Total Coloring for Several Families of 4-Regular Circulant Graphs

Wenzheng An, Chunling Tong, Senyuan Su, Xingli Xu

Abstract—4-Regular circulant graphs are among the most important classes of graphs, and their total coloring has attracted much attention in recent years. Nevertheless, determining the total chromatic numbers for most 4-regular circulant graphs remains an open problem, despite considerable efforts. In this paper, we address this issue and determine the total chromatic numbers for several families of 4-regular circulant graphs.

Index Terms—total coloring, total chromatic number, regular graph, circulant graph

I. INTRODUCTION

ET G be a simple connected graph with vertex set V(G) and edge set E(G). A total k-coloring of a graph G is a mapping $\sigma: V(G) \cup E(G) \rightarrow \{1,2,\cdots,k\}$, such that no two adjacent or incident elements of $V(G) \cup E(G)$ are assigned the same color. The smallest number of colors needed for such a coloring of G is called the total chromatic number, denoted as $\chi''(G)$. Determining total chromatic number is known to be NP-complete [1], and remains NP-hard even for r-regular bipartite graphs with $r \geq 3$ [2].

There is a long-standing total coloring conjecture independently proposed by Behzad [3] and Vizing [4]. It states that the total chromatic number $\chi''(G)$ satisfies $\Delta(G)+1\leq \chi''(G)\leq \Delta(G)+2$ for a simple graph G, where $\Delta(G)$ is the maximum degree of G. The conjecture implies that for any simple graph G, $\chi''(G)$ can only take one of two possible values: $\Delta(G)+1$ or $\Delta(G)+2$. Usually, a graph with $\chi''(G)=\Delta(G)+1$ is referred to as Type I, while a graph with $\chi''(G)=\Delta(G)+2$ is referred to as Type II.

The conjecture has been verified by a number of graphs,

Manuscript received February 26, 2025; revised June 29, 2025.

This work was supported in part by the Shandong Provincial Natural Science Foundation of China under Grant ZR2020KF010.

Wenzheng An is a graduate student in School of Information Science and Electricity Engineering, Shandong Jiaotong University, Jinan, Shandong, 250357, China (e-mail: 13031742997@163.com).

Chunling Tong is a professor in School of Information Science and Electricity Engineering, Shandong Jiaotong University, Jinan, Shandong, 250357, China (Corresponding author, email: tongel@sdjtu.edu.cn).

Senyuan Su is an assistant professor in Jinan Vocational College, Jinan, Shandong, 250103, China (email: 374080846@qq.com).

Xingli Xu is a graduate student in School of Information Science and Electricity Engineering, Shandong Jiaotong University, Jinan, Shandong, 250357, China (e-mail: xuxingli1106@163.com).

and the exact values of total chromatic number for certain classes of graphs have been determined in previous studies [5]–[9]. However, the total chromatic numbers for most 4-regular circulant graphs remain unresolved even after many efforts. In this paper, we investigate the total coloring of 4-regular circulant graphs, aiming to determine their total chromatic numbers as comprehensively as possible. The paper is organized as follows. Section II provides a brief overview of 4-regular circulant graphs and their total coloring. Section III presents our main findings, where the total chromatic numbers for several families of 4-regular circulant graphs are given. Finally, Section IV is the conclusion.

II. A REVIEW OF 4-REGULAR CIRCULANT GRAPHS AND THEIR TOTAL COLORING

A 4-regular circulant graph $C_n(d_1,d_2)$ is the graph that has vertex set $V=\{v_0,v_1,\cdots,v_{n-1}\}$ and edge set $E=\bigcup_{i=1}^2 E_i$ with $E_i=e_0^i,e_1^i,\cdots,e_{n-1}^i$ and $e_j^i=v_jv_{(j+d_i)\,mod\,n}$, where $1\leq d_1< d_2\leq \lfloor\frac{n-1}{2}\rfloor$ and indices of the vertices are considered modulo n.

