The Congruence Extension Property of Quasi-MV* Algebras

Heyan Wang, Lei Cai, and Wenjuan Chen

Abstract—Quasi-MV* algebras, introduced as a generalization of MV*-algebras and quasi-MV algebras, provide a general algebraic framework in the setting of many-valued logic and quantum computational logic. In this paper, we study the congruence extension property of quasi-MV* algebras. First, we present the subdirect product decomposition of any quasi-MV* algebra. Next, we prove that any MV*-algebra has the congruence extension property. Finally, we extend this property to quasi-MV* algebras.

Index Terms—Congruences, Congruence extension property, Ideals, MV*-algebras, Quasi-MV* algebras.

I. Introduction

ON-CLASSICAL mathematical logic, foundation of intelligent science, has received increasing attentions in recent years. It is well-known that the algebraic structures play a crucial role in the study of non-classical mathematical logic [3], [10], [13], [14], [15], [16], [18]. For example, in order to prove the completeness of Łukasiewicz's many-valued logic, Chang introduced MV-algebras in 1958 [3]. Since then, the algebraic structures of MV-algebras have been widely investigated. For another example, in order to characterize quantum computational logic, Ledda et al. introduced quasi-MV algebras in 2006 [10]. The study of the algebraic structures of quasi-MV algebras has played a positive role in quantum computational logic [1], [5], [8], [9], [17]. In 1965, to further characterize the structure of the real closed interval [-1,1] equipped with truncated addition $\varrho \uplus \varsigma = \max\{-1, \min\{1, \varrho + \varsigma\}\}\$ and negation $-\varrho$, Chang introduced MV*-algebras in [4], paralleling similar work done for MV-algebras. Moreover, the logic associated with MV*-algebras was also investigated in [4], [12]. Recently, Jiang and Chen proposed quasi-MV* algebras in [7] as a unified framework for further research on quasi-MV algebras and MV*-algebras. The logic associated with quasi-MV* algebras has been preliminarily studied in [2]. To obtain additional characterizations of this logical system, we want to study more algebraic properties of quasi-MV* algebras.

The congruence extension property (CEP), an important property of varieties, characterizes whether a congruence on a subalgebra can be extended to the entire algebra. In 2005, Gispert and Mundici proved that the variety of MV-algebras

Manuscript received March 19, 2025; revised July 16, 2025.

Heyan Wang is a postgraduate student of the School of Mathematical Sciences, University of Jinan, Jinan, Shandong, 250022 China (e-mail: wangheyan@stu.ujn.edu.cn).

Lei Cai is a postgraduate student of the School of Mathematical Sciences, University of Jinan, Jinan, Shandong, 250022 China (e-mail: cailei@stu.ujn.edu.cn).

Wenjuan Chen is a professor of the School of Mathematical Sciences, University of Jinan, Jinan, Shandong, 250022 China (corresponding author to provide e-mail: wjchenmath@gmail.com).

satisfies CEP [6]. Subsequently, Paoli et al. generalized this result to quasi-MV algebras using the subdirect product decomposition of a quasi-MV algebra. Now, it is natural to ask whether quasi-MV* algebras, as a generalization of MV*-algebras and quasi-MV algebras, have CEP. We will give a positive answer in this paper.

The paper is organized as follows. In Section 2, we recall some definitions and results of MV*-algebras and quasi-MV* algebras. In Section 3, we present the subdirect product decomposition of a quasi-MV* algebra. Based on this decomposition, we establish the CEP for the variety of quasi-MV* algebras. Finally, a conclusion is given.

II. PRELIMINARIES

In this section, we recall some definitions and results of MV*-algebras and quasi-MV* algebras which will be used in what follows.

Definition 1: [4] Let $\Sigma = \langle \Sigma; \psi, -, 0, 1 \rangle$ be an algebra of type (2, 1, 0, 0). If the following conditions are satisfied for any $\varrho, \varsigma, \kappa \in \Sigma$,

$$\begin{aligned} &(\mathsf{M}\mathsf{V}^*1)\ \varrho \uplus \varsigma = \varsigma \uplus \varrho, \\ &(\mathsf{M}\mathsf{V}^*2)\ (1 \uplus \varrho) \uplus (\varsigma \uplus (1 \uplus \kappa)) = ((1 \uplus \varrho) \uplus \varsigma) \uplus (1 \uplus \kappa), \\ &(\mathsf{M}\mathsf{V}^*3)\ \varrho \uplus (-\varrho) = 0, \\ &(\mathsf{M}\mathsf{V}^*3)\ \varrho \uplus (-\varrho) = 0, \\ &(\mathsf{M}\mathsf{V}^*4)\ (\varrho \uplus 1) \uplus 1 = 1, \\ &(\mathsf{M}\mathsf{V}^*5)\ \varrho \uplus 0 = \varrho, \\ &(\mathsf{M}\mathsf{V}^*6)\ - (\varrho \uplus \varsigma) = (-\varrho) \uplus (-\varsigma), \\ &(\mathsf{M}\mathsf{V}^*7)\ - (-\varrho) = \varrho, \\ &(\mathsf{M}\mathsf{V}^*8)\ \varrho \uplus \varsigma = (\varrho^+ \uplus \varsigma^+) \uplus (\varrho^- \uplus \varsigma^-), \\ &(\mathsf{M}\mathsf{V}^*8)\ \varrho \uplus \varsigma = (\varrho^+ \uplus \varsigma))^+ = - (\varrho^+) \uplus (\varrho^+ \uplus \varsigma^+), \\ &(\mathsf{M}\mathsf{V}^*10)\ \varrho \lor \varsigma = \varsigma \lor \varrho, \\ &(\mathsf{M}\mathsf{V}^*11)\ \varrho \lor (\varsigma \lor \kappa) = (\varrho \lor \varsigma) \lor \kappa, \\ &(\mathsf{M}\mathsf{V}^*12)\ \varrho \uplus (\varsigma \lor \kappa) = (\varrho \uplus \varsigma) \lor (\varrho \uplus \kappa), \\ &\text{in which ones define } \varrho^+ = 1 \uplus (-1 \uplus \varrho), \varrho^- = -1 \uplus (1 \uplus \varrho), \\ &\text{and } \varrho \lor \varsigma = (\varrho^+ \uplus (-\varrho^+ \uplus \varsigma^+)^+) \uplus (\varrho^- \uplus (-\varrho^- \uplus \varsigma^-)^+), \\ &\text{then } \mathbf{\Sigma} = \langle \Sigma; \uplus, -, 0, 1 \rangle \text{ is called an } \mathbf{M}\mathbf{V}^*\text{-algebra}. \end{aligned}$$

Example 1: Let $\Sigma = \{\varrho, \varsigma, 0, \vartheta, 1\}$ be a 5-element set and define operations on Σ as follows:

Then $\dot{\Sigma} = \langle \Sigma; \uplus, -, 0, 1 \rangle$ is an MV*-algebra.

The variety of MV*-algebras is denoted by \mathbb{MV}^* . In the following, we abbreviate an MV*-algebra $\Sigma = \langle \Sigma; \psi, -, 0, 1 \rangle$ as Σ . Below we list some properties of ideals of any MV*-algebra.

Let Σ be an MV*-algebra. The operation \ominus is defined by $\varrho \ominus \varsigma = \varrho \uplus (-\varsigma)$ for any $\varrho, \varsigma \in \Sigma$ in [4].

Definition 2: [11] Let Σ be an MV*-algebra. A non-empty subset Φ of Σ is called an *ideal* of Σ , if the following conditions are satisfied:

- $(\Phi 1)$ If $\rho, \varsigma \in \Phi$, then $\rho \ominus \varsigma \in \Phi$,
- (Φ2) If $\varrho \in Φ$, then $\varrho^+ \in Φ$,
- (Φ3) If ρ, κ ∈ Φ and ς ∈ Σ with ρ ≤ ς ≤ κ, then ς ∈ Φ.

Proposition 1: [11] Let Σ be an MV*-algebra and Φ be an ideal of Σ . Then for any $\rho, \varsigma, \kappa, \varepsilon, \vartheta \in \Sigma$, we have

- (1) $0 \in \Phi$,
- (2) If $\varrho \in \Phi$, then $-\varrho \in \Phi$,
- (3) If $\varrho \in \Phi$, then $\varrho^- \in \Phi$,
- (4) If $\rho, \varsigma \in \Phi$, then $\rho \uplus \varsigma \in \Phi$,
- (5) If $\rho \ominus \varsigma \in \Phi$ and $\varsigma \in \Phi$, then $\rho \in \Phi$,
- (6) If $\varrho \ominus \varsigma \in \Phi$ and $\kappa \in \Phi$, then $(\varrho \uplus \kappa) \ominus (\varsigma \uplus \kappa) \in \Phi$,
- (7) If $\varrho \ominus \varsigma \in \Phi$ and $\varsigma \ominus \kappa \in \Phi$, then $\varrho \ominus \kappa \in \Phi$,
- (8) If $\rho \ominus \varsigma \in \Phi$ and $\varepsilon \ominus \vartheta \in \Phi$, then $(\rho \uplus \varepsilon) \ominus (\varsigma \uplus \vartheta) \in \Phi$.

