

 
  
  

 
 

The strategy *
k serves as the critical nexus between

theoretical assumptions and practical investment strategy
optimization, as it satisfies continuity and differentiability
conditions for pension wealth trajectory projections while
adhering to value-function-based optimization criteria for
global optimality in stochastic market. These requirements
provide DC pension managers with the unambiguous
selection benchmarks. Theorem 2 formally establishes the
Nash equilibrium representation of risk-sharing and asset
allocation through stochastic differential game modeling.
Its derivation is rooted in the foundations of Theorem 1
and the integration of complex market dynamics. The
equilibrium solution explicitly resolves nonlinear strategic
interdependencies among investors in the environment of
constrained resources and competitive.
Theorem 2. The Nash equilibrium solution for risk

sharing and asset allocation among DC pension investors
can be as:

 

    
   

* 1,1
3

* 1 1 1
1

1 1 2 1 2

t

C kBb t
r T tk k e





  
    
 

  
and

 

    
   

* 2,2
3

* 1 2 2
1

1 1 2 1 2

t

C kBb t
r T tk k e





  
    
 

  
Here,

   2 2
1 22 21 2 1 1J              

   1 1 1 2 2 0 1 2 1 2k               

   2 2
2 1 1 2 2 21 1J          

   

   1 0 1 2 1 22 2 1 1k               
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       2 2 2 2
1 21 1 2 23 1 2

r T t
J e    

     
   

  21 2 0 1 2 1 2k k           
The value function is:

       1 1, , ln1 1
1 1

B t C tr T tW t m m e   
 

  ,

       2 2, , ln .1 2
2 2

B t C tr T tW t m m e   
 

 

where the value of  B t corresponds to the constant CB
Eqs.(24) and (26) yield the values of  1C t and  .2C t
In a real financial market, asset price fluctuations often

exhibit complex characteristics, showing both jumps and
stochastic volatility. Theorem 2 is based on constructing a
Heston stochastic volatility framework that includes jump-
diffusion processes. It not only considers sudden changes
in asset prices triggered by unexpected events, but also
demonstrates the random evolution of volatility through
the Heston model, thereby more closely aligning with the
real market scenarios encountered in pension investment.
Within this framework, Theorem 2 establishes a Nash
equilibrium for risk sharing and asset allocation among
DC pension investors. It integrates reinsurance strategies,
the ratio of risky assets to risk-free assets, and the random
wage fluctuations of contributors, clarifying the optimal
strategy combinations for each investor in dynamic games.
This model and framework can serve as a quantifiable and
actionable reference for DC pension investment managers,
so as to they can balance risk and return and achieve stable
growth.
Proof: Derivation of the Nash equilibrium
When deriving the Nash equilibrium for DC pension

stochastic differential games, it is necessary to define the
variational operator that can directly quantify the influence of
investment strategy changes on the value function. Eq.(11)
can be transformed into a more tractable form for solving the
Nash equilibrium by the variational operator:

 
 

    
*,

sup , , , ,.
k jk kV t m H V t m r tt k kk j mk

k k
   


    



 
 



          
21 * 2 2, ,

2
kV t m t b t k b t tk k k j k k  


   


 

     
22 2 2 * k kk t t t V gk j k j kj j kk m m mk k k

     
            
  

        
21 2 , , , ,

2
k kt V t m g t m tk k k   

 
      

  
 

          * , , , , , ,k k kb t k b t V t m g t m g t mk k j k k k km mk k
 

      
   

    *, ,k k jE V t m t Z k t Zk k k j    


     2*, ,
2

k k jk g t m a t Z k t Zk k k j      
 



      *, , , ,k k k jg t m g t m t Z k t Zk k k k k j       


      2* *, , , ,
2

k j k jkE V t m k t Z g t m k t Zj k k j k k j            
 

    *, , , ,k k jg t m g t m k t Zk k k k j     
 

      2
, , , ,

2
k k k kkE V t m t Z g t m t Zk k k k k             

 

    , , , ,k k kg t m g t m t Zk k k k     
 

      2, , , ,
2

k kkE V t m g t mj k k k    
      

  
 

10
sup 0

1
Fi

ik k

  
  

  
(16)

For Eqs.(12) and (16), considering the complexity of the
model and the characteristics of the real financial market,
we let the equations have the following formal solutions:

       , , ln
B t C tk kV t m A t mk k
k k

   
 

  ,

       , , ln ,
B t C tk kg mm A t m sk k
k k

   
 

 

    1A T A t  ,     0B T B t  , and     0C T C Tk k  .

then:        , , ln
B t C tk kV t m A t mt k k
k k

 
 

  
 

  ,

   , ,kV t m A tkmk
  ,     1, , .