4-regular circulant graphs are among the most important classes of graphs, and many articles have been devoted to the study of their coloring, especially total coloring [10]-[17]. Studies in this area have thrown up some interesting results. According to [5], a 4-regular circulant graph must belong to either Type I or Type II, i.e. its total chromatic number is 5 or 6. Campos and de Mello proved that $C_n(1,2)$ is Type I, except for $C_7(1,2)$ which is Type II [12]. Tong et al. demonstrated similar results, proving that $C_n(1,4)$ is Type I, except for $C_{13}(1,4)$ which falls into Type II [13]. Khennoufa and Togni refined these findings by showing that $C_{5p}(1,k)$ for $k \pmod 5 = 2,3$ with $p \ge 1$ and $k < \frac{5p}{2}$, and $C_{6p}(1,k)$ for $k \pmod 3 \ne 0$ with $p \ge 3$ and k < 3p are Type I [14]. Nigro et al. extended these results, proving that $C_{3p}(1,3)$ with $p \ge 3$ but $p \ne 4$, $C_{3tp}(1,p)$ with $t \ge 1$ and $p \pmod{3} = 0$, and $C_{(8p+6q)k}(3,2k)$ with $k \ge 1$, $p, q \ge 0$ and $p + q \neq 0$ are Type I [15], [16]. Navaneeth et al. further expanded the classification, identifying that $C_{5p}(1, k)$ for k (mod 5) = 1,4 with $p \ge 1$ and $k < \frac{5p}{2}$, $C_{9p}(1, k)$ for $\frac{9p}{\gcd(9p, k)} = 3s \ (s \in N)$ with $2 \le k < \frac{9p}{2}$, $C_{3p}(a,b)$ for $\frac{3p}{\gcd(3p,b)} = 3s \ (s \in N)$ with $p \pmod{2} = 1$ and gcd(a, b) = 1, and $C_{6p}(a, b)$ for $a, b \pmod{3} \neq 0$ with p(mod 2) = 0 or with p(mod 2) = 1 and gcd(a, b) = 1 are Type I [17].

Table I presents all the families of Type I 4-regular circulant graphs identified in previous studies. By contrast,

Type II 4-regular circulant graphs are much less common, and only a few instances have been confirmed so far, including $C_7(1,2)$, $C_{12}(1,3)$, and $C_{13}(1,4)$.

TABLE I FAMILIES OF TYPE I 4-REGULAR CIRCULANT GRAPHS OBTAINED IN PREVIOUS STUDIES

$C_n(1,2)$	$n \ge 5$ but $n \ne 7$	
$C_n(1,4)$	$n \ge 7$ but $n \ne 13$	
$C_{3p}(1,3)$	$p \ge 3$ but $p \ne 4$	
$C_{3tp}(1,p)$	$t \ge 1, \ p \pmod{3} = 0$	
$C_{5p}(1,k)$	$p \ge 1$, $k \pmod{5} \ne 0$	
$C_{6p}(1,k)$	$p \ge 3$, $k \pmod{3} \ne 0$	
$C_{9p}(1,k)$	$p \ge 1, \ \frac{9p}{gcd(9p, k)} = 3s(s \in N)$	
$C_{(8p+6q)k}(3,2k)$	$k \ge 1, p, q \ge 0$ and $p + q \ne 0$	
$C_{3p}(a,b)$	$\frac{3p}{\gcd(3p, b)} = 3s(s \in N,$ $p \pmod{2} = 1 \land \gcd(a, b) = 1$	
$C_{6p}(a,b)$	$a, b \pmod{3} \neq 0 \ (p \pmod{2}) = 0 \text{ or}$ $p \pmod{2} = 1 \land \gcd(a, b) = 1$	

III. TOTAL COLORING FOR SEVERAL FAMILIES OF 4-REGULAR CIRCULANT GRAPHS

As stated above, researchers have determined the total chromatic numbers for some special families of 4-regular circulant graphs. We now try to find the total chromatic numbers for a wider range of 4-regular circulant graphs. Specifically, our study focuses on the graphs $C_{tp}(1,t\mu+\lambda)$ with $t,\ p\geq 1$ and $\mu\geq 0$. To achieve this, we employ a computational approach to systematically search for valid total coloring schemes. Subsequently, we rigorously prove the correctness of the identified coloring schemes, ensuring their validity and reliability.

For simplicity, we use
$$(i_1i_2\cdots i_t)^p$$
 to represent $\underbrace{i_1i_2...i_t\cdots i_1i_2...i_t}_p$, where $i_1,i_2,\cdots,i_t\in\{1,2,3,4,5\}$. For example, $(24351)^2=2435124351$. Let
$$V=\{v_i\colon 0\leq i\leq tp-1\},$$

$$E_1=\{v_iv_{(i+1)mod\ n}\colon 0\leq i\leq tp-1\},$$

$$E_2=\{v_iv_{(i+tu+1)mod\ n}\colon 0\leq i\leq tp-1\}.$$

Next, we will provide constructive proofs for Theorems 1 through 10 using these notations.