Theorem 1: [11] Let Σ be an MV*-algebra. Then the lattice of congruences on Σ and the lattice of ideals of Σ are isomorphic.

Now, we present the definition and related properties of a quasi-MV* algebra.

Definition 3: [7] Let $\Lambda = \langle \Lambda; \uplus, -, +, -0, 1 \rangle$ be an algebra of type (2, 1, 1, 1, 0, 0). If the following conditions are satisfied for any $\rho, \varsigma, \kappa \in \Lambda$,

- (QMV*1) $\varrho \uplus \varsigma = \varsigma \uplus \varrho$,
- $(QMV^*2) (1 \uplus \varrho) \uplus (\varsigma \uplus (1 \uplus \kappa)) = ((1 \uplus \varrho) \uplus \varsigma) \uplus (1 \uplus \kappa),$
- $(QMV*3) (\varrho \oplus 1) \oplus 1 = 1,$
- $(QMV*4) (\varrho \uplus \varsigma) \uplus 0 = \varrho \uplus \varsigma,$
- (QMV*5) 0 = -0,
- $(QMV*6) \ \varrho \uplus (-\varrho) = 0,$
- $(QMV*7) (\varrho \uplus \varsigma) = -\varrho \uplus (-\varsigma),$
- $(QMV*8) (-\varrho) = \varrho,$
- (QMV*9) $\varrho^+ \uplus 0 = (\varrho \uplus 0)^+ = 1 \uplus (-1 \uplus \varrho)$ and $\varrho^- =$ $-1 \oplus (1 \oplus \rho),$
 - (QMV*10) $\varrho \uplus \varsigma = (\varrho^+ \uplus \varsigma^+) \uplus (\varrho^- \uplus \varsigma^-),$
 - $(QMV*11) (-\varrho \uplus (\varrho \uplus \varsigma))^+ = (-\varrho^+) \uplus (\varrho^+ \uplus \varsigma^+),$
 - (QMV*12) $\varrho \vee \varsigma = \varsigma \vee \varrho$,
 - (QMV*13) $\varrho \vee (\varsigma \vee \kappa) = (\varrho \vee \varsigma) \vee \kappa$,
 - $(QMV*14) \ \varrho \uplus (\varsigma \lor \kappa) = (\varrho \uplus \varsigma) \lor (\varrho \uplus \kappa),$

in which ones define $\varrho \lor \varsigma = (\varrho^+ \uplus (-\varrho^+ \uplus \varsigma^+)^+) \uplus (\varrho^- \uplus \varsigma^+)$ $(-\varrho^- \uplus \varsigma^-)^+$), then $\Lambda = \langle \Lambda; \uplus, -, +, -, 0, 1 \rangle$ is called a quasi-MV* algebra.

Example 2: Let $\Lambda = \{\varrho, \varsigma, \kappa, 0, \varepsilon, \vartheta, 1\}$ be a 7-element set and define operations on Λ as follows:

\oplus	ϱ	ς	κ	0	ε	ϑ	1
Q	ρ	ρ	ρ	ρ	ς	ς	0
ς	ϱ	ϱ	ϱ	ς	0	0	ϑ
κ	ρ	ϱ	ϱ	ς	0	0	ϑ
0	ϱ	ς	ς	0	ϑ	ϑ	1
$arepsilon \ artheta$	ς	0	0	ϑ	1	1	1
ϑ	ς	0	0	ϑ	1	1	1
1	0	ϑ	ϑ	1	1	1	1
	ρ	ς	κ	0	ε	ϑ	1
_	1	ϑ	ε	0	κ	ς	ϱ
+	0	0	0	0	ε	ϑ	1
_	ϱ	ς	κ	0	0	0	0

Then $\Lambda = \langle \Lambda; \psi, -, +, -, 0, 1 \rangle$ is a quasi-MV* algebra. Example 3: Let $\Lambda' = \{\varrho, \varsigma, \kappa, \varpi, 0, \varsigma, \varepsilon, \vartheta, 1\}$ be a 9-element set and define operations on Λ' as follows:

\oplus	ρ	ς	κ	ϖ	0	ς	ε	ϑ	1
ϱ	ρ	ρ	ρ	ρ	ρ	ς	ς	ς	0
ς	ϱ	ϱ	ϱ	ϱ	ς	0	0	0	ϑ
κ	ϱ	ϱ	ϱ	ϱ	ς	0	0	0	ϑ
$\overline{\omega}$	ϱ	ϱ	ϱ	ϱ	ς	0	0	0	ϑ
0	ϱ	ς	ς	ς	0	ϑ	ϑ	ϑ	1
ς	ς	0	0	0	ϑ	1	1	1	1
ε	ς	0	0	0	ϑ	1	1	1	1
ϑ	ς	0	0	0	ϑ	1	1	1	1
1	0	ϑ	ϑ	ϑ	1	1	1	1	1
	ρ	ς	κ	ϖ	0	ς	ε	ϑ	1
_	1	ϑ	ε	ς	0	ϖ	κ	ς	ρ
+	0	0	0	0	0	ς	ε	ϑ	1
-	ρ	ς	κ	ϖ	0	0	0	0	0

Then $\Lambda' = \langle \Lambda'; \uplus, -, +, -, 0, 1 \rangle$ is a quasi-MV* algebra.

The variety of quasi-MV* algebras is denoted by \mathbb{QMV}^* . In the following, we abbreviate a quasi-MV* algebra Λ = $\langle \Lambda; \uplus, -, ^+, ^-0, 1 \rangle$ as Λ .

Obviously, any MV*-algebra is a quasi-MV* algebra. Conversely, for any quasi-MV* algebra Λ , if $\varrho \oplus 0 = \varrho$ for any $\varrho \in \Lambda$, then it is an MV*-algebra. Moreover, let Λ be a quasi-MV* algebra and $\rho \in \Lambda$. If $\rho \uplus 0 = \rho$, then ρ is called *regular*. We denote that $\mathcal{R}(\Lambda)$ is the set of all regular elements in Λ . Then $\mathbf{R}_{\Lambda} = \langle \mathcal{R}(\Lambda); \uplus, -, +, -, 0, 1 \rangle$ is an MV*-algebra, where the operations \oplus , -, $^+$, and $^-$ are those of Λ restricted to $\mathcal{R}(\Lambda)$.

In any quasi-MV* algebra Λ , we consider that the operations + and - (which have the same priority) have priority to operations \oplus and -, the operation - has priority to the operation \oplus .

Let Λ be a quasi-MV* algebra. For any $\rho, \varsigma \in \Lambda$, we define an operation $\rho \wedge \varsigma = -((-\rho) \vee (-\varsigma))$. We can also define a binary relation $\varrho \leqslant \varsigma$ iff $\varrho \lor \varsigma = \varsigma \uplus 0$. Then the following results hold.

Proposition 2: [7] Let Λ be a quasi-MV* algebra. Then for any $\varrho, \varsigma, \kappa, \varepsilon, \vartheta \in \Lambda$, we have

- (1) $0 \oplus 0 = 0$, $1 \oplus 0 = 1$, $-1 \oplus 0 = -1$, $1 \oplus 1 = 1$, $-1 \oplus (-1) = -1$,
 - $(2) (\varrho \oplus 0) = -\varrho \oplus 0,$
 - $(3) \ \varrho \uplus \varsigma = (\varrho \uplus 0) \uplus \varsigma = \varrho \uplus (\varsigma \uplus 0) = (\varrho \uplus 0) \uplus (\varsigma \uplus 0),$
 - (4) $\varrho \vee \varrho = \varrho \oplus 0 = \varrho \wedge \varrho$,
 - (5) $\varrho \wedge (\varsigma \wedge \kappa) = (\varrho \wedge \varsigma) \wedge \kappa$,
 - (6) $\varrho \uplus (\varsigma \wedge \kappa) = (\varrho \uplus \varsigma) \wedge (\varrho \uplus \kappa),$
 - (7) If $\varrho \leqslant \varsigma$, then $-\varsigma \leqslant -\varrho$,
 - (8) If $\rho \leqslant \varsigma$, then $\rho^+ \leqslant \varsigma^+$ and $\rho^- \leqslant \varsigma^-$,
 - (9) If $\varrho \leqslant \varsigma$ and $\varsigma \leqslant \varrho$, then $\varrho \uplus 0 = \varsigma \uplus 0$,
 - (10) If $\rho \leqslant \varsigma$ and $\varepsilon \leqslant \vartheta$, then $\rho \uplus \varepsilon \leqslant \varsigma \uplus \vartheta$,
 - (11) If $\varrho \leqslant \varsigma$ and $\varepsilon \leqslant \vartheta$, then $\varrho \land \varepsilon \leqslant \varsigma \land \vartheta$,
 - (12) If $\varrho \leqslant \varsigma$ and $\varepsilon \leqslant \vartheta$, then $\varrho \lor \varepsilon \leqslant \varsigma \lor \vartheta$.

