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Abstract—Consider a simple, non-trivial, connected graph
G, determined by a coloring ¢ : V(G) — {1,2,3,... ,k} k €
N of V(G). In G, a rainbow dynamic coloring is a dynamic
coloring where a minimum number of colors is needed such
that every two vertices are connected by at least one path whose
inner vertices are colored differently. Rainbow dynamic coloring
of G, represented as rdyc(G), is the minimum % for which the
k-vertex coloring exists. In this work, we compute the rdyc of
certain graphs of the corona product. The critical property of
the corona product graphs is also discussed.

Index Terms—rainbow vertex connection number, dynamic
coloring, corona product, rainbow dynamic coloring, p-critical.

I. INTRODUCTION

HE graphs in this work are all finite, simple, connected,

nontrivial, and undirected. In graph theory, two coloring
issues occur. One is a vertex coloring and the other is an edge
coloring. These problems have led to the introduction and
detailed study of various coloring parameters, enriching our
understanding of these types of problems. The Results related
to these parameters are available in the literature, providing
a comprehensive view of the research in this field.

Graph theory has numerous applications, including com-
munication networks, network security, and more. One way
to create a data structure is as a tree, which uses vertices and
edges. Graphs are utilized to illustrate the computation flow.
Graph transformation systems utilize rules to manipulate
graphs stored in memory. Data structures that utilize graphs
enable safe transactions, long-term storage, and querying of
graph-structured data.

Bruce Montgomery introduced a relatively new concept
in vertex coloring, called dynamic coloring, in 2001 [1]. A
dynamic graph coloring d(G) is a proper coloring of the
vertex set, such that each vertex of degree at least two its
neighbors receive at least two different colors. Krivelevich
and Yuster proposed the theory of rainbow vertex coloring
in 2010. In a connected graph, [2] the minimum number of
colors needed to color its vertices is called the rainbow vertex
connection number, or rvc(G). At least one path connects
each pair of vertices, whose internal vertices have distinct
colors.
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A rainbow dynamic coloring of a graph is not just a
theoretical concept but a practical one. It is a [15] dynamic
coloring in which a minimum number of colors is needed
such that every two vertices are connected by at least one
path whose inner vertices are colored differently. Rainbow
dynamic coloring of G, represented as rdyc(G), is the
minimum k& for which the k-vertex coloring exists.

In 3], Gologranc et al. examined the bounds of rainbow
coloring for graph products such as direct and strong
product graphs. For other results, we refer to [7]], [9], [[10],
(L], [12f], [14].

We start by providing a formal definition for the corona
product graph.

A. Definition

[10] Given two graphs, G and H, which are connected,
the corona product of G and H is as follows:
i) For a single copy of G, take |V (G)| copies of graph H.
ii) Connect the 5" vertex of G to every vertex of the y*"
copy of H.

Flg 1: K3OP3

II. RESULTS

This section contains the parameter rdyc(G) for a few
corona product graphs, such as the path with complete
graph, path with star graph, star with complete graph, path
with wheel graph, and K; with cycle graph.

We start with the corona product of the path with complete
graph.
Proposition 1. rdyc(Py o K3) =3
Theorem 1. For n > 3, rdyc(P, o K,,) = 2n.

Proof: Let V(P,) = {uy, : 1 < y < n} and
let the vertex set of y copies of K, be V{(K,),}
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={vy,:1<y<n,1<z<n}

According to the corona product definition, every vertex
of P, is adjacent to every vertex of a copy of K,,
namely for 1 <y < n the vertex u, € V(P,) is adjacent
to the set’s vertices {v,. : 1 < z < n} in the y** copy of K.

Consider E(P, o K,)={FEy U E; U E3} where
Er=E(P,)={ey, = (uyuy41);l < y < n— 1}
E, be the edge set of (K,), for 1 < y < n and
Es={(eq)y = (uy,vy2); 1 <y < n,1 < ¢ < n, and
1<z<n}.