Theorem 1.
$$\chi''(C_{8p}(1.8\mu + \lambda)) = 5$$
 for $\lambda = 2.6.7$.

Proof: We construct $\sigma(C_{8p}(1, 8\mu + \lambda))$ for $\lambda = 2,6,7$ as follows.

$$\sigma(V) = \begin{cases} (43542532)^p, & \lambda = 2,6, \\ (23543245)^p, & \lambda = 7, \end{cases}$$

$$\sigma(E_1) = \begin{cases} (12131415)^p, & \lambda = 2,6, \\ (12121313)^p, & \lambda = 7, \end{cases}$$

$$\sigma(E_2) = \begin{cases} (35425324)^p, & \lambda = 2, \\ (24354253)^p, & \lambda = 6, \\ (45435452)^p, & \lambda = 7. \end{cases}$$

Fig.1(1)-(2) show $\sigma(C_8(1,2))$ and $\sigma(C_{16}(1,6))$.

To demonstrate that the above construction satisfies the requirements of a total 5-coloring, we examine the colors assigned to all adjacent or incident elements of $C_{8p}(1.8\mu + \lambda)$ for $\lambda = 2.6.7$.

First, consider the vertex v_i . Its adjacent vertices are $v_{i-(8\mu+\lambda)}, v_{i-1}, v_{i+1}$ and $v_{i+(8\mu+\lambda)}$. The construction indicates $\sigma(v_i) \neq \sigma(v_{i-(8\mu+\lambda)}), \sigma(v_{i-1}), \sigma(v_{i+1}), \sigma(v_{i+(8\mu+\lambda)})$, which means that two adjacent vertices receive different colors

Second, consider the edges v_iv_{i+1} and $v_iv_{i+(8\mu+\lambda)}$. The adjacent edges of v_iv_{i+1} are $v_{i-(8\mu+\lambda)}v_i, v_{i-1}v_i, v_i$ $v_{i+(8\mu+\lambda)}, v_{i-(8\mu+\lambda)+1}v_{i+1}, v_{i+1}v_{i+2}$ and $v_{i+1}v_{i+(8\mu+\lambda)+1}$, and the adjacent edges of $v_iv_{i+(8\mu+\lambda)}$ are $v_{i-(8\mu+\lambda)}v_i, v_{i-1}v_i, v_i$ $v_{i+1}, v_{i+(8\mu+\lambda)-1}v_{i+(8\mu+\lambda)}, v_{i+(8\mu+\lambda)}v_{i+(8\mu+\lambda)+1}$ and $v_{i+(8\mu+\lambda)}$ $v_{i+2(8\mu+\lambda)}$. The construction indicates $\sigma(v_iv_{i+1}) \neq \sigma(v_{i-(8\mu+\lambda)}v_i), \sigma(v_{i-1}v_i), \sigma(v_iv_{i+(8\mu+\lambda)}), \sigma(v_{i-(8\mu+\lambda)+1}v_{i+1}), \sigma(v_{i+1}v_{i+2}), \sigma(v_{i+1}v_{i+(8\mu+\lambda)+1})$, and $\sigma(v_iv_{i+(8\mu+\lambda)}) \neq \sigma(v_{i-(8\mu+\lambda)}v_i), \sigma(v_{i-1}v_i), \sigma(v_iv_{i+1}), \sigma(v_{i+(8\mu+\lambda)-1}v_{i+(8\mu+\lambda)}), \sigma(v_{i+(8\mu+\lambda)}v_{i+(8\mu+\lambda)+1}), \sigma(v_{i+(8\mu+\lambda)}v_{i+(8\mu+\lambda)}), \text{ which means that two adjacent edges receive different colors.}$

Third, the edges incident to the vertex v_i are $v_{i-(8\mu+\lambda)}v_i, v_{i-1}v_i, v_iv_{i+1}$ and $v_iv_{i+(8\mu+\lambda)}$. The construction indicates $\sigma(v_i) \neq \sigma(v_{i-(8\mu+\lambda)}v_i)$, $\sigma(v_{i-1}v_i)$, $\sigma(v_iv_{i+1})$, $\sigma(v_iv_{i+1})$, which means that a vertex receives a different color from its incident edges.