III. CONGRUENCE EXTENSION PROPERTY

In this section, we investigate the congruence extension properties of QMV* mainly. To achieve it, we first discuss the subdirect product decomposition of a quasi-MV* algebra.

Definition 4: [2] Let Λ be a quasi-MV* algebra. Then Λ is called *flat*, if it satisfies the equation 0 = 1.

Remark 1: Let Λ be a flat quasi-MV* algebra. Then for any $\varrho, \varsigma \in \Lambda$, we have $\varrho \uplus \varsigma = ((\varrho \uplus \varsigma) \uplus 0) \uplus 0 = ((\varrho \uplus \varsigma) \uplus 0)$ ς) \uplus 1) \uplus 1 = 1 = 0 by (QMV*4) and (QMV*3).

Example 4: Let $\Lambda_1 = \{\kappa, 0, \varepsilon\}$ be a 3-element set and define operations on Λ_1 as follows:

Then $\Lambda_1 = \langle \Lambda_1; \psi, -, +, -, 0, 1 \rangle$ is a flat quasi-MV* algebra.

Example 5: Let $\Lambda_2 = \{\kappa, \varpi, 0, \varsigma, \varepsilon\}$ be a 5-element set and define operations on Λ_2 as follows:

and 1 = 0.

Then $\Lambda_2 = \langle \Lambda_2; \oplus, -, ^+, ^-, 0, 1 \rangle$ is a flat quasi-MV* algebra.

The variety of flat quasi-MV* algebras is denoted by \mathbb{FQMV}^* .

Definition 5: Let Λ be a quasi-MV* algebra. For any $\varrho, \varsigma \in \Lambda$, we define a binary relation

$$\langle \varrho, \varsigma \rangle \in \Re \text{ iff } \varrho \leqslant \varsigma \text{ and } \varsigma \leqslant \varrho.$$

Remark 2: Let Λ be a quasi-MV* algebra and $\varrho, \varsigma \in \Lambda$. Then $\langle \varrho, \varsigma \rangle \in \Re$ iff $\varrho \uplus 0 = \varsigma \uplus 0$ by Proposition 2(9).

Lemma 1: Let Λ be a quasi-MV* algebra. Then \Re is a congruence on Λ .

Proof: For any $\varrho, \varsigma, \varepsilon \in \Lambda$, since $\varrho \uplus 0 = \varrho \uplus 0$, we have $\langle \varrho, \varrho \rangle \in \Re$. If $\langle \varrho, \varsigma \rangle \in \Re$, then $\varrho \uplus 0 = \varsigma \uplus 0$, it turns out that $\varsigma \uplus 0 = \varrho \uplus 0$ and then $\langle \varsigma, \varrho \rangle \in \Re$. If $\langle \varrho, \varsigma \rangle \in \Re$ and $\langle \varsigma, \varepsilon \rangle \in \Re$, then $\rho \uplus 0 = \varsigma \uplus 0$ and $\varsigma \uplus 0 = \varepsilon \uplus 0$, it follows that $\rho \uplus 0 = \varepsilon \uplus 0$ and then $\langle \varrho, \varepsilon \rangle \in \Re$, so \Re is an equivalence relation on Λ . Now, we prove that \Re satisfies the compatibility property. For any $\varrho, \varsigma, \varepsilon, \vartheta \in \Lambda$, if $\langle \varrho, \varsigma \rangle \in \Re$ and $\langle \varepsilon, \vartheta \rangle \in \Re$, then $\varrho \uplus 0 = \varsigma \uplus 0$ and $\varepsilon \uplus 0 = \vartheta \uplus 0$. By Proposition 2(3), we have $(\varrho \uplus \varepsilon) \uplus 0 = (\varrho \uplus 0) \uplus (\varepsilon \uplus 0) = (\varsigma \uplus 0) \uplus (\vartheta \uplus 0) = (\varsigma \uplus \vartheta) \uplus 0,$ so $\langle \varrho \oplus \varepsilon, \varsigma \oplus \vartheta \rangle \in \Re$. If $\langle \varrho, \varsigma \rangle \in \Re$, then $\varrho \oplus 0 = \varsigma \oplus 0$, it turns out that $-\varrho \oplus 0 = -(\varrho \oplus 0) = -(\varsigma \oplus 0) = -\varsigma \oplus 0$ by Proposition 2(2), so $\langle -\varrho, -\varsigma \rangle \in \Re$. Moreover, $\varrho^+ \uplus 0 =$ $1 \uplus (-1 \uplus \varrho) = 1 \uplus (-1 \uplus (\varrho \uplus 0)) = 1 \uplus (-1 \uplus (\varsigma \uplus 0)) =$ $1 \oplus (-1 \oplus \varsigma) = \varsigma^+ \oplus 0$ and $\varrho^- \oplus 0 = -1 \oplus (1 \oplus \varrho) =$ $-1 \uplus (1 \uplus (\varrho \uplus 0)) = -1 \uplus (1 \uplus (\varsigma \uplus 0)) = -1 \uplus (1 \uplus \varsigma) = \varsigma^- \uplus 0$ by Proposition 2(3), so $\langle \varrho^+, \varsigma^+ \rangle \in \Re$ and $\langle \varrho^-, \varsigma^- \rangle \in \Re$. Hence \Re is a congruence on Λ .

Let Λ be a quasi-MV* algebra and \aleph be a congruence on Λ . For any $\varrho \in \Lambda$, the equivalence class of ϱ with respect to \aleph is denoted by $\varrho/\aleph = \{\varsigma \in \Lambda \mid \langle \varrho, \varsigma \rangle \in \aleph\}$. The set of all equivalence classes of elements in Λ is denoted by Λ/\aleph . For any $\varrho/\aleph, \varsigma/\aleph \in \Lambda/\aleph$, the operations on Λ/\aleph are defined as follows: $(\varrho/\aleph) \uplus^{\Lambda/\aleph} (\varsigma/\aleph) = (\varrho \uplus \varsigma)/\aleph, -^{\Lambda/\aleph} (\varrho/\aleph) = (-\varrho)/\aleph, (\varrho/\aleph)^{+^{\Lambda/\aleph}} = (\varrho^+)/\aleph$, and $(\varrho/\aleph)^{-^{\Lambda/\aleph}} = (\varrho^-)/\aleph$. Then $\Lambda/\aleph = \langle \Lambda/\aleph; \uplus^{\Lambda/\aleph}, -^{\Lambda/\aleph}, +^{\Lambda/\aleph}, -^{\Lambda/\aleph}, 0^{\Lambda/\aleph}, 1^{\Lambda/\aleph} \rangle$ is a quasi-MV* algebra and we call that Λ/\aleph is the quotient algebra of Λ with respect to \aleph . Furthermore, we discuss the quotient algebra of a quasi-MV* algebra with respect to \Re .

Lemma 2: Let Λ be a quasi-MV* algebra. Then Λ/\Re is an MV*-algebra.

Proof: We only need to prove that any element in Λ/\Re is regular. For any $\varrho/\Re\in\Lambda/\Re$, since $(\varrho\oplus 0)\oplus 0=\varrho\oplus 0$ by (QMV*4), we have $\langle\varrho\oplus 0,\varrho\rangle\in\Re$, it turns out that $(\varrho\oplus 0)/\Re=\varrho/\Re$, so $(\varrho/\Re)\oplus^{\Lambda/\Re}(0/\Re)=(\varrho\oplus 0)/\Re=\varrho/\Re$. Hence Λ/\Re is an MV*-algebra.

Likewise, we introduce a congruence which is called the *flat congruence* on any quasi-MV* algebra.

Definition 6: Let Λ be a quasi-MV* algebra. For any $\varrho, \varsigma \in \Lambda$, we define a binary relation

$$\langle \varrho, \varsigma \rangle \in \Im \text{ iff } \varrho = \varsigma \text{ or } \varrho, \varsigma \in \mathcal{R}(\Lambda).$$

Lemma 3: Let Λ be a quasi-MV* algebra. Then \Im is a congruence on Λ .