B tkV t mk
k

 



 ,  , , 0kV t mkm xk k
   ，

 , , 0kV t mkm mk k
   , 0kVmk

 ,     2, , . ,
B tkV t mk
k

 
 




   , ,kg t m A tkmk
  ,        , , ln

B t C tk kg mm A t mt k k
k k

 
 

  
 

 

    1, , .
B tkg t mk
k

 



 ,  , , 0kg t mkm mk k

   ,  , , 0kg t mkmk
  ,

    2, , .
B tkg t mk
k

 



 .

One can substitute the above expressions into each item
in Eq.(16) for detailed estimations. This approach needs to
integrate an equation of pension wealth accumulation, a
reinsurance return model, and a random wage payment
mechanism. Through mathematical operations and logical
deduction, the specific impact of each equilibrium strategy
on dynamic changes in the investment pension account is
quantified:

       , , ln1
B t C tk kF V t m A t mt k k
k k

 
 

   
 

  ,

     
 

* *, ,
, ,2 , ,

k j k jkF H V t m H A tkk j m k jk
 

   
 ,

         , , .3
B tkF r t V t m r tk
k

         


          
21 * 2 2 2 *2 2

4 2
F t b t b t k t k tk j k j jk k k   


     



   
2*2 0

k kk a t t V gk k j k j km m mk k k
   

          
  

          
21 * 2 2 2 *2 2

2
t b t k b t t k tk k j j jk k k   


    


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     * 22 0k a t t A tk k j k j k        

      21 2 , , , ,5 2
k kF t V t m g t mk k k   

 
   

  



     21
2

B t B t
t

k k

 
    

   
，

        * , ,6
kF t b t k b t V t mk k j kmk

 


   


   , , , ,k kg t m g t mk kk mk
 


 

 

          *t b t k b t B t A tk k j       ,

     *, ,7
k k jF E V t m t Z k t Zk k k j    

     2*, ,
2

k k jk g t m t Z k t Zk k k j        


      *, , , ,k k k jg t m g t m t Z k t Zk k k k k j       ,

         * ln
B t C tk j kE A t m t Z k t Zk k k j
k k

  
           



           2* ln
2

B t C tk j kk A t m t Z k t Zk k k j
k k

  
 

       


         ln
B t C t kkA t m A t m t Zk k k k
k k

 
       

 

      * ln
B t C tj kk a t Zk j
k k


     

         * ln
B t C tk j kE A t m t Z k t Zk k k j
k k

  
           



        2 *
2

k j kk A t m t Z k t Z m t Zk k k j k k  
     

        * ln
B t C tj kk a t Z A t mk j k k
k k


 

     


    2
ln

2
B t C tkk
k k


        

,

      2* *, , , ,8 2
k j k jkF E V t m k t Z g t m k t Zj k k j k k j          

 

   *, , , ,k k k jg t m g t m k Zk k k j    

        * ln
B t C tj kE A t m k t Zj k k j
k k

    
 



        
2

* ln
2

B t C tk j kA t m k t Zk k j
k k

 
 

    
   



     ln
B t C tkA t mk k
k k


 

     


        * ln
B t C tj kA t m k t Zk k j
k k

 
 
     




        * ln
B t C tj kE A t m k t Zj k k j
k k

    
 



       2 * *
2

j jk A t m k t Z m k t Zk k j k k j 
    

          2ln ln
2

B t C t B t C tkk kA t mk k k k k k
 

    
               

 ,

      2, , , ,9 2
k k kkF E V t m t Z g t m t Zk k k k k          

 

    , , , ,k k kg t m g t m t Zk k k k    

        ln
B t C tk kE A t m t Zk k k
k k

 


     


         2ln
2

B t C tk kk A t m t Zk k k k
 

 
      



     ln
B t C tkA t mk k
k k


 

     


        ln
B t C tk kA t m t Zk k
k k

 
         



        ln
B t C tk kE A t m t Zk k k
k k

 


     


          2
ln ln

2
B t C t B t C tk kkA t mk k
k k k k

 
                  



       2
2

k kk A t m t Z m t Zk k k k 
     ,

      2, , , ,10 2
k kkF E V t m g t mj k k k 

     
  