Therefore, the above construction fufils all the requirements of a total 5-coloring of $C_{8p}(1,8\mu + \lambda)$ for $\lambda = 2,6,7$. We then have $\chi''(C_{8p}(1,8\mu + \lambda)) \le 5$ for $\lambda = 2,6,7$. On the other hand, there is $\chi''(C_{8p}(1,8\mu + \lambda)) \ge 5$. Hence, $\chi''(C_{8p}(1,8\mu + \lambda)) = 5$ for $\lambda = 2,6,7$.

Theorem 2. $\chi''(C_{11p}(1,11\mu + \lambda)) = 5$ for $\lambda = 2,3,4$, 5,6,8,9.

Proof: We construct $\sigma(C_{11p}(1,11\mu + \lambda))$ for $\lambda = 2,3,4,5,6,8,9$ as follows.

$$\sigma(V) = \begin{cases} (34534534512)^p, & \lambda = 2,9, \\ (25354543431)^p, & \lambda = 3, \\ (23431251231)^p, & \lambda = 4, \\ (25435343541)^p, & \lambda = 5, \\ (24534353451)^p, & \lambda = 6, \\ (24345453531)^p, & \lambda = 8, \end{cases}$$

$$\sigma(E_1) = \begin{cases} (12121212345)^p, & \lambda = 2,9, \\ (12121212123)^p, & \lambda = 3,5,6,8, \\ (12123123123)^p, & \lambda = 4, \end{cases}$$

$$\sigma(E_2) = \begin{cases} (45345345123)^p, & \lambda = 2, \\ (43435354545)^p, & \lambda = 3, \\ (45345345455)^p, & \lambda = 4, \\ (435453534534)^p, & \lambda = 5, \\ (4534534534534)^p, & \lambda = 6, \\ (45453534345)^p, & \lambda = 8, \\ (23453453453451)^p, & \lambda = 9. \end{cases}$$

Fig.1(3)-(4) show $\sigma(C_{11}(1,2))$ and $\sigma(C_{11}(1,3))$.

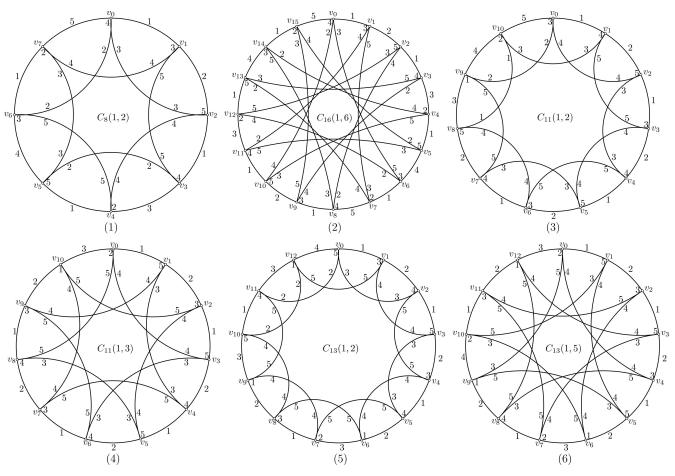


Fig. 1. $\sigma(C_8(1,2))$, $\sigma(C_{16}(1,6))$, $\sigma(C_{11}(1,2))$, $\sigma(C_{11}(1,3))$, $\sigma(C_{13}(1,2))$ and $\sigma(C_{13}(1,5))$

