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Abstract—4-Regular circulant graphs are among
the most important classes of graphs, and their
total coloring has attracted much attention in
recent years. Nevertheless, determining the total
chromatic numbers for most 4-regular circulant
graphs remains an open problem, despite
considerable efforts. In this paper, we address
this issue and determine the total chromatic
numbers for several families of 4-regular
circulant graphs.

Index Terms—total coloring, total chromatic nu-
mber, regular graph, circulant graph

I. INTRODUCTION
ET G be a simple connected graph with vertex set
�(�) and edge set �(�). A total k-coloring of a graph

� is a mapping �: �(�) ∪ �(�) → {1,2, ⋯, �} , such that
no two adjacent or incident elements of �(�) ∪ �(�) are
assigned the same color. The smallest number of colors
needed for such a coloring of � is called the total
chromatic number, denoted as �''(�) . Determining total
chromatic number is known to be NP-complete [1], and
remains NP-hard even for r-regular bipartite graphs with
� ≥ 3 [2].
There is a long-standing total coloring conjecture

independently proposed by Behzad [3] and Vizing [4]. It
states that the total chromatic number �''(�) satisfies
�(�) + 1 ≤ �''(�) ≤ �(�) + 2 for a simple graph G ,
where �(�) is the maximum degree of G . The conjecture
implies that for any simple graph G , �''(�) can only take
one of two possible values: �(�) + 1 or �(�) + 2 .
Usually, a graph with �''(�) = �(�) + 1 is referred to as
Type I, while a graph with �''(�) = �(�) + 2 is referred
to as Type II.
The conjecture has been verified by a number of graphs,
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and the exact values of total chromatic number for certain
classes of graphs have been determined in previous studies
[5]–[9]. However, the total chromatic numbers for most 4-
regular circulant graphs remain unresolved even after many
efforts. In this paper, we investigate the total coloring of 4-
regular circulant graphs, aiming to determine their total
chromatic numbers as comprehensively as possible. The
paper is organized as follows. Section II provides a brief
overview of 4-regular circulant graphs and their total
coloring. Section III presents our main findings, where the
total chromatic numbers for several families of 4-regular
circulant graphs are given. Finally, Section IV is the
conclusion.

II. A REVIEW OF 4-REGULAR CIRCULANT GRAPHS AND
THEIR TOTAL COLORING

A 4-regular circulant graph ��(�1, �2) is the graph that
has vertex set � = �0, �1, ⋯, ��−1 and edge set � =

�=1
2 ��� with �� = �0

� , �1
� , ⋯, ��−1

� and ��
� = ���(�+��) ��� � ,

where 1 ≤ �1 < �2 ≤ ⌊ �−1
2

⌋ and indices of the vertices are
considered modulo n.
4-regular circulant graphs are among the most important

classes of graphs, and many articles have been devoted to
the study of their coloring, especially total coloring [10]–
[17]. Studies in this area have thrown up some interesting
results. According to [5], a 4-regular circulant graph must
belong to either Type I or Type II, i.e. its total chromatic
number is 5 or 6. Campos and de Mello proved that Cn(1,2)
is Type I, except for C7(1,2) which is Type II [12]. Tong et
al. demonstrated similar results, proving that Cn(1,4) is
Type I, except for C13(1,4) which falls into Type II [13].
Khennoufa and Togni refined these findings by showing that
C5p(1, k) for k (mod 5) = 2,3 with p ≥ 1 and k < 5p

2
, and

C6p(1, k) for k (mod 3 ) ≠ 0 with p ≥ 3 and k < 3p are
Type I [14]. Nigro et al. extended these results, proving that
C3p(1,3) with p ≥ 3 but p ≠ 4, C3tp(1, p) with t ≥ 1 and
p (mod 3) = 0 , and C(8p+6q)k(3,2k) with k ≥ 1 , p, q ≥ 0
and p + q ≠ 0 are Type I [15], [16]. Navaneeth et al.
further expanded the classification, identifying that
C5p(1, k) for k (mod 5 ) = 1,4 with p ≥ 1 and k < 5p

2
,

C9p(1, k) for 9p
gcd(9p, k)

= 3s (s ∈ N) with 2 ≤ k < 9p
2
,

C3p(a, b) for 3p
gcd(3p, b)

= 3s (s ∈ N) with p (mod 2 ) = 1

and gcd(a, b) = 1, and C6p(a, b) for a, b(mod 3) ≠ 0 with
p(mod 2) = 0 or with p (mod 2) = 1 and gcd(a, b) = 1 are
Type I [17].
Table I presents all the families of Type I 4-regular

circulant graphs identified in previous studies. By contrast,
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Type II 4-regular circulant graphs are much less common,
and only a few instances have been confirmed so far,
including �7(1,2), �12(1,3), and �13(1,4).