Color the vertices of P,,0K,, in a rainbow dynamic pattern.
For 1 < y < n allocate the colors {1,2,....,n} to the
vertices of (K,), and allocate the color y+n to the vertices
of P, of P, o K,,, from above allocation of colors, it shows
that

rdyc(P, o K,,) < 2n (1)

To prove rdyc(P, o K,) > 2n.

Assume that rdyc(P, o K,,) = 2n — 1. Then, 2n — 1
colors must be allocated to the vertices of P,, o K, for proper
rainbow dynamic coloring. As P,, o K, has n copies of K,
we allocate n colors to each copy of K, and the left-over
n — 1 colors to n vertices of P,. A simple check exhibits
that at least two vertices of P,, have the same color.

This contradicts, that at least one path of P, o K, is not
rainbow dynamic connected. Therefore

rdyc(P, o K,,) > 2n )

Based on (1) and (2), it is obvious that rdyc(P,, o K,,) =
2n.

4 3
1 2
4 1
5 6
3 > ,
7
8
1 2 4
4 3

Fig. 2: Rainbow dynamic coloring in the graph (Py o Kj).

|
The corona product of the star with the complete graph
gives the following result.

Proposition 2. rdyc(K; 0 Ky) = 3.
Theorem 2. For n > 3, rdyc(Ky,, 0 K,) =2n + 1.

Proof: Let V(K ,)={uy 1 <y < n+1}
and let the vertex set of y copies of (K,), be
V{(Kn)yt ={vy::1<y<n+1,0<z<n-1}

According to the corona product definition, every vertex
of K , is adjacent to every vertex of a copy of K,, namely,
for 1 <y < n+1 the vertex u, € V(K1) is adjacent to

the set’s vertices v,, : 0 < 2 < n — 1in the y'" copy of K,,.

Consider E(K;, o K,)={E1 U Ey U E3} where
Ey = E(Kin)={ey : ey = (u,uyp1); 1 <y < n},
E, be the edge set of (K,), for 1 < y < n+ 1 and
Es = {(eg)y = (uy,vy2); 1 <y <n+1,1<g¢g<mn,and
0<z<n-1}

Color the vertices of K;, o K,, in a rainbow dynamic
pattern. For 1 < y < n+ 1 allocate the colors {1,2,....,n}
to the vertices of (K,), and for 1 < y < n + 1 allocate
the color y + n to the vertices of K ,, of Ky , 0 K, , from
above allocation of colors, it shows that

rdyc(Ki,0K,)<2n+1 3)

To prove rdyc(Ki 0 K,,) > 2n+ 1.

Assume that rdyc(K1 ,0K,,) = 2n. Then, 2n colors must
be allocated to the vertices of K , o K, for proper rainbow
dynamic coloring. As K1, o K, has n copies of K,, we
allocate n colors to each copy of K,, and allocate the left-
over n colors to n + 1 vertices of K ,. A simple check
exhibits that at least two vertices of K, have the same
color.

This contradicts, that at least one path of K ,, o K, is not
rainbow dynamic connected. Therefore

rdyc(K; ,0K,) >2n+1 4)

Based on (3) and (4), it is obvious that rdyc(K; ,oK,) =
2n + 1.

2 3 2 3 2 3
Fig. 3: Rainbow dynamic coloring in the graph (K 30 K3).

|
The corona product of the path with star graph gives the
following result

Theorem 3. For n > 2, rdyc(P, o K1,) =n+2.

Proof: Let V(P,) = {u, : 1 < y < n}
and let the vertex set of y copies of K;, be
V{Kin)y} ={vy:: 1<y <n,0< 2 <n}.