Proof: It is easy to see that \Im is an equivalence relation on Λ . Now, we prove that \Im satisfies the compatibility property. For any $\varrho, \varsigma, \varepsilon, \vartheta \in \Lambda$, if $\langle \varrho, \varsigma \rangle \in \Im$ and $\langle \varepsilon, \vartheta \rangle \in \Im$, then $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, and $\varepsilon = \vartheta$ or $\varepsilon, \vartheta \in \mathcal{R}(\Lambda)$. Since $\varrho \uplus \varepsilon$ and $\varsigma \uplus \vartheta \in \mathcal{R}(\Lambda)$, we have $\langle \varrho \uplus \varepsilon, \varsigma \uplus \vartheta \rangle \in \Im$. If $\langle \varrho, \varsigma \rangle \in \Im$, then $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Lambda)$. We distinguish several cases to discuss. If $\varrho = \varsigma$, then $-\varrho = -\varsigma$, so $\langle -\varrho, -\varsigma \rangle \in \Im$. If $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, then $\varrho \uplus 0 = \varrho$ and $\varsigma \uplus 0 = \varsigma$. Since $-\varrho \uplus 0 = -(\varrho \uplus 0) = -\varrho$ and $-\varsigma \uplus 0 = -(\varsigma \uplus 0) = -\varsigma$ by Proposition 2(2), we have $-\varrho, -\varsigma \in \mathcal{R}(\Lambda)$, so $\langle -\varrho, -\varsigma \rangle \in \Im$. Moreover, if $\varrho = \varsigma$, then $\varrho^+ = \varsigma^+$ and $\varrho^- = \varsigma^-$, so $\langle \varrho^+, \varsigma^+ \rangle \in \Im$ and $\langle \varrho^-, \varsigma^- \rangle \in \Im$. If $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, then $\varrho^+ \uplus 0 = (\varrho \uplus 0)^+ = \varrho^+$ and $\varsigma^+ \uplus 0 = (\varsigma \uplus 0)^+ = \varsigma^+$ by (QMV*9), it turns out that $\varrho^+, \varsigma^+ \in \mathcal{R}(\Lambda)$, so $\langle \varrho^+, \varsigma^+ \rangle \in \Im$. Similarly, we have $\langle \varrho^-, \varsigma^- \rangle \in \Im$. Hence \Im is a congruence on Λ

Lemma 4: Let Λ be a quasi-MV* algebra. Then Λ/\Im is a flat quasi-MV* algebra.

Proof: Since $0, 1 \in \mathcal{R}(\Lambda)$, we have $\langle 0, 1 \rangle \in \Im$, it turns out that $0/\Im = 1/\Im$, so Λ/\Im is a flat quasi-MV* algebra. \blacksquare *Lemma 5:* Let Λ be a quasi-MV* algebra. Then

- (1) $\Re \cap \Im = \Delta$, where Δ is the diagonal relation,
- (2) $\Re \vee \Im = \nabla$, where $\Re \vee \Im$ is the smallest congruence which contains $\Re \cup \Im$ and ∇ is the all relation.

Proof: (1) For any $\langle \varrho, \varsigma \rangle \in \Delta$, then $\varrho = \varsigma$, so $\Delta \subseteq \Re \cap \Im$. Conversely, for any $\langle \varrho, \varsigma \rangle \in \Re \cap \Im$, then $\langle \varrho, \varsigma \rangle \in \Re$ and $\langle \varrho, \varsigma \rangle \in \Im$, we have $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Lambda)$. If $\varrho = \varsigma$, then $\langle \varrho, \varsigma \rangle \in \Delta$. If $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, then $\varrho \uplus 0 = \varrho$ and $\varsigma \uplus 0 = \varsigma$. Since $\langle \varrho, \varsigma \rangle \in \Re$, we have $\varrho \uplus 0 = \varsigma \uplus 0$, it follows that $\varrho = \varsigma$, so $\langle \varrho, \varsigma \rangle \in \Delta$ and then $\Re \cap \Im \subseteq \Delta$. Hence, we have $\Re \cap \Im = \Delta$.

(2) It is clear that $\Re \vee \Im \subseteq \nabla$. Now, we prove that $\nabla \subseteq \Re \vee \Im$. For any $\varrho, \varsigma \in \Lambda$, if $\langle \varrho, \varsigma \rangle \in \Re$ or $\langle \varrho, \varsigma \rangle \in \Im$, then we have $\langle \varrho, \varsigma \rangle \in \Re \vee \Im$. If $\langle \varrho, \varsigma \rangle \notin \Re$ and $\langle \varrho, \varsigma \rangle \notin \Im$, then $\varrho \uplus 0 \neq \varsigma \uplus 0$, $\varrho \neq \varsigma$, and $\varrho, \varsigma \notin \Re(\Lambda)$, it turns out that there exist $\varrho \uplus 0$, $\varsigma \uplus 0 \in \Re(\Lambda)$ such that $\varrho \uplus 0 = (\varrho \uplus 0) \uplus 0$ and $\varsigma \uplus 0 = (\varsigma \uplus 0) \uplus 0$, it means that $\langle \varrho, \varrho \uplus 0 \rangle \in \Re$, $\langle \varsigma, \varsigma \uplus 0 \rangle \in \Re$, $\langle \varrho \uplus 0, \varsigma \uplus 0 \rangle \in \Im$, and then $\langle \varrho, \varrho \uplus 0 \rangle \in \Re \vee \Im$, $\langle \varsigma, \varsigma \uplus 0 \rangle \in \Re \vee \Im$, $\langle \varrho \uplus 0, \varsigma \uplus 0 \rangle \in \Re \vee \Im$. Since $\Re \vee \Im$ is a congruence on Λ , we have $\langle \varrho, \varsigma \rangle \in \Re \vee \Im$, it turns out that $\nabla \subseteq \Re \vee \Im$. Hence $\Re \vee \Im = \nabla$.

Let Λ be a quasi-MV* algebra. Then Λ is called *simple*, if the set of all congruences on Λ is $\{\Delta, \nabla\}$.

Lemma 6: Let Λ be a simple quasi-MV* algebra. Then either Λ is an MV*-algebra or Λ is a flat quasi-MV* algebra.

Proof: Let Λ be a simple quasi-MV* algebra. Then either $\Re = \Delta$ or $\Re = \nabla$. If it is the former, then Λ is an

MV*-algebra. If it is the latter, then Λ is a flat quasi-MV* algebra.

Definition 7: Let Λ_1 and Λ_2 be quasi-MV* algebras. A mapping $f:\Lambda_1\to\Lambda_2$ is called a quasi-MV* algebra homomorphism from Λ_1 to Λ_2 , if $f(0^{\Lambda_1})=0^{\Lambda_2}$, $f(1^{\Lambda_1})=1^{\Lambda_2}$, $f(\varrho_1\uplus^{\Lambda_1}\varrho_2)=f(\varrho_1)\uplus^{\Lambda_2}f(\varrho_2)$, $f(-^{\Lambda_1}\varrho_1)=-^{\Lambda_2}f(\varrho_1)$, $f(\varrho_1^{+^{\Lambda_1}})=f(\varrho_1)^{+^{\Lambda_2}}$, $f(\varrho_1^{-^{\Lambda_1}})=f(\varrho_1)^{-^{\Lambda_2}}$ for any $\varrho_1,\varrho_2\in\Lambda_1$. Moreover, if the mapping f is injective, then f is called monomorphism. Such a mapping f is also called an embedding.

Proposition 3: Let Λ be a quasi-MV* algebra. Then there exist an MV*-algebra Σ and a flat quasi-MV* algebra Γ such that Λ can be embedded into the direct product $\Sigma \times \Gamma$.