TABLE I
FAMILIES OF TYPE I 4-REGULAR CIRCULANT GRAPHS

OBTAINED IN PREVIOUS STUDIES

III. TOTAL COLORING FOR SEVERAL FAMILIES OF 4-
REGULAR CIRCULANT GRAPHS

As stated above, researchers have determined the total
chromatic numbers for some special families of 4-regular
circulant graphs. We now try to find the total chromatic
numbers for a wider range of 4-regular circulant graphs.
Specifically, our study focuses on the graphs ���(1, �� +
�) with �, � ≥ 1 and � ≥ 0. To achieve this, we employ a
computational approach to systematically search for valid
total coloring schemes. Subsequently, we rigorously prove
the correctness of the identified coloring schemes, ensuring
their validity and reliability.
For simplicity, we use (�1�2⋯��)� to represent

�1�2…��⋯�1�2…��� � ���� ���
�

, where �1, �2, ⋯, �� ∈ 1,2,3,4,5 . For

example, (24351)2 = 2435124351. Let

� = ��: 0 ≤ � ≤ �� − 1 ,
�1 = ���(�+1)��� �: 0 ≤ � ≤ �� − 1 ,
�2 = ���(�+��+�)��� �: 0 ≤ � ≤ �� − 1 .

Next, we will provide constructive proofs for Theorems
1 through 10 using these notations.

Theorem 1. �''(�8�(1,8� + �)) = 5 for � = 2,6,7.

Proof: We construct �(�8�(1, 8� + �)) for � = 2,6,7
as follows.

�(�) =
(43542532)�, � = 2,6,
(23543245)�, � = 7,

�(�1) =
(12131415)�, � = 2,6,
(12121313)�, � = 7,

�(�2) =
(35425324)�, � = 2,
(24354253)�, � = 6,
(45435452)�, � = 7.

Fig.1(1)-(2) show �(�8(1,2)) and �(�16(1,6)).
To demonstrate that the above construction satisfies the

requirements of a total 5-coloring, we examine the colors
assigned to all adjacent or incident elements of
�8�(1,8� + �) for � = 2,6,7.
First, consider the vertex �� . Its adjacent vertices are

��−(8�+�), ��−1, ��+1 and ��+(8�+�) . The construction
indicates �(��) ≠ �(��−(8�+�)), �(��−1), �(��+1), �(��+(8�+�)),
which means that two adjacent vertices receive different
colors.
Second, consider the edges ����+1 and ����+(8�+�) .

The adjacent edges of ����+1 are ��−(8�+�)��, ��−1��, ��

��+(8�+�), ��−(8�+�)+1��+1, ��+1��+2 and ��+1��+(8�+�)+1 , and
the adjacent edges of ����+(8�+�) are ��−(8�+�)��, ��−1��, ��

��+1, ��+(8�+�)−1��+(8�+�), ��+(8�+�)��+(8�+�)+1 and ��+(8�+�)

��+2(8�+�) . The construction indicates �(����+1) ≠
�(��−(8�+�)��), �(��−1��), �(����+(8�+�)), �(��−(8�+�)+1��+1),
�(��+1��+2), �(��+1��+(8�+�)+1) , and �(����+(8�+�)) ≠
�(��−(8�+�)��), �(��−1��), �(����+1), �(��+(8�+�)−1��+(8�+�)),
�(��+(8�+�)��+(8�+�)+1), �(��+(8�+�)��+2(8�+�)), which means
that two adjacent edges receive different colors.
Third, the edges incident to the vertex �� are

��−(8�+�)��, ��−1��, ����+1 and ����+(8�+�) . The construction
indicates �(��) ≠ �(��−(8�+�)��), �(��−1��), �(����+1), �(��

��+(8�+�)) , which means that a vertex receives a different
color from its incident edges.
Therefore, the above construction fufils all the

requirements of a total 5-coloring of �8�(1,8� + �) for
� = 2,6,7 . We then have �''(�8�(1,8� + �)) ≤ 5 for
� = 2,6,7 . On the other hand, there is �''(�8�(1,8� +
�)) ≥ 5. Hence, �''(�8�(1,8� + �)) = 5 for � = 2,6,7.

Theorem 2. �''(�11�(1,11� + �)) = 5 for � = 2,3,4,

5,6,8,9.

Proof: We construct �(�11�(1,11� + �)) for � = 2,3,
4,5,6,8,9 as follows.

�(�) =

(34534534512)�, � = 2,9,
(25354543431)�, � = 3,
(23431251231)�, � = 4,
(25435343541)�, � = 5,
(24534353451)�, � = 6,
(24345453531)�, � = 8,

�(�1) =
(12121212345)�, � = 2,9,
(12121212123)�, � = 3,5,6,8,
(12123123123)�, � = 4,

�(�2) =

(45345345123)�, � = 2,
(43435354545)�, � = 3,
(45345445455)�, � = 4,
(43543554354)�, � = 5,
(45345534534)�, � = 6,
(45453534345)�, � = 8,
(23453453451)�, � = 9.