   

       ln
B t C tkE A t mj k k
k k




     
 

  

      2ln
2

B t C tkk A t m sk
k k

         



         2 2ln
2

B t C tk kE A t m A t mj k k kk k


        

   

          2ln ln
2

B t C t B t C tk kkA t mk k
k k k k

 
                  

 ,

Based on the previous calculation, we can deduce:
7 8 9 10F F F F  

            *k jE A t t Z k t Z A tk k j k j        

           2 22 *
2

j kk A t k t Z t Zj k j k k 
   

   

      *2 k jt Z k t Zk k j    

         *t k t A tk k k j k j j          
   

           *2 2 2 2 2 2 2
2 2
k kk t A t t A tj kj jk k k    

      

      * 2t k t A tk k k j i j      

By substituting the estimates of the terms 1 10F F into
Eq.(16), the calculation yields:

           *sup ( ) ln
B t C tkA t m rm t b t k b tk k k k j
k kk k


           

 

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      1tk k k k k k          

             * *1 1t t Y t k A tj j j j j j j k                
 

          1 1 2
2

B t
r t t B t B t

k k
            

          
21 * 2 2 2 *2 2

2
t b t b t k t k tk j k j jk k k       

            * 2 *2 0k t t A t t b t k b tk k j j k k k k j           

           2 *2 2 2
2 2
k kB t A t k t A tj kk j j   

 
     

          2 2 2 * 2 0t A t t k t A tk k k j k jk k         

(17)
By computing the partial derivatives of  tk and  ,b tk

the differential form of Eq.(17) can be reduced to the
following form:

     2 2 2A t tk k kk k       
 

     0A t k kk k k k k j k k k j               

         * 2 2t A t t A t b tj k k   (18)

               * 2t A t t A t B t k b t t A tk k j     (19)

Through analytical solution of the simultaneous Eqs.(18)
- (19), we obtain:

     
   

 
 

 0* *
2 22 2 2

A t k j k jk k kt k tk k j
A t kk k k kk k

      
 

  

   
 

       

 

  

(20)

   
 

 
   * *

2
A t B t

b t k b tk k jA tkA tk


  


(21)

When 0,kk the corresponding policy is the standard
policy.
By substituting Eqs.(20) and (21) into Eqs.(17) and (18),

one obtains:
    0A t A t   (22)

  0
B t

k


 (23)

By applying the method of separation of variables under
the constraint of initial conditions, we derive the solution:

   r T tA t e  (24)
  C 0B t B  (25)

Substituting  , ,kg t mk  into Eq.(13), then:

             * *,
ln ,

t tk jA t rA t m H rx A t tkk jk k k

 
 

 
        
  
 

 
 

               1 * * 0
2

t B t A t t A t k tk k k k k j j
k

         


   

(26)
Assuming that:

    0A t A t   (27)

 
0

B t

k





(28)

The solution is:

   r T tA t e  (29)

  C 0B t   (30)
Substituting Eqs.(24)-(25) and Eqs.(29)-(30) into Eqs.

(20)-(21), the following is obtained:

     
   

 
 

 

   
 

 
   

0* *
2 22 2 2

* *
1 2

A t k j k jk k kt k tk k j
A t kk k k kk k

A t B t
b t k b tk jA tkA tk

       
 

  



             

   

 

 

  

Note that:

     r T tA t A t e   (31)

   B t B t CB  (32)
where is the constant of the function. This is the basic

wealth level of the pension account in a steady state.
Substituting Eqs.(31)-(32) into Eqs.(20)-(21) and iterating
the system yields:

   
   

 
 

 * *1 1 1 0 1 2 1 2
1 1 22 22 2 11 1 1 11 1
t k t

r T te

       
 

  

   
 

       

 

  

(33)

   
   

 
 

 * *2 2 2 0 1 2 1 2
2 2 12 22 2 22 2 2 22 2
t k t

r T te

       
 

  

   
 

       

 

  

(34)

       * *
1 1 2

1 1

CBb t k b tr T t r T te r e


   

(35)

       * *
2 2 1

2 2

CBb t k b tr T t r T te r e


  

 
(36)

In the solution for the DC pension model, Eqs.(33) and
(34) are interrelated; Eq.(34) is the important intermediate
expression. After substituting Eq.(34) into (33), algebraic
operations are performed and stochastic processes are
used to simplify and eliminate terms, ultimately obtaining
a new expression to assist in solving for Nash equilibrium
strategies and optimal investment solutions:

   
   

 
 

* 1 1 1 0 1 2 1 2
1 1

 
2 22 2 11 1 1 11 1

t k
r T te

      


  

  
 

   






 

 

 





 
   

 
 

 *2 2 0 1 2 1 2
2 12 22 2

2 2 22

2

2 2 2
k t

r T te

      


  

 
    
         






 

  



Following the derivation steps, we arrive at the solution:

 * 11
3

t 



,

 * 22
3

t 



Here:

   2 2
1 2 1 1 1 2 22       





   
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   0 1 2 1 21 1 21 2k              

   2 2
2 1 2 2 2 11 1          

   

   2 2 1 1 1 0 1 2 1 2k               

       2 2 2 2
3 1 2 1 21 1 2 2

r T te          
   

  21 2 0 1 2 1 2k k           
There is a tightly coupled iterative relationship between

Eqs.(35) and (36). During each iteration cycle, intermediate
results under the current parameters are computed throughout
Eq.(36), which incorporates the dynamic valuations of key
variables, the pension wealth accumulation and reinsurance
returns. Propagate the calculation results of Eq.(36) as inputs
into Eq.(35), then perform iterative recalibration to update
the posterior parameters. Through successive iterations, upon
convergence the algorithm yields:

       * *
1 1 2 1

1 2

C CB Bb t k k b t
r T t r T te e

      
    

,

     * *
2 2 1

1

CBb t k b tr T te


 

,

Where the solution is as follows:

    
   

* 1 1 1
1

1 1 2 1 2

C kBb t
r T tk k e

   


 

    
   

* 1 2 2
2

1 1 2 1 2

C kBb t
r T tk k e

   


 

IV．DISCUSSION AND CONCLUSIONS
This study comprehensively analyzes the reinsurance

and investment strategies in DC pension systems, and
proposes a methodology to develop robust operational
strategies in stochastic financial market conditions with
volatility clustering. The primary theoretical contribution
of this work is to build the model of a Nash equilibrium
optimization, in which the risk asset follows the Heston
model, and the reinsurance surplus exhibits characteristics
of jump-diffusion. By maximizing the utility of the index,
an optimal strategy is derived to enhance the accumulation
of terminal wealth and reduce discontinuous risks at the
same time.
We have addressed limitations in previous research in

terms of model construction, more rigorously considering
the uncertainties of financial markets. Compared with
models in earlier literature, our model has a few additional
advantages: it is more concise in form, abandons complex
and redundant structures, and is easier to understand and
apply. Compared with traditional mean variance methods,
this strategy has higher stability and can establish a formal
link between the volatility smile effect and sustainability
of DC pension plan, providing a computationally feasible
solution for the jump-diffusion adaptation. In terms of
generalizability, the model is not excessively limited by
specific market environments or conditions, and can thus
function in a wider range of financial market scenarios. In
terms of practicality, the model strategy applies to realistic

market situations, has stronger operability, can effectively
guide investors' practical activities, helps investors make
more reasonable investment decisions in complex markets,
and aids asset preservation and appreciation for the DC
pension systems.
The results of this study demonstrate strong practicality.

As countries are confronted with aging populations and
mounting pension payment pressures, pension investment
management institutions can apply scientific investment
and reinsurance strategies leveraging the game-theoretic
models developed in this work. By optimizing the asset
allocation, reducing the operational risks, and improving
the pension stability, this approach can enhance the
sustainability of the pension system and help ensure the
quality of life for the retirees. Concurrently, given the
globalization of financial markets and ongoing financial
innovations, various financial institutions and investors
might adopt these model's strategies when pursuing
pension-related investments. These may enable them to
better navigate volatile market conditions and strengthen
competitiveness. For instance, insurance companies might
utilize this model to determine the optimal reinsurance
proportions and pricing for pension-linked reinsurance
operations, achieving more efficient risk transfer and
control. Moreover, investment institutions could apply the
asset allocation strategies of the model to select superior
investment targets and timing decisions, thereby boosting
portfolio returns.
Although the investment decision model proposed in

this study accounts for market uncertainty, real financial
markets may exhibit even more complex behavior, such as
varying market sentiment, policy uncertainties, and other
uncertain factors. In future research, these topics might be
explored to improve the present DC pension investment
decision model, making it more applicable to complex
market situations.
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