Proof: Denote $\Sigma = \Lambda/\Re$ and $\Gamma = \Lambda/\Im$. Then we have that Σ is an MV*-algebra by Lemma 2 and Γ is a flat MV*-algebra by Lemma 4. Define a mapping $f:\Lambda \to \Lambda/\Re \times \Lambda/\Im$ by $f(\varrho) = \langle \varrho/\Re, \varrho/\Im \rangle$ for any $\varrho \in \Lambda$. We show that f is a homomorphism. Obviously, we have $f(0) = \langle 0/\Re, 0/\Im \rangle$, $f(1) = \langle 1/\Re, 1/\Im \rangle$. For any $\varrho, \varsigma \in \Lambda$, we have $f(\varrho) \uplus^{\Lambda/\Re \times \Lambda/\Im} f(\varsigma) = \langle \varrho/\Re, \varrho/\Im \rangle \uplus^{\Lambda/\Re \times \Lambda/\Im} \langle \varsigma/\Re, \varsigma/\Im \rangle = \langle \varrho/\Re \uplus^{\Lambda/\Re} \varsigma/\Re, \varrho/\Im \uplus^{\Lambda/\Im} \varsigma/\Im \rangle = \langle (\varrho \uplus \varsigma)/\Re, (\varrho \uplus \varsigma)/\Im \rangle = f(\varrho \uplus \varsigma)$. For any $\varrho \in \Lambda$, we have $-\Lambda/\Re \times \Lambda/\Im f(\varrho) = -\Lambda/\Re \times \Lambda/\Im \langle \varrho/\Re, \varrho/\Im \rangle = \langle -\Lambda/\Re (\varrho/\Re), -\Lambda/\Im (\varrho/\Im) \rangle = \langle (-\varrho)/\Re, (-\varrho)/\Im \rangle = f(-\varrho)$. Moreover, we have $f(\varrho)^{+\Lambda/\Re \times \Lambda/\Im} = \langle \varrho/\Re, \varrho/\Im \rangle^{+\Lambda/\Re \times \Lambda/\Im} = \langle (\varrho/\Re)^{+\Lambda/\Re}, (\varrho/\Im)^{+\Lambda/\Im} \rangle = \langle \varrho/\Re, \varrho/\Im \rangle^{-\Lambda/\Re \times \Lambda/\Im} = \langle (\varrho/\Re)^{-\Lambda/\Re}, (\varrho/\Im)^{-\Lambda/\Re \times \Lambda/\Im} \rangle = \langle \varrho/\Re, \varrho/\Im \rangle^{-\Lambda/\Re \times \Lambda/\Im} = \langle (\varrho/\Re)^{-\Lambda/\Re \times \Lambda/\Im}, (\varrho/\Im)^{-\Lambda/\Im} \rangle = \langle \varrho/\Re, \varrho/\Im \rangle = f(\varrho^-)$. Finally, if $f(\varrho) = f(\varsigma)$, then $\langle \varrho/\Re, \varrho/\Im \rangle = \langle \varsigma/\Re, \varsigma/\Im \rangle$, it turns out that $\varrho/\Re = \varsigma/\Re$ and $\varrho/\Im = \varsigma/\Im$, which means that $\langle \varrho, \varsigma \rangle \in \Re$ and $\langle \varrho, \varsigma \rangle \in \Im$. By Lemma 5(1), we have $\varrho = \varsigma$, so f is injective. Hence Λ can be embedded into the direct product $\Sigma \times \Gamma$.

Corollary 1: Let Λ be a simple quasi-MV* algebra. Then the embedding in Proposition 3 is an isomorphism.

Based on the subdirect product decomposition of a quasi-MV* algebra, we can transform the study on the CEP of quasi-MV* algebras into the study on the CEPs of MV*-algebras and flat quasi-MV* algebras, respectively.

Definition 8: [17] A variety \mathbb{K} is called to have the congruence extension property (for short, CEP), iff for any $\Lambda \in \mathbb{K}$, any subalgebra Υ of Λ and for any congruence \aleph on Υ , there exists a congruence φ on Λ such that $\aleph = \varphi \cap \Upsilon^2$.

According to Theorem 1, we have that \mathbb{MV}^* has the CEP iff \mathbb{MV}^* has the ideal extension property, i.e., iff for any $\Sigma \in \mathbb{MV}^*$, any subalgebra Υ of Σ and for any ideal Φ of Υ , there exists an ideal Ψ of Σ such that $\Phi = \Psi \cap \Upsilon$.

Lemma 7: Let Σ be an MV*-algebra, Υ be a subalgebra of Σ , and Φ be an ideal of Υ . Then $(\Phi] = \{\varrho \in \Sigma : a_1 \uplus \cdots \uplus a_n \leqslant \varrho \leqslant b_1 \uplus \cdots \uplus b_m$, for some $a_1, ..., a_n, b_1, ..., b_m \in \Phi\}$ is an ideal of Σ .

Proof: Since $\Phi \subseteq (\Phi]$, we have that the set $(\Phi]$ is non empty. If $\varrho, \varsigma \in (\Phi]$, then there exist $a_1, ..., a_n, b_1, ..., b_m, c_1, ..., c_\ell, d_1, ..., d_j \in \Phi$ such that $a_1 \uplus \cdots \uplus a_n \leqslant \varrho \leqslant b_1 \uplus \cdots \uplus b_m$ and $c_1 \uplus \cdots \uplus c_\ell \leqslant \varsigma \leqslant d_1 \uplus \cdots \uplus d_j$. By Proposition 1(4) and Proposition 2(7), we have $a_1 \uplus \cdots \uplus a_n, b_1 \uplus \cdots \uplus b_m, c_1 \uplus \cdots \uplus c_\ell, d_1 \uplus \cdots \uplus d_j \in \Phi$, and $-(d_1 \uplus \cdots \uplus d_j) \leqslant -\varsigma \leqslant -(c_1 \uplus \cdots \uplus c_\ell)$. Since Φ is an ideal of Υ , we have $(a_1 \uplus \cdots \uplus a_n) \ominus (d_1 \uplus \cdots \uplus d_j) \in \Phi$ and $(b_1 \uplus \cdots \uplus b_m) \ominus (c_1 \uplus \cdots \uplus c_\ell) \in \Phi$ by $(\Phi 1)$. Meanwhile, we have $(a_1 \uplus \cdots \uplus a_n) \uplus (-(d_1 \uplus \cdots \uplus d_j)) \leqslant \varrho \uplus (-\varsigma) \leqslant$

 $(b_1 \uplus \cdots \uplus b_m) \uplus (-(c_1 \uplus \cdots \uplus c_\ell)) \text{ by Lemma 2(7), it turns out that } (a_1 \uplus \cdots \uplus a_n) \ominus (d_1 \uplus \cdots \uplus d_j) \leqslant \varrho \ominus \varsigma \leqslant (b_1 \uplus \cdots \uplus b_m) \ominus (c_1 \uplus \cdots \uplus c_\ell), \text{ so } \varrho \ominus \varsigma \in (\Phi] \text{ by } (\Phi 3).$ If $\varrho \in (\Phi]$, then there exist $a_1, ..., a_n, b_1, ..., b_m \in \Phi$ such that $a_1 \uplus \cdots \uplus a_n \leqslant \varrho \leqslant b_1 \uplus \cdots \uplus b_m$. By Proposition 1(4), we have $a_1 \uplus \cdots \uplus a_n \in \Phi$ and $b_1 \uplus \cdots \uplus b_m \in \Phi$. Since Φ is an ideal of Υ , we have $(a_1 \uplus \cdots \uplus b_n)^+ \in \Phi$ and $(b_1 \uplus \cdots \uplus b_m)^+ \in \Phi$ by $(\Phi 2)$. By Proposition 2(8), we have $(a_1 \uplus \cdots \uplus a_n)^+ \leqslant \varrho^+ \leqslant (b_1 \uplus \cdots \uplus b_m)^+, \text{ so } \varrho^+ \in (\Phi]$ by $(\Phi 3)$. If $\varrho, \kappa \in (\Phi]$ and $\varsigma \in \Sigma$ with $\varrho \leqslant \varsigma \leqslant \kappa$, then there exist $a_1, ..., a_n, b_1, ..., b_m, c_1, ..., c_\ell, d_1, ..., d_j \in \Phi$ such that $a_1 \uplus \cdots \uplus a_n \leqslant \varrho \leqslant b_1 \uplus \cdots \uplus b_m$ and $c_1 \uplus \cdots \uplus c_\ell \leqslant \kappa \leqslant d_1 \uplus \cdots \uplus d_j$, it turns out that $a_1 \uplus \cdots \uplus a_n \leqslant \varsigma \leqslant d_1 \uplus \cdots \uplus d_j$, so $\varsigma \in (\Phi]$ by $(\Phi 3)$. Hence $(\Phi]$ is an ideal of Σ .

Theorem 2: The variety MV^* has the CEP.

Proof: For any $\Sigma \in \mathbb{MV}^*$, Υ is a subalgebra of Σ , and Φ is an ideal of Υ . Then we have that $(\Phi]$ is an ideal of Σ by Lemma 7. Below we prove that $\Phi = (\Phi] \cap \Upsilon$. For any $\varrho \in \Phi$, since $\varrho \leq \varrho \leq \varrho$, we have $\varrho \in (\Phi]$ by $(\Phi 3)$ and then $\varrho \in (\Phi] \cap \Upsilon$, so $\Phi \subseteq (\Phi] \cap \Upsilon$. For any $\varrho \in (\Phi] \cap \Upsilon$, then there exist $a_1, ..., a_n, b_1, ..., b_m \in \Phi$ such that $a_1 \uplus \cdots \uplus a_n \leq \varrho \leq b_1 \uplus \cdots \uplus b_m$. Since Φ is an ideal of Υ , we have $a_1 \uplus \cdots \uplus a_n \in \Phi$ and $b_1 \uplus \cdots \uplus b_m \in \Phi$ by Proposition 1(4), it turns out that $\varrho \in \Phi$ by $(\Phi 3)$, so $(\Phi] \cap \Upsilon \subseteq \Phi$ and then $(\Phi] \cap \Upsilon = \Phi$. Hence the variety \mathbb{MV}^* has the CEP.