Fig.1(3)-(4) show �(�11(1,2)) and �(�11(1,3)).

��(1,2) � ≥ 5 but � ≠ 7
��(1,4) � ≥ 7 but � ≠ 13

�3�(1,3) � ≥ 3 but � ≠ 4

�3��(1, �) � ≥ 1, � (mod 3 ) = 0

�5�(1, �) � ≥ 1, � (mod 5 ) ≠ 0

�6�(1, �) � ≥ 3, � (mod 3 ) ≠ 0

�9�(1, �) � ≥ 1, 9�
���(9�, �)

= 3�(� ∈ �)

�(8�+6�)�(3,2�) � ≥ 1, �, � ≥ 0 and � + � ≠ 0

�3�(�, �)
3�

���(3�, �)
= 3�(� ∈ �,

� (mod 2) = 1 Λ gcd(�, �) = 1)

�6�(�, �) �, � (mod 3) ≠ 0 (� (mod 2) = 0 or
� (mod 2) = 1 Λ gcd(�, �) = 1)
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Fig. 1. �(�8(1, 2)), �(�16(1, 6)), �(�11(1,2)), �(�11(1,3)), �(�13(1,2)) and �(�13(1,5))

Similarly to the proof of Theorem 1, we can verify that
the construction fulfills the requirements of a total 5-
coloring by examining the colors assigned to all adjacent or
incident elements of �11�(1,11� + �) for � = 2,3,4,5,6,8,9.
First, the vertices adjacent to �� are ��−(11�+�), ��−1, ��+1

and ��+(11�+�). It holds that �(��) ≠ �(��−(11�+�)), �(��−1),
�(��+1), �(��+(11�+�)), ensuring distinct colors for adjacent
vertices. Second, the edges adjacent to ����+1 are
��−(11�+�)��, ��−1��, ����+(11�+�), ��−(11�+�)+1��+1, ��+1��+2
and ��+1��+(11�+�)+1 , and the edges adjacent to
����+(11�+�) are ��−(11�+�)��, ��−1��, ����+1, ��+(11�+�)−1

��+(11�+�), ��+(11�+�)��+(11�+�)+1 and ��+(11�+�)��+2(11�+�).
It holds that �(����+1) ≠ �(��−(11�+�)��), �(��−1��),
�(����+(11�+�)), �(��−(11�+�)+1��+1), �(��+1��+2), �(��+1

��+(11�+�)+1), and �(����+(11�+�)) ≠ �(��−(11�+�)��),
�(��−1��), �(����+1), �(��+(11�+�)−1��+(11�+�)), �(��+(11�+�)

��+(11�+�)+1), �(��+(11�+�)��+2(11�+�)), guaranteeing differ-
ent colors for all adjacent edges. Third, the edges incident
to the vertex �� are ��−(11�+�)��, ��−1��, ����+1 and ��

��+(11�+�). It holds that �(��) ≠ �(��−(11�+�)��), �(��−1��),
�(����+1), �(����+(11�+�)), thus each vertex receives a color
different from its incident edges.
So, for � = 2,3,4,5,6,8,9, �11�(1,11� + �) admits a total

5-coloring based on the above construction. We then obtain
�''(�11�(1,11� + �)) ≤ 5 for � = 2,3,4,5,6,8,9 . On the
other hand, there is �''(�11�(1,11� + �)) ≥ 5 . Hence,
�''(�11�(1,11� + �)) = 5 for � = 2,3,4,5,6,8,9.

Theorem 3. �''(�13�(1,13� + �)) = 5 for � = 2,5,6.

Proof: We construct �(�13�(1,13� + �)) for � = 2,5,6
as follows.

�(�) =
(5345341231541)�, � = 2,
(2535351241231)�, � = 5,
(2353424542153)�, � = 6,

�(�1) =
(1212123123134)�, � = 2,
(1212123124123)�, � = 5,
(1212131213214)�, � = 6,

�(�2) =
(3453455445225)�, � = 2,
(4443535553544)�, � = 5,
(5435542354435)�, � = 6.

Fig.1(5)-(6) show �(�13(1,2)) and �(�13(1,5)).
Following a similar approach to the proofs of Theorems

1 and 2, we can also verify that the above construction is a
total 5-coloring of �13�(1,13� + �) for � = 2,5,6 .
Consequently, we can establish that �''(�13�(1,13� +
�)) = 5 for � = 2,5,6.
The method employed in the proofs of Theorems 1 and 2

can be used to prove the subsequent theorems. Therefore,
we will only provide the construction �(���(1, �� + �)) for
Theorems 4 through 10.

Theorem 4. �''(�14�(1,14� + 4)) = 5.