According to the corona product definition, every vertex
of P, is adjacent to every vertex of a copy of Kj,,
namely, for 1 < y < n the vertex u, € V(P,) is adjacent to
the set’s vertices {v,, : 0 < z < n} in the y*" copy of K1 .
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Consider E(P, o K1,) = {E1 U
Ey = E(Py) = {ey : ey = (uy,uyq1);
Ey = E(Kin)y = €y = (Vyo, Vy211); 1
n—1and E3 = {(eq)y = (uy,vy.);1 <y
n+1,0<z <n}

Color the vertices of P, o K1, in a rainbow dynamic
pattern. For 1 <y < n allocate the color vy, =1 for z =0
and v, = 2 for 1 < z < n to the vertices of (K3 ), and
for 1 <y < n allocate the color y +n — 2 to the vertices of
P, of P, o K ,, from above allocation of colors, it shows
that

rdyc(P, o0 K1) <n+ 2 (5)

To prove rdyc(P, o K1 ,,) > n+ 2.

Assume that rdyc(P, o K1 ,,) = n+1. Then, n+1 colors
must be allocated to the vertices of K, , o K,, for proper
rainbow dynamic coloring. As P, o K; , has n copies of
K, we allocate 2 colors to each copy of (Ki,), and
allocate the left-over n — 1 colors to n vertices of P,. A
simple check exhibits that at least two vertices of P, have
the same color.

This contradicts, that at least one path of P, o K; ,, is not
rainbow dynamic connected. Therefore

rdyc(P, o0 K;,) > n+ 2 (6)

Based on (5) and (6), it is obvious that rdyc(P, o K; ,,) =
n+ 2.

Fig. 4: Rainbow dynamic coloring in the graph (Py o K7 4).

|
The corona product of the path with wheel graph gives
the following result.

Theorem 4.
n+3 for all even n > 2

Tdyc(Pn o Wl,n) =
n+4 for all odd n >3
Proof: Let V(P,) = {u, : 1 <y < n} and let the
vertex set of y copies of W1 ,,. {W1 ,,}, consists of n-cycle,
(O,L)y = {Uy1, Vy2,Vy3, Vyd, .- -, Uy(n+1) = Uyl} and one
more vertex vy, connect to every vertex (Cy,), of {Wi ,},.

According to the corona product definition, every vertex
of P, is adjacent to every vertex of a copy of Wy ,,
namely, for 1 < y < n the vertex u, € V(P,) is adjacent to
the set’s vertices {v,, : 1 < z < n} in the y'" copy of W1 ,,.

Consider E(P, o Wy,) = {E; U E; U E3} where
Ey = E(P) = {ey = (uy,uyr);1 <y < n—1}
E, be the edge set of {W; ,}, where Ey = E4 U Ep,
Eq = {eyz P Eyy = (Uyz;vszrl);]- <y<nl<z< n},
and Ep = {(ey)y= : (€y)y= = (vy0,0y2);1 <y <m,1 <
2 < b By = {(€))ye  (€0)ye = (uys 0y )il <y <m0 <
z < n}.

Case 1: n is even,

Color the vertices of P, o Wy, in a rainbow dynamic
pattern. Adjacent vertices of (Cy,), of {W; .}, for each y are
colored again and again with the colors {2,3,2,3,....... }
and the same sequence is carried out till the last vertex,
allocate the color ‘1’ to vy, of {W7,,}, and for 1 <y <n
allocate the color y +n —1 to V(P,) of (P, oW ,). From
the above allocation of colors, it shows that

rdyc(P, oW1,) <n+3 @)

To prove rdyc(P, oW1 ,,) > n+3 Assume that rdyc(P, o
W1.n) =n+ 2. Then, n + 2 colors must be allocated to the
vertices of P, o W ,, for proper rainbow dynamic coloring.
As P, oWy, has n copies of W ,,, we allocate 3 colors to
each copy of W ,, and allocate the left-over n — 1 colors to
n vertices of P,. A simple check exhibits that at least two
vertices of P,, have the same color.

This contradicts, that at least one path of P, o W7, is not
rainbow dynamic connected. Therefore

rdyc(P, oW7,) >n+3 (8)

Based on (7) and (8), it is obvious that rdyc(P, oW1 ) =
n+ 3.