Similarly to the proof of Theorem 1, we can verify that the construction fulfills the requirements of a total 5coloring by examining the colors assigned to all adjacent or incident elements of $C_{11p}(1,11\mu + \lambda)$ for $\lambda = 2,3,4,5,6,8,9$. First, the vertices adjacent to v_i are $v_{i-(11\mu+\lambda)}, v_{i-1}, v_{i+1}$ and $v_{i+(11\mu+\lambda)}$. It holds that $\sigma(v_i) \neq \sigma(v_{i-(11\mu+\lambda)})$, $\sigma(v_{i-1})$, $\sigma(v_{i+1}), \sigma(v_{i+(11\mu+\lambda)})$, ensuring distinct colors for adjacent vertices. Second, the edges adjacent to $v_i v_{i+1}$ $v_{i-(11\mu+\lambda)}v_i, v_{i-1}v_i, v_iv_{i+(11\mu+\lambda)}, v_{i-(11\mu+\lambda)+1}v_{i+1}, v_{i+1}v_{i+2}$ and $v_{i+1}v_{i+(11\mu+\lambda)+1}$, and the edges adjacent to $v_i v_{i+(11\mu+\lambda)}$ are $v_{i-(11\mu+\lambda)} v_i, v_{i-1} v_i, v_i v_{i+1}, v_{i+(11\mu+\lambda)-1}$ $v_{i+(11\mu+\lambda)}, v_{i+(11\mu+\lambda)}, v_{i+(11\mu+\lambda)+1}$ and $v_{i+(11\mu+\lambda)}, v_{i+2(11\mu+\lambda)}$. It holds that $\sigma(v_i v_{i+1}) \neq \sigma(v_{i-(11\mu+\lambda)} v_i), \sigma(v_{i-1} v_i),$ $\sigma(v_i v_{i+(11\mu+\lambda)}), \sigma(v_{i-(11\mu+\lambda)+1} v_{i+1}), \sigma(v_{i+1} v_{i+2}), \sigma(v_{i+1} v_{i+2})$ $v_{i+(11\mu+\lambda)+1}$), and $\sigma(v_i v_{i+(11\mu+\lambda)}) \neq \sigma(v_{i-(11\mu+\lambda)} v_i)$, $\sigma(v_{i-1}v_i), \sigma(v_iv_{i+1}), \sigma(v_{i+(11\mu+\lambda)-1}v_{i+(11\mu+\lambda)}), \sigma(v_{i+(11\mu+\lambda)})$ $v_{i+(11\mu+\lambda)+1}$), $\sigma(v_{i+(11\mu+\lambda)}v_{i+2(11\mu+\lambda)})$, guaranteeing different colors for all adjacent edges. Third, the edges incident to the vertex v_i are $v_{i-(11\mu+\lambda)}v_i, v_{i-1}v_i, v_iv_{i+1}$ and v_i $v_{i+(11\mu+\lambda)}$. It holds that $\sigma(v_i) \neq \sigma(v_{i-(11\mu+\lambda)}v_i)$, $\sigma(v_{i-1}v_i)$, $\sigma(v_i v_{i+1}), \sigma(v_i v_{i+(11\mu+\lambda)}),$ thus each vertex receives a color different from its incident edges.

So, for $\lambda=2,3,4,5,6,8,9$, $C_{11p}(1,11\mu+\lambda)$ admits a total 5-coloring based on the above construction. We then obtain $\chi''(C_{11p}(1,11\mu+\lambda)) \leq 5$ for $\lambda=2,3,4,5,6,8,9$. On the other hand, there is $\chi''(C_{11p}(1,11\mu+\lambda)) \geq 5$. Hence, $\chi''(C_{11p}(1,11\mu+\lambda)) = 5$ for $\lambda=2,3,4,5,6,8,9$.

Theorem 3. $\chi''(C_{13p}(1,13\mu + \lambda)) = 5$ for $\lambda = 2,5,6$.

Proof: We construct $\sigma(C_{13p}(1,13\mu + \lambda))$ for $\lambda = 2,5,6$ as follows.

$$\begin{split} \sigma(V) &= \begin{cases} (5345341231541)^p, & \lambda = 2, \\ (2535351241231)^p, & \lambda = 5, \\ (2353424542153)^p, & \lambda = 6, \end{cases} \\ \sigma(E_1) &= \begin{cases} (1212123123134)^p, & \lambda = 2, \\ (1212123124123)^p, & \lambda = 5, \\ (1212131213214)^p, & \lambda = 6, \end{cases} \\ \sigma(E_2) &= \begin{cases} (3453455445225)^p, & \lambda = 2, \\ (44435355353544)^p, & \lambda = 5, \\ (5435542354435)^p, & \lambda = 6. \end{cases} \end{split}$$

Fig.1(5)-(6) show $\sigma(C_{13}(1,2))$ and $\sigma(C_{13}(1,5))$.

Following a similar approach to the proofs of Theorems 1 and 2, we can also verify that the above construction is a total 5-coloring of $C_{13p}(1,13\mu + \lambda)$ for $\lambda = 2,5,6$. Consequently, we can establish that $\chi''(C_{13p}(1,13\mu + \lambda)) = 5$ for $\lambda = 2,5,6$.