Proof:We construct �(�14�(1,14� + 4) as follows.

�(�) = (25434352143431)�,
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�(�1) = (12121213212124)�,

�(�2) = (34345545435355)�.

Fig.2(1) shows �(�14(1,4)).

Theorem 5. �''(�15�(1,15� + 5)) = 5.

Proof: We construct �(�15�(1,15� + 5)) as follows.

�(�) = (253545454543431)�,

�(�1) = (121212121212123)�,

�(�2) = (434333535454545)�.

Fig.2(2) shows �(�15(1,5)).

Theorem 6. �''(�16�(1,16� + 4)) = 5.

Proof: We construct �(�16�(1,16� + 4)) as follows.

�(�) = (2534345253134145)�,

�(�1) = (1212121314515314)�,

�(�2) = (5345453422223453)�.

Fig.2(3) shows �(�16(1,4)).

Theorem 7. �''(�17�(1,17� + �)) = 5 for � = 2,4,5,8.

Proof: We construct �(�17�(1,17� + �)) for � = 2,4,
5,8 as follows.

�(�) =

(34534534534534512)�, � = 2,
(24535345453434531)�, � = 4,
(25353545454343431)�, � = 5,
(25435435343543541)�, � = 8,

�(�1) = (12121212121212345)�, � = 2,
(12121212121212123)�, � = 4,5,8,

�(�2) =

(45345345345345123)�, � = 2,
(45343453534545345)�, � = 4,
(43434353535454545)�, � = 5,
(43543543554354354)�, � = 8.

Fig.2(4)-(5) show �(�17(1,2)) and �(�17(1,4)).

Theorem 8. �''(�19�(1,19� + �)) = 5 for � = 2,4,5,6,9.

Proof: We construct �(�19�(1,19� + �)) for � = 2,4,5,

6,9 as follows.

(�) =

(5345345345341231541)�, � = 2,
(2545345343121535321)�, � = 4,
(2454345354534253231)�, � = 5,
(2534124125312341251)�, � = 6,
(4354353435243542152)�, � = 9,

�(�1) =

(1212121212123123134)�, � = 2,
(1212121212342142145)�, � = 4,
(1212121212123121423)�, � = 5,
(1212312341241253123)�, � = 6,
(1212121213121213213)�, � = 9,

�(�2) =

(3453453453455445225)�, � = 2,
(4334554534515323453)�, � = 4,
(5343534543451545354)�, � = 5,
(5453553512435434544)�, � = 6,
(2435435544554354435)�, � = 9.

Fig.2(6), 3(1) show �(�19(1,2)) and �(�19(1,4)).

Fig. 2. �(�14(1,4)), �(�15(1,5)), �(�16(1,4)), �(�17(1,2)), �(�17(1,4)) and �(�19(1,2))
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Fig. 3. �(�19(1,4)), �(�21(1,5)) and �(�21(1,9))

Theorem 9. �''(�21�(1,21� + �)) = 5 for � = 5,9.

Proof:We construct �(�21�(1,21� + �)) for � = 5,9
as follows.

�(V) =
(243454545353531241231)�, � = 5,
(234345434545123521351)�, � = 9,

�(�1) =
(121212121212123123124)�, � = 5,
(121212121212312142125)�, � = 9,

�(�2) =
(535343434545454535453)�, � = 5,
(353554355434445433543)�, � = 9.

Fig.3(2)-(3) show �(�21(1,5)) and �(�21(1,9)).

Theorem 10. �''(�23�(1,23� + 5)) = 5.

Proof: We construct �(�23�(1,23� + 5)) as follows.

�(�) = (24545453535213214243231)�,

�(�1) = (12121212121321323121424)�,

�(�2) = (53434345454545451535353)�.

Fig.4 shows �(�23(1,5)).

Fig. 4. �(�23(1,5))

Note that for � (mod 2) = 1 , the results
χ''(C15p(1,15� + 5)) = 5 , �''(�21�(1,21� + 5)) = 5 , and
�''(�21�(1,21� + 9)) = 5 with the additional condition

7�
��� 7�, 7�+3

= 3� can be obtained too in [17].

IV. CONCLUSION
In conclusion, we have determined the total chromatic

numbers for several families of 4-regular circulant graphs
���(1, �� + �). These results support the conjecture
proposed by Khennoufa and Togni [14], which states that
except for a finite number of Type II graphs, 4-regular
circulant graphs are all Type I graphs. We summarize our
results as Table II. There are still several 4-regular circulant
graphs, especially those of the form ���(1, �� + �) , that
remain to be studied. We hope to obtain results on the total
chromatic numbers of ���(1, �� + �) for more � and �
later.

TABLE II
FAMILIS OF TYPE I 4-REGULAR CIRCULANT GRAPHS

OBTAINED IN THIS PAPER
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