Since \mathbb{MV}^* has the CEP, we next need to discuss the variety \mathbb{FQMV}^* .

Lemma 8: The variety \mathbb{FQMV}^* has the CEP.

Proof: For any $\Lambda \in \mathbb{FQMV}^*$, Υ is a subalgebra of Λ , and \aleph is a congruence on Υ . We define a binary relation $\aleph' = \{\langle \rho, \varsigma \rangle \in \Lambda^2 \mid \langle \rho, \varsigma \rangle \in \aleph \text{ or } \rho = \varsigma \}.$ Then \aleph' is the congruence on Λ such that $\aleph = \aleph' \cap \Upsilon^2$. Indeed, it is easy to see that \aleph' is an equivalence on Λ . Suppose that $\langle \varrho, \varsigma \rangle \in \aleph'$ and $\langle \varepsilon, \vartheta \rangle \in \aleph'$. Since Λ is flat, we have $\langle \varrho \uplus \rangle$ $\varepsilon, \varsigma \uplus \vartheta \rangle = \langle 0, 0 \rangle \in \aleph'$. For any $\langle \varrho, \varsigma \rangle \in \aleph'$, then $\langle \varrho, \varsigma \rangle \in \aleph$ or $\varrho = \varsigma$. If $\langle \varrho, \varsigma \rangle \in \aleph$, since \aleph is a congruence on Υ , we have $\langle -\varrho, -\varsigma \rangle \in \aleph$, so $\langle -\varrho, -\varsigma \rangle \in \aleph'$. If $\varrho = \varsigma$, then $-\varrho = -\varsigma$, we also have $\langle -\varrho, -\varsigma \rangle \in \aleph'$. Moreover, if $\varrho = \varsigma$, then $\varrho^+ = \varsigma^+$ and $\varrho^- = \varsigma^-$, so $\langle \varrho^+, \varsigma^+ \rangle \in \aleph'$ and $\langle \varrho^-, \varsigma^- \rangle \in \aleph'$. If $\langle \varrho, \varsigma \rangle \in \aleph'$ \aleph , since \aleph is a congruence on Υ , we have $\langle \varrho^+, \varsigma^+ \rangle \in \aleph$ and $\langle \varrho^-, \varsigma^- \rangle \in \aleph$, so $\langle \varrho^+, \varsigma^+ \rangle \in \aleph'$ and $\langle \varrho^-, \varsigma^- \rangle \in \aleph'$. Hence \aleph' is a congruence on Λ . For any $\langle \varrho, \varsigma \rangle \in \aleph$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$ and $\langle \varrho, \varsigma \rangle \in \aleph'$, it turns out that $\langle \varrho, \varsigma \rangle \in \aleph' \cap \Upsilon^2$, so $\aleph \subseteq \aleph' \cap \Upsilon^2$. Conversely, for any $\langle \varrho, \varsigma \rangle \in \aleph' \cap \Upsilon^2$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$ and $\langle \varrho, \varsigma \rangle \in \aleph'$, it turns out that $\varrho = \varsigma$ or $\langle \varrho, \varsigma \rangle \in \aleph$. If $\langle \varrho, \varsigma \rangle \in \aleph$, then the result is true. If $\varrho = \varsigma$, since \aleph is a congruence on Υ , we also have $\langle \varrho, \varsigma \rangle \in \aleph$, so $\aleph' \cap \Upsilon^2 \subseteq \aleph$ and then $\aleph = \aleph' \cap \Upsilon^2$. Hence the variety \mathbb{FQMV}^* has the CEP.

Lemma 9: Let Λ be a quasi-MV* algebra and \aleph be a congruence on Λ . Then there exist a congruence \aleph_1 on Λ/\Re and a congruence \aleph_2 on Λ/\Im such that $\langle \varrho, \varsigma \rangle \in \aleph$ iff $\langle \langle \varrho/\Re, \varrho/\Im \rangle, \langle \varsigma/\Re, \varsigma/\Im \rangle \rangle \in \aleph_1 \times \aleph_2$.

Proof: Define a binary relation $\aleph' = \{\langle \langle \varrho/\Re, \varrho/\Im \rangle, \langle \varsigma/\Re, \varsigma/\Im \rangle \rangle : \langle \varrho, \varsigma \rangle \in \aleph \}$. Then \aleph' is a congruence on Λ such that $\langle \varrho, \varsigma \rangle \in \aleph$ iff $\langle \langle \varrho/\Re, \varrho/\Im \rangle, \langle \varsigma/\Re, \varsigma/\Im \rangle \rangle \in \aleph'$. It is clear that \aleph' is an equivalent relation. For any $\langle \langle \varrho/\Re, \varrho/\Im \rangle, \langle \varsigma/\Re, \varsigma/\Im \rangle \rangle \in \aleph'$ and $\langle \varepsilon/\Re, \varepsilon/\Im \rangle, \langle \vartheta/\Re, \vartheta/\Im \rangle \rangle \in \aleph'$, then $\langle \varrho, \varsigma \rangle \in \aleph'$

and $\langle \varepsilon, \vartheta \rangle \in \aleph$. Since \aleph is a congruence on Λ , we have $\langle \varrho \oplus \varepsilon, \varsigma \oplus \vartheta \rangle \in \aleph$, it turns out that $\langle \langle (\varrho \uplus \varepsilon)/\Re, (\varrho \uplus \varepsilon)/\Im \rangle, \langle (\varsigma \uplus \vartheta)/\Re, (\varsigma \uplus \vartheta)/\Im \rangle \rangle \in \aleph', \text{ so}$ $\langle\langle(\varrho/\Re)\rangle$ $\oplus^{\mathbf{\Lambda}/\Re}$ $(\varepsilon/\Re), (\varrho/\Im)$ $\oplus^{\mathbf{\Lambda}/\Im}$ $(\varepsilon/\Im)\rangle, \langle(\varsigma/\Re)\rangle$ $\oplus^{\mathbf{\Lambda}/\Re}$ $(\vartheta/\Re), (\varsigma/\Im) \quad \uplus^{\mathbf{\Lambda}/\Im} \quad (\vartheta/\Im)\rangle\rangle$ \in \aleph' . For $\langle \langle \varrho/\Re, \varrho/\Im \rangle, \langle \varsigma/\Re, \varsigma/\Im \rangle \rangle \in \aleph'$, then $\langle \varrho, \varsigma \rangle \in \aleph$. Since \aleph is a congruence on Λ , we have $\langle -\varrho, -\varsigma \rangle \in \aleph$, it turns out that $\langle \langle (-\varrho)/\Re, (-\varrho)/\Im \rangle, \langle (-\varsigma)/\Re, (-\varsigma)/\Im \rangle \rangle \in \aleph'$, $\langle \langle -\mathbf{\Lambda}/\Re(\varrho/\Re), -\mathbf{\Lambda}/\Im(\varrho/\Im) \rangle,$ means that which $\langle -^{\Lambda/\Re}(\varsigma/\Re), -^{\Lambda/\Im}(\varsigma/\Im) \rangle \rangle$ ℵ′. Moreover, \in have $\langle \rho^+, \varsigma^+ \rangle \in \mathbb{N}$ and $\langle \rho^-, \varsigma^- \rangle \in \mathbb{N}$, it turns out that $\langle \langle (\varrho^+)/\Re, (\varrho^+)/\Im \rangle, \langle (\varsigma^+)/\Re, (\varsigma^+)/\Im \rangle$ that $\langle \langle (\varrho^{-})/\Re, (\varrho^{-})/\Im \rangle, \langle (\varsigma^{-})/\Re, (\varsigma^{-})/\Im \rangle \in \mathbb{N}$, which means that $\langle \langle (\varrho/\Re)^{+^{\Lambda/\Re}}, (\varrho/\Im)^{+^{\Lambda/\Im}} \rangle, \langle (\varsigma/\Re)^{+^{\Lambda/\Re}}, (\varsigma/\Im)^{+^{\Lambda/\Im}} \rangle \in \mathbb{N}$ and $\langle \langle (\varrho/\Re)^{-^{\Lambda/\Re}}, (\varrho/\Im)^{-^{\Lambda/\Im}} \rangle, \langle (\varsigma/\Re)^{-^{\Lambda/\Re}}, (\varsigma/\Im)^{-^{\Lambda/\Im}} \rangle \in \mathbb{N}$. So \mathbb{N}' is a congruence on Λ and $\langle \varrho, \varsigma \rangle \in \mathbb{N}$ iff $\langle\langle\varrho/\Re,\varrho/\Im\rangle,\langle\varsigma/\Re,\varsigma/\Im\rangle\rangle\in\aleph'$ for any $\varrho,\varsigma\in\Lambda$.