4
Fig. 5: Rainbow dynamic coloring in the graph (Ps o W7 3).

Case 2: n is odd,

Color the vertices of P, o Wj, in a rainbow dynamic
pattern as follows. Adjacent vertices of (Cy,), of {Wi,},
for each y are colored again and again with the colors
{2,3,2,3,...... 4} the same sequence is carried out with the
end vertex as 4, allocate the color ‘1’ to vy, of {Wi )}y
and for 1 < y < n allocate the color y + n — 1 to V(F,)
of P, o Wy ,. From the above allocation of colors, it shows
that

rdyc(P,oW;,) <n+4 9)
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To prove rdyc(P, o Wiy ,) > n+4

Assume that rdyc(P,, oW1 ,,) = n+4. Then, n+ 3 colors
must be allocated to the vertices of P, o Wy ,, for proper
rainbow dynamic coloring. As P, o Wj ,, has n copies of
Wi n, we allocate 4 colors to each copy of W ,, and allocate
the left-over n—1 colors to n vertices of P,. A simple check
exhibits that at least two vertices of P,, have the same color.

This contradicts, that at least one path of P, o W ,, is not
rainbow dynamic connected. Therefore

rdyc(P,oW;,) >n+4 (10)

Based on (9) and (10), it is obvious that rdyc(P, o W1 ) =
n+4.
|
The corona product of K; with cycle graph gives the
following result.

Theorem 5. For n > 2,

4 for n is odd
rdyc(Ky 0 Cy) =

3 for n is even

Proof: Let V(K1) = {uy } and let the vertex set of (C,,)
be V(Cp) ={v,:0<2z<n-—1}

According to the corona product definition, vertex of K
is adjacent to every vertex of C,, namely, for the vertex u; €
V(C,,) is adjacent to the set’s vertices {v, : 0 < z <n—1}.

Consider E(K; o C,,) = {E1 U E3} where E; be the
edge set of C), and Ey = {(eq) = (u1,v:);1 < ¢ <n,0<
z<n-1}L

Case 1: n is odd,

Color the vertices of K;0C), in a rainbow dynamic pattern.
Allocate the color 1 to the vertex of K7 and allocate the
colors {2,3,2,3....4} and the same sequence is carried out
till the last vertex where the end vertex is 4 to the vertices
of (C,) of (K; o C,,), from above allocation of colors, it
shows that

rdyc(K;0C,) <4 an

To prove rdyc(K; o Cy) > 4.

Assume that rdyc(K; o C,,) = 3. Then 3 colors must be
allocated to the vertices of (K7 o C),) for proper rainbow
dynamic coloring. We allocate 1 color to K; and leftover
2 colors to C,,. A simple check exhibits that at least two
adjacent vertices have the same color.

This contradicts, that at least one path of (K7 0C,,) is not
rainbow dynamic connected. Therefore

rdyc(K;0C,) >4 (12)
Based on (11) and (12), it is obvious that rdyc(K;0C,,) = 4.

Case 2: n is even,

Color the vertices of K70, in a rainbow dynamic pattern.
Allocate the color 1 to the vertex of K7 and allocate the
colors {2,3,2,3....} and the same sequence is carried out
till the last vertex to the vertices of (C),) of (K;0C,,), from
above allocation of colors, it shows that

rdyc(K;0C,) <3 (13)

To prove rdyc(K; o Cp) > 3 . Assume that rdyc(K; o
Cyp) = 2.

Then 2 colors must be allocated to the vertices of (K70C,,)
for proper rainbow dynamic coloring. We allocate 1 color to
K, and left-over 1 color to C),. A simple check exhibits
that at least two adjacent vertices have the same color. This
contradicts, that at least one path of (K;0C,,) is not rainbow

dynamic connected. Therefore
rdyc(K;0C,) > 3 (14)

Based on (13) and (14), it is obvious that rdyc(K;0C,,) =
3. [ |

2
Fig. 6: Rainbow dynamic coloring in the graph (K7 o Cig).

p critical corona product graphs.