The method employed in the proofs of Theorems 1 and 2 can be used to prove the subsequent theorems. Therefore, we will only provide the construction $\sigma(C_{tp}(1, t\mu + \lambda))$ for Theorems 4 through 10.

Theorem 4. $\chi''(C_{14p}(1,14\mu+4)) = 5$.

Proof: We construct $\sigma(C_{14p}(1,14\mu+4))$ as follows.

$$\sigma(V) = (25434352143431)^p$$

$$\begin{split} \sigma(E_1) &= (12121213212124)^p, \\ \sigma(E_2) &= (34345545435355)^p. \end{split}$$

Fig.2(1) shows $\sigma(C_{14}(1,4))$.

Theorem 5. $\chi''(C_{15p}(1,15\mu+5)) = 5.$

Proof: We construct $\sigma(C_{15p}(1,15\mu + 5))$ as follows.

$$\sigma(V) = (253545454543431)^p,$$

$$\sigma(E_1) = (121212121212123)^p,$$

$$\sigma(E_2) = (434333535454545)^p.$$

Fig.2(2) shows $\sigma(C_{15}(1,5))$.

Theorem 6. $\chi''(C_{16p}(1,16\mu+4)) = 5.$

Proof: We construct $\sigma(C_{16p}(1,16\mu+4))$ as follows.

$$\sigma(V) = (2534345253134145)^p,$$

$$\sigma(E_1) = (1212121314515314)^p,$$

$$\sigma(E_2) = (5345453422223453)^p.$$

Fig.2(3) shows $\sigma(C_{16}(1,4))$.

Theorem 7. $\chi''(C_{17p}(1,17\mu + \lambda)) = 5$ for $\lambda = 2,4,5,8$.

Proof: We construct $\sigma(C_{17p}(1,17\mu + \lambda))$ for $\lambda = 2,4$, 5,8 as follows.

$$\sigma(V) = \begin{cases} (34534534534534512)^p, & \lambda = 2, \\ (24535345453434531)^p, & \lambda = 4, \\ (25353545454343431)^p, & \lambda = 5, \\ (25435435343543541)^p, & \lambda = 8, \end{cases}$$

$$\sigma(E_1) = \begin{cases} (1212121212121212345)^p, & \lambda = 2, \\ (121212121212121212)^p, & \lambda = 4,5,8, \end{cases}$$

$$\sigma(E_2) = \begin{cases} (45345345345345123)^p, & \lambda = 2, \\ (45343453534545345)^p, & \lambda = 4, \\ (43434353535454545)^p, & \lambda = 5, \\ (4354354354354354)^p, & \lambda = 8. \end{cases}$$

Fig.2(4)-(5) show $\sigma(C_{17}(1,2))$ and $\sigma(C_{17}(1,4))$.

Theorem 8. $\chi''(C_{19p}(1,19\mu + \lambda)) = 5$ for $\lambda = 2,4,5,6,9$.

Proof: We construct $\sigma(C_{19p}(1,19\mu + \lambda))$ for $\lambda = 2,4,5$, 6,9 as follows.

$$(V) = \begin{cases} (5345345345341231541)^p, & \lambda = 2, \\ (2545345343121535321)^p, & \lambda = 4, \\ (2454345354534253231)^p, & \lambda = 5, \\ (2534124125312341251)^p, & \lambda = 6, \\ (4354353435243542152)^p, & \lambda = 9, \end{cases}$$

$$\sigma(E_1) = \begin{cases} (1212121212123123134)^p, & \lambda = 2, \\ (1212121212342142145)^p, & \lambda = 4, \\ (1212121212123121423)^p, & \lambda = 5, \\ (1212312341241253123)^p, & \lambda = 6, \\ (1212121213121213213)^p, & \lambda = 9, \end{cases}$$

$$\sigma(E_2) = \begin{cases} (345345345345345345225)^p, & \lambda = 2, \\ (4334554534515323453)^p, & \lambda = 4, \\ (534353453453453453454)^p, & \lambda = 5, \\ (5453553512435434544)^p, & \lambda = 6, \\ (2435435544554354435)^p, & \lambda = 9. \end{cases}$$
Fig.2(6), 3(1) show $\sigma(C_{19}(1,2))$ and $\sigma(C_{19}(1,4))$.