Define a binary relation \aleph_1 on Λ/\Re by $\langle \varrho/\Re, \varsigma/\Re\rangle \in \aleph_1$ iff $\langle \langle \varrho/\Re, \varrho/\Im\rangle, \langle \varsigma/\Re, \varsigma/\Im\rangle\rangle \in \aleph'$. Define a binary relation \aleph_2 on Λ/\Im by $\langle \varrho/\Im, \varsigma/\Im\rangle \in \aleph_2$ iff $\langle \langle \varrho/\Re, \varrho/\Im\rangle, \langle \varsigma/\Re, \varsigma/\Im\rangle\rangle \in \aleph'$. It is clear that \aleph_1 is a congruence on Λ/\Re and \aleph_2 is a congruence on Λ/\Im . Moreover, $\langle \varrho, \varsigma\rangle \in \aleph$ iff $\langle \varrho/\Re, \varrho/\Im\rangle, \langle \varsigma/\Re, \varsigma/\Im\rangle\rangle \in \aleph'$, iff $\langle \varrho/\Re, \varsigma/\Re\rangle \in \aleph_1$ and $\langle \varrho/\Im, \varsigma/\Im\rangle \in \aleph_2$, iff $\langle \langle \varrho/\Re, \varrho/\Im\rangle, \langle \varsigma/\Re, \varsigma/\Im\rangle\rangle \in \aleph_1 \times \aleph_2$.

Lemma 10: Let Λ be a quasi-MV* algebra and Υ be a subalgebra of Λ . Then the congruence \Re^{Υ} on Υ extends to the congruence \Re^{Λ} on Λ and the congruence \Im^{Υ} on Υ extends to the congruence \Im^{Λ} on Λ .

Proof: We only prove that $\Re^{\Upsilon} = \Re^{\Lambda} \cap \Upsilon^2$ and $\Im^{\Upsilon} = \Im^{\Lambda} \cap \Upsilon^2$. For any $\langle \varrho, \varsigma \rangle \in \Re^{\Upsilon}$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$ and $\varrho \uplus 0 = \varsigma \uplus 0$. Because Υ is a subalgebra of Λ , we have $\langle \varrho, \varsigma \rangle \in \Lambda^2$, it turns out that $\langle \varrho, \varsigma \rangle \in \Re^{\Lambda}$ and then $\langle \varrho, \varsigma \rangle \in \Re^{\Lambda} \cap \Upsilon^2$, so $\Re^{\Upsilon} \subseteq \Re^{\Lambda} \cap \Upsilon^2$. For any $\langle \varrho, \varsigma \rangle \in \Re^{\Lambda} \cap \Upsilon^2$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$ and $\varrho \uplus 0 = \varsigma \uplus 0$, it turns out that $\langle \varrho, \varsigma \rangle \in \Re^{\Upsilon}$, so $\Re^{\Lambda} \cap \Upsilon^2 \subseteq \Re^{\Upsilon}$ and then $\Re^{\Upsilon} = \Re^{\Lambda} \cap \Upsilon^2$. Similarly, for any $\langle \varrho, \varsigma \rangle \in \Im^{\Upsilon}$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$, and $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Upsilon)$. Because Υ is a subalgebra of Λ , we have $\langle \varrho, \varsigma \rangle \in \Lambda^2$, it turns out that $\langle \varrho, \varsigma \rangle \in \Im^{\Lambda}$ and then $\langle \varrho, \varsigma \rangle \in \Im^{\Lambda} \cap \Upsilon^2$. For any $\langle \varrho, \varsigma \rangle \in \Im^{\Lambda} \cap \Upsilon^2$, then $\langle \varrho, \varsigma \rangle \in \Upsilon^2$, and $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, it turns out that $\langle \varrho, \varsigma \rangle \in \Upsilon^2$, and $\varrho = \varsigma$ or $\varrho, \varsigma \in \mathcal{R}(\Lambda)$, it turns out that $\langle \varrho, \varsigma \rangle \in \Im^{\Upsilon}$, so $\Im^{\Lambda} \cap \Upsilon^2 \subseteq \Im^{\Upsilon}$ and then $\Im^{\Upsilon} = \Im^{\Lambda} \cap \Upsilon^2$. Hence the congruence \Re^{Υ} on Υ extends to the congruence \Im^{Λ} on Λ and the congruence \Im^{Υ} on Υ extends to the congruence \Im^{Λ} on Λ .

Lemma 11: Let Λ be a quasi-MV* algebra and Υ be a subalgebra of Λ . Then Υ/\Re^{Υ} is a subalgebra of Λ/\Re^{Λ} and Υ/\Im^{Υ} is a subalgebra of Λ/\Im^{Λ} .

Proof: Let $\Lambda = \langle A; \uplus^{\Lambda}, -^{\Lambda}, +^{\Lambda}, -^{\Lambda}, 0, 1 \rangle$ be a quasi-MV* algebra and $\Upsilon = \langle \Upsilon; \uplus^{\Upsilon}, -^{\Upsilon}, +^{\Upsilon}, -^{\Upsilon}, 0, 1 \rangle$ be a subalgebra of Λ . Then $\Lambda/\Re^{\Lambda} = \langle A/\Re^{\Lambda}; \uplus_1, -_1, +^1, -^1, 0/\Re^{\Lambda}, 1/\Re^{\Lambda} \rangle$ and $\Upsilon/\Re^{\Upsilon} = \langle Y/\Re^{\Upsilon}; \uplus_2, -_2, +^2, -^2, 0/\Re^{\Upsilon}, 1/\Re^{\Upsilon} \rangle$ are MV* algebras. For any $\varrho/\Re^{\Upsilon} \in \Upsilon/\Re^{\Upsilon}$, then $\varrho/\Re^{\Upsilon} = \varrho/(\Re^{\Lambda} \cap \Upsilon^2) = (\varrho/\Re^{\Lambda}) \cap \Upsilon \subseteq \varrho/\Re^{\Lambda}$ by Lemma 10. Since Υ is a subalgebra of Λ , we have $\Upsilon/\Re^{\Lambda} \subseteq \Lambda/\Re^{\Lambda}$ and then $\Upsilon/\Re^{\Upsilon} \subseteq \Lambda/\Re^{\Lambda}$. For any $\varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \in \Upsilon/\Re^{\Upsilon}$, we have $(\varrho/\Re^{\Upsilon}) \uplus_1 (\varsigma/\Re^{\Upsilon}) = (\varrho \uplus^{\Lambda} \varsigma)/\Re^{\Upsilon} = (\varrho \uplus^{\Upsilon} \varsigma)/\Re^{\Upsilon} = (\varrho/\Re^{\Upsilon}) \uplus_2 (\varsigma/\Re^{\Upsilon})$. For any $\varrho/\Re^{\Upsilon} \in \Upsilon/\Re^{\Upsilon}$, we have $-1(\varrho/\Re^{\Upsilon}) = (-^{\Lambda}\varrho)/\Re^{\Upsilon} = (-^{\Upsilon}\varrho)/\Re^{\Upsilon} = -2(\varrho/\Re^{\Upsilon})$. Moreover, we have $(\varrho/\Re^{\Upsilon})^{+1} = (\varrho^{+^{\Lambda}})/\Re^{\Upsilon} = (\varrho/\Re^{\Upsilon})/\Re^{\Upsilon} = (\varrho/\Re^{\Upsilon})^{+2}$

and $(\varrho/\Re^{\Upsilon})^{-1} = (\varrho^{-\Lambda})/\Re^{\Upsilon} = (\varrho^{-\Upsilon})/\Re^{\Upsilon} = (\varrho/\Re^{\Upsilon})^{-2}$. Hence Υ/\Re^{Υ} is a subalgebra of Λ/\Re^{Λ} . Similarly, Υ/\Im^{Υ} is a subalgebra of Λ/\Im^{Λ} .

Theorem 3: The variety \mathbb{QMV}^* has the CEP.