In this section, we start with graph G, which is referred
to in theorem 1, and analyze the p-criticalness property of
the graphs of the corona product discussed in the preceding
section. G becomes disconnected if any vertex in V(P,) is
removed. For this reason, G is not p critical to V(P,). The
outcome for the vertex set V{(K,),} is as follows.

Lemma 1. For n > 3, rdyc(P, o K,,) is rainbow dynamic
p critical for V{(Ky,)y}.

Proof: Consider G = P, 0 K,,. G is a rainbow dynamic
p critical for V{(K,),} for n > 3. v = (z,y) represents
any vertex in V{(K,),}. n colors may color the vertices
in V{(K,)y}, If coloring is done according to theorem
d(xz,y) = n — 3 is the result of removing the vertex v from
V{(Kn)y}. In the set V{(K,),}, let P represent the path
from z to y. Then, it is possible to color the n vertices using
n — 1 colors. This is true for each vertex in V{(K,),}. As
a result, one color less than the necessary 2n colors already
given in G is sufficient to provide a rainbow dynamic. This
is true for each vertex v that is part of V{(K,),}in G.
Consequently, rdyc(G) = 2n — 1. According to
V{(K,)y}, G is p critical. [

Lemma 2. For n > 3, rdyc(P,, o K1 ) is rainbow dynamic
p critical for V{(K1 )y}

Proof: Consider G = P,, o K ,,. Next, G is a rainbow
dynamic p-critical for V{(K; ,),} for n > 2. v = (z,y)
represents any vertex in V{(K1 )y} . n colors may color
the vertices in V{(K )y}, if coloring is done according to
theorem [3) d(x,y) = n — 3 is the result of removing the
vertex v from V{(K1,)y}. In the set V{(K; )y}, let P

Volume 55, Issue 9, September 2025, Pages 2712-2717



TAENG International Journal of Applied Mathematics

represent the path from z to y. Then, it is possible to color
the n vertices using 1 color. This is true for each vertex in
V{(Ki,n)y} As a result, one color less than the necessary
n + 2 colors already given in G is sufficient to provide a
rainbow dynamic. This is true for each vertex v that is part
of V{(K1,,)y}in G.

Consequently, rdyc(G) = n + 1.

According to V{(Ki,)y}. G is p critical. [ |

Lemma 3. For n > 2, even and odd, rdyc(P, o Wy ,) is
rainbow dynamic p-critical for V{(W1.,)y}.

Proof: Consider G = P,,oW, ;. G is a rainbow dynamic
p critical for V{(W1 ,),} for n > 3. v = (z,y) represents
any vertex in G = FP,, oW} ,,. n colors may color the vertices
in V{(W1,,)y}, if the coloring is done according to theorem
d(x,y) = n—3 is the result of removing the vertex v from
V{(Wi,n)y} Inthe set V{(Wi ,,),}, let P represent the path
from x to y. Then, it is possible to color the n vertices using
n—1 colors. This is true for each vertex in V{(W1 ,,),}. As
a result, one color less than the necessary n + 3 colors for
even and n + 4 colors for odd which are already given in G
is sufficient to provide a rainbow dynamic. This is true for
each vertex v that is part of V{(W1 ), }.
Consequently, rdyc(G) = n + 2 for n is even and
rdyc(G) = n + 3 for n is odd.
According to V{(W1,4,)y}. G is p critical.
|
In the following lemma, G becomes disconnected if any
vertex in V (K,,) is removed. For this reason, G is not p crit-
ical to V(K1 ). The outcome for the vertex set V{(K,),}
is as follows.

Lemma 4. For n > 3, rdyc(K , 0 K,,) is rainbow dynamic
p critical for V{(K,)y}.