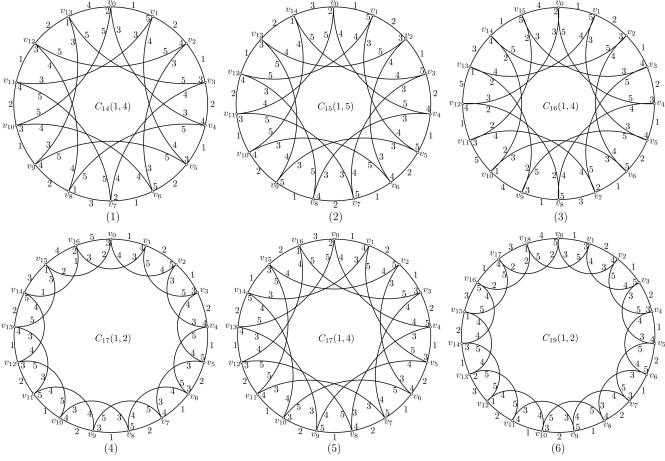


Fig. 2. $\sigma(C_{14}(1,4)), \ \sigma(C_{15}(1,5)), \ \sigma(C_{16}(1,4)), \ \sigma(C_{17}(1,2)), \ \sigma(C_{17}(1,4)) \ \text{and} \ \sigma(C_{19}(1,2))$

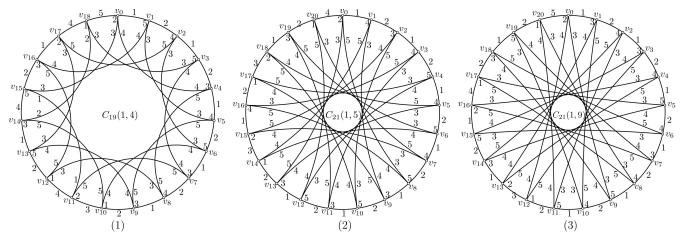


Fig. 3. $\sigma(C_{19}(1,4))$, $\sigma(C_{21}(1,5))$ and $\sigma(C_{21}(1,9))$

Theorem 9. $\chi''(C_{21p}(1,21\mu + \lambda)) = 5$ for $\lambda = 5,9$.

Proof: We construct $\sigma(C_{21p}(1,21\mu + \lambda))$ for $\lambda = 5.9$ as follows.

$$\begin{split} \sigma(\mathbf{V}) &= \begin{cases} (243454545353531241231)^p, & \lambda = 5, \\ (234345434545123521351)^p, & \lambda = 9, \end{cases} \\ \sigma(E_1) &= \begin{cases} (121212121212123123124)^p, & \lambda = 5, \\ (121212121212312142125)^p, & \lambda = 9, \end{cases} \\ \sigma(E_2) &= \begin{cases} (5353434345454535453)^p, & \lambda = 5, \\ (353554355434445433543)^p, & \lambda = 9. \end{cases} \end{split}$$

Fig.3(2)-(3) show $\sigma(C_{21}(1,5))$ and $\sigma(C_{21}(1,9))$.

Theorem 10. $\chi''(C_{23p}(1,23\mu+5)) = 5.$

Proof: We construct $\sigma(C_{23p}(1,23\mu + 5))$ as follows.

$$\sigma(V) = (24545453535213214243231)^p,$$

$$\sigma(E_1) = (12121212121321323121424)^p$$

$$\sigma(E_2) = (53434345454545451535353)^p.$$

Fig.4 shows $\sigma(C_{23}(1,5))$.

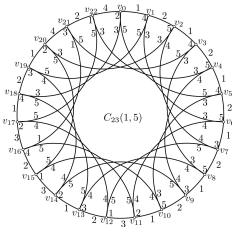


Fig. 4. $\sigma(C_{23}(1,5))$

Note that for $p \pmod{2} = 1$, the results $\chi''(C_{15p}(1,15\mu+5)) = 5$, $\chi''(C_{21p}(1,21\mu+5)) = 5$, and $\chi''(C_{21p}(1,21\mu+9)) = 5$ with the additional condition $\frac{7p}{\gcd(7p,7\mu+3)} = 3s$ can be obtained too in [17].