Proof: Consider G = Kj,,0K,. G is a rainbow
dynamic p critical for V{(K,),} for n > 2. v = (z,y)
represents any vertex in V{(K,)y}. n colors may color the
vertices in V{(K,,),}, if the coloring is done according
to theorem | d(z,y) = n — 3 is the result of removing
the vertex v from V{(K,),}. In the set V{(K,),}, let P
represent the path from z to y. Then, it is possible to color
the n vertices using n — 1 colors. This is true for each vertex
in V{(K,)y}. As a result, one color less than the necessary
2n + 1 colors already given in G is sufficient to provide a
rainbow dynamic. This is true for each vertex v that is part
of V{(K,),}in G.

Consequently, rdyc(G) = 2n.

According to V{(K,,),}, G is p critical.

|

In the following lemma, G becomes disconnected if K3
is removed. For this reason, G is not p-critical about V' (K7)
and V(C,), if n is even. The outcome for the vertex set
V(Cy), if n is odd as follows.

Lemma 5. For n > 2, rdyc(K; o C,,) is rainbow dynamic
p critical for V(Cy,), if n is odd.

Proof: Consider G = K; oC,,. GG is a rainbow dynamic
p critical for V(C,,) for n > 2. v = (z,y) represents any
vertex in V' (Cy). 3 colors color the vertices in V(C,,), if
coloring is done according to theorem [3} d(z,y) = 2 is

the result of removing the vertex v from V(C,). In the
set V(C,), let P represent the path from x to y. Then,
it is possible to color the n vertices using 3 colors in
G = K7 0C),. As a result, one color less than the necessary
4 colors already given in G is sufficient to provide a rainbow
dynamic.

Consequently, rdyc(G) = 3.

According to V(C,,), G is p critical. [ ]

2

3

Fig. 7: Rainbow dynamic coloring in the p critical graph
(K 10 Cg)

Lemma 6. The corona product of the complete graph K
with the cycle graph, i.e., K10 C, is the wheel graph W1 ,.

Proof: Let G and H represent complete graph and
cycle graph respectively. Let us take the corona product
of K; and C,, K7 o C,,. Let v be the vertex of K; and
{u1,ug,us, .....u, } be the vertices of cycle graph C,,, that
is, K. Take a wheel graph W, , with an internal vertex
‘a’ and cycle with vertices {wy, wa, ws, ....wy, }.

Let us prove that K; o C), is isomorphic to W ,,.

Assume g is a function such that g(v) = a, g(u1) = wy,
g(uz) = wa, g(us) = ws,.....g(un) = wy,. The vertices
U, U1, U, US..... Uy and a,wq,ws, ws, ....w, have been ob-
served to be adjacent on map g. [ |

III. DISCUSSIONS

By the definition of rainbow dynamic coloring, rdyc(G) >
3 and rve(G) > rdyc(G) > d(G). Prop. 1 and Prop. 2
represent rdyc(G) = 3. The results for Theorem 1, 2 are
obtained for n > 3, whereas in Theorem 3, 4, 5 the results are
obtained for n > 2. The graph of K; o C), is observed to be
equal to W7 ,,. The properties of K;0C,,, W ,,, and K1 ,, are
the same. The rdyc(W1 ,,) is the same as the rdyc(K;0C),)
and rdyc(Ki ) that is rdyc(K;y o Cy) = rdyc(Wi,) =
rdyc(K; ) for n > 2. In all the above lemma’s, the graph
G' = G o H we obtain a disconnected graph when G is
removed from G’.

IV. CONCLUSION

In this study, we discover an idea of rainbow dynamic col-
oring for several kinds of corona product graphs, including
combinations of path with complete graph, path with wheel
graph, path with star graph, star with complete graph, and &
with cycle graph. We also describe the general problems that
motivated this research. The field of graph theory is dynamic
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and impactful. Graphs can tackle complex challenges such as
program analysis, cost reduction, and visualization. Network
devices, such as switches and routers, utilize graphs to
determine optimal traffic routing. The primary objective of
this paper is to introduce recent advances in graph theory
and its various applications within the engineering domain
(41, (50, (o], 8], (101, [13].
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