IV. CONCLUSION

In conclusion, we have determined the total chromatic numbers for several families of 4-regular circulant graphs $C_{tp}(1,t\mu+\lambda)$. These results support the conjecture proposed by Khennoufa and Togni [14], which states that except for a finite number of Type II graphs, 4-regular circulant graphs are all Type I graphs. We summarize our results as Table II. There are still several 4-regular circulant graphs, especially those of the form $C_{tp}(1,t\mu+\lambda)$, that remain to be studied. We hope to obtain results on the total chromatic numbers of $C_{tp}(1,t\mu+\lambda)$ for more t and t later.

TABLE II FAMILIS OF TYPE I 4-REGULAR CIRCULANT GRAPHS OBTAINED IN THIS PAPER

OBTAINED IN THIS THE ER			
	t=8,	$\lambda = 2,6,7$	
$C_{tp}(1,t\mu+\lambda)$	t = 11,	$\lambda = 2,3,4,5,6,8,9$	
	t = 13,	$\lambda = 2,5,6$	
	t = 14,	λ = 4	
	t = 15,	$\lambda = 5$	
	t = 16,	$\lambda = 4$	
	t = 17,	$\lambda = 2,4,5,8$	
	t = 19,	$\lambda = 2,4,5,6,9$	
	t = 21,	λ = 5,9	
	t = 23,	λ = 5	

REFERENCES

- A. Sánchez-Arroyo, "Determining the total colouring number is np-hard," Discrete Mathematics, vol. 78, no. 3, pp 315-319, 1989
- [2] C. J. McDiarmid and A. Sánchez-Arroyo, "Total colouring regular bipartite graphs is np-hard," Discrete Mathematics, vol. 124, no. 1-3, pp155-162, 1994.
- [3] M. Behzad, Graphs and their chromatic numbers. Michigan State University, 1965
- State University, 1965.
 [4] V. G. Vizing, "Some unsolved problems in graph theory,"
 Uspekhi Matematicheskikh Nauk, vol. 23, no. 6, pp125-141,

- [5] A. V. Kostochka, "The total coloring of a multigraph with maximal degree 4," Discrete Mathematics, vol. 17, no. 2, pp 161-163, 1977.
- [6] H. P. Yap, "Total colourings of graphs," Lecture Notes in Mathematics, vol. 1623, 1996.
- [7] J. Geetha, N. Narayanan, and K. Somasundaram, "Total colorings-a survey," AKCE International Journal of Graphs and Combinatorics, vol. 20, no. 3, pp339–351, 2023.
- [8] C. L. Tong, X. H. Lin, Y. S. Yang, and Z. H. Li, "Equitable total coloring of Cm□Cn," Discrete Applied Mathematics, vol. 157, no. 4, pp596–601, 2009.
- [9] C. L. Tong, X. H. Lin, and Y. S. Yang, "Equitable total coloring of generalized Petersen graphs P(n,k)," Ars Combinatoria, vol. 143, pp321–336, 2019.
- [10] S. T. Liu and J. X. Meng, "Forwarding Indices of 4-regular Circulants," Engineering Letters, vol. 24, no. 1, pp62-68, 2016.
- [11] C. X. Yang, X. C. Deng, and R. F. Shao, "On r-hued coloring of some perfect and circulant graphs," IAENG International Journal of Applied Mathematics, vol. 49, no. 4, pp421–426, 2019.
- [12] C. N. Campos and C. P. de Mello, "Total colouring of C_n^2 ," Trends in Computational and Applied Mathematics, vol. 4, no. 2, pp177–186, 2003.
- [13] S. Y. Su, C. L. Tong, and Y. S. Yang, "Total coloring of circulant graphs Cn(1,4)," Hacettepe Journal of Mathematics & Statistics, to be published.
- [14] R. Khennoufa and O. Togni, "Total and fractional total colourings of circulant graphs," Discrete Mathematics, vol. 308, no. 24, pp6316-6329, 2008.
- [15] M. Nigro, M. N. Adauto, and D. Sasaki, "On total coloring of 4-regular circulant graphs," Procedia Computer Science, vol. 195, pp315-324, 2021.
- [16] L. Faria, M. Nigro, M. Preissmann, and D. Sasaki, "Results about the total chromatic number and the conformability of some families of circulant graphs," Discrete Applied Mathematics, vol. 340, pp123-133, 2023.
- [17] R. Navaneeth, J. Geetha, K. Somasundaram, and H.-L. Fu, "Total colorings of some classes of four regular circulant graphs," AKCE International Journal of Graphs and Combinatorics, vol. 21, no. 1, pp1-3, 2024.