Proof: For any $\Lambda \in \mathbb{QMV}^*$, Υ is a subalgebra of Λ and \aleph is a congruence on Υ . Then there exist a congruence \aleph_1 on Υ/\Re^{Υ} and a congruence \aleph_2 on Υ/\Im^{Υ} such that $\langle \varrho, \varsigma \rangle \in \aleph$ $\mathrm{iff}\left\langle \langle \varrho/\Re^{\mathbf{\Upsilon}},\varrho/\Im^{\mathbf{\Upsilon}}\rangle,\langle \varsigma/\Re^{\mathbf{\Upsilon}},\varsigma/\Im^{\mathbf{\Upsilon}}\rangle\right\rangle \in\aleph_{1}\times\aleph_{2} \text{ for any } \varrho,\varsigma\in$ Υ by Lemma 9. Moreover, since the CEP holds for \mathbb{MV}^* and **FQMV*** by Theorem 2 and Lemma 8, respectively, we have a congruence \aleph'_1 on Λ/\Re^{Λ} and a congruence \aleph'_2 on Λ/\Im^{Λ} such that $\aleph_1 = \aleph_1' \cap (\Upsilon/\Re^{\Upsilon})$ and $\aleph_2 = \aleph_2' \cap (\Upsilon/\Im^{\Upsilon})$. Now, we only show that $\aleph_1 \times \aleph_2 = (\aleph_1' \times \aleph_2') \cap (\Upsilon/\Re^{\Upsilon} \times \Re^{\Upsilon})$ Now, we only show that $\kappa_1 \times \kappa_2 = (\kappa_1 \times \kappa_2) \cap (1/\Re^2 \times \Upsilon/\Im^2)$. For any $\langle \langle \varrho/\Re^{\Upsilon}, \varrho/\Im^{\Upsilon} \rangle, \langle \varsigma/\Re^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \rangle \in \aleph_1 \times \aleph_2$, then $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \rangle \in \aleph_1$ and $\langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2$. Since $\aleph_1 = \aleph_1' \cap (\Upsilon/\Re^{\Upsilon})$ and $\aleph_2 = \aleph_2' \cap (\Upsilon/\Im^{\Upsilon})$, we have $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \rangle \in \aleph_1' \cap (\Upsilon/\Re^{\Upsilon})$ and $\langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2' \cap (\Upsilon/\Im^{\Upsilon})$, it turns out that $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2' \cap (\Upsilon/\Im^{\Upsilon})$, it turns out that $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2' \cap (\Upsilon/\Im^{\Upsilon})$, it turns out that $\begin{array}{ccccc} \langle \varrho/\Re^{\Upsilon},\varsigma/\Re^{\Upsilon}\rangle & \in & \aleph_1', & \langle \varrho/\Re^{\Upsilon},\varsigma/\Re^{\Upsilon}\rangle & \in & \Upsilon/\Re^{\Upsilon}, & \text{and} \\ \langle \varrho/\Im^{\Upsilon},\varsigma/\Im^{\Upsilon}\rangle & \in & \aleph_2', & \langle \varrho/\Im^{\Upsilon},\varsigma/\Im^{\Upsilon}\rangle & \in & \Upsilon/\Im^{\Upsilon}, & \text{which} \end{array}$ imply that $\langle \langle \varrho/\Re^{\Upsilon}, \varrho/\Im^{\Upsilon} \rangle, \langle \varsigma/\Re^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \rangle \in \aleph_1' \times \aleph_2'$ and $\langle\langle \varrho/\Re^{\Upsilon}, \varrho/\Im^{\Upsilon}\rangle, \langle \varsigma/\Re^{\Upsilon}, \varsigma/\Im^{\Upsilon}\rangle\rangle \in \Upsilon/\Re^{\Upsilon} \times \Upsilon/\Im^{\Upsilon}.$ So $\langle\langle\langle\varrho/\Re^{\mathbf{\Upsilon}},\varrho/\Im^{\mathbf{\Upsilon}}\rangle,\langle\varsigma/\Re^{\mathbf{\Upsilon}},\varsigma/\Im^{\mathbf{\Upsilon}}\rangle\rangle\in(\aleph_{1}'\times\aleph_{2}')\cap(\Upsilon/\Re^{\mathbf{\Upsilon}}\times\mathbb{R}')$ Υ/\Im^{Υ}), and then we get $\aleph_1 \times \aleph_2 \subseteq (\aleph'_1 \times \aleph'_2) \cap (\Upsilon/\Re^{\Upsilon} \times \Im^{\Upsilon})$ Υ/\Im^{Υ}). For any $\langle\langle \varrho/\Re^{\Upsilon} \times \varrho/\Im^{\Upsilon}\rangle, \langle \varsigma/\Re^{\Upsilon} \times \varsigma/\Im^{\Upsilon}\rangle\rangle \in (\aleph'_1 \times \Im^{\Upsilon})$ \aleph_2') \cap $(\Upsilon/\Re^{\Upsilon} \times \Upsilon/\Im^{\Upsilon})$, then $\langle\langle \varrho/\Re^{\Upsilon} \times \varrho/\Im^{\Upsilon} \rangle, \langle \varsigma/\Re^{\Upsilon} \times \varrho/\Im^{\Upsilon} \rangle$ $\langle \varsigma / \Im^{\Upsilon} \rangle \rangle \in \aleph'_1 \times \aleph'_2$ and $\langle \langle \varrho / \Re^{\Upsilon} \times \varrho / \Im^{\Upsilon} \rangle, \langle \varsigma / \Re^{\Upsilon} \times \varrho \rangle$ $\langle \varsigma/\Im^{\Upsilon}\rangle\rangle \in \Upsilon/\Re^{\Upsilon} \times \Upsilon/\Im^{\Upsilon}$, it turns out that $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon}\rangle \in \Upsilon/\Im^{\Upsilon}$ $\aleph_1', \langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2', \text{ and } \langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \rangle \in \Upsilon/\Re^{\Upsilon},$ $\langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \Upsilon/\Im^{\Upsilon}$, which imply that $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \rangle \in$ $\aleph'_1 \cap (\Upsilon/\Re^{\Upsilon})$ and $\langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph'_2 \cap (\Upsilon/\Im^{\Upsilon})$. Since $\aleph_1 = \aleph'_1 \cap (\Upsilon/\Re^{\Upsilon})$ and $\aleph_2 = \aleph'_2 \cap (\Upsilon/\Im^{\Upsilon})$, we have $\langle \varrho/\Re^{\Upsilon}, \varsigma/\Re^{\Upsilon} \rangle \in \aleph_1$ and $\langle \varrho/\Im^{\Upsilon}, \varsigma/\Im^{\Upsilon} \rangle \in \aleph_2$, it turns out that $\langle \langle \varrho / \Re^{\Upsilon}, \varrho / \Im^{\Upsilon} \rangle, \langle \varsigma / \Re^{\Upsilon}, \varsigma / \Im^{\Upsilon} \rangle \rangle \in \aleph_1 \times \aleph_2$, so $(\aleph_1' \times \aleph_2') \cap (\Upsilon/\Re^{\Upsilon} \times \Upsilon/\Im^{\Upsilon}) \subseteq \aleph_1 \times \aleph_2$, and then $(\aleph_1' \times \aleph_2') \cap (\Upsilon/\Re^{\Upsilon} \times \Upsilon/\Im^{\Upsilon}) = \aleph_1 \times \aleph_2$. Hence the variety \mathbb{QMV}^* has the CEP.

At the end of this section, we demonstrate the congruence extension property of quasi-MV* algebras with an illustrative example.

Remark 3: Let Λ' be the algebra defined in Example 3 and Λ be the algebra defined in Example 2. Then Λ is the subalgebra of Λ' , where the operations \uplus , -, $^+$, $^-$ of Λ are those of Λ' restricted to Λ and $\Lambda \cong \Sigma \times \Lambda_1$, where Σ is the algebra defined in Example 1 and Λ_1 is the algebra defined in Example 4. Define a congruence \aleph on Λ by $\langle \varrho, \varsigma \rangle \in \aleph$ iff $\varrho \vee 0 = \varsigma \vee 0$ for any $\varrho, \varsigma \in \Lambda$. Then we have a congruence \aleph_1 on Σ and a congruence \aleph_2 on Λ_1 following Lemma 9. Define a binary relation \aleph'_2 on Λ_2 by $\aleph'_2 = \aleph \cup \Delta$, where Λ_2 is defined in Example 5. Then \aleph'_2 is a congruence on Λ_2 . Denote $\aleph' = \aleph_1 \times \aleph'_2$. Then \aleph' is a congruence on Λ' and $\aleph = \aleph' \cap \Lambda^2$.

IV. CONCLUSION

In this paper, we have proved that the variety of quasi-MV* algebras has the congruence extension property. To complete this work, we have first shown that the subdirect product decomposition of a quasi-MV* algebra, and then proved that MV*-algebras and flat quasi-MV* algebras have the CEP. These results mean that in these algebras, the congruence on a subalgebra can be extended to the

entire algebra, which is helpful to the study of algebraic structures. Consider that quasi-MV* algebras are the new non-classical logical algebras arising from many-valued logic and quantum computational logic, their theoretical research could be applied to fields such as artificial intelligence and quantum computation. Thus, future work will discuss more properties of quasi-MV* algebras in order to characterize the logical system associated with quasi-MV* algebras.

REFERENCES

- [1] F. Bou, F. Paoli, A. Ledda, H. Freytes, "On some properties of quasi-MV algebras and $\sqrt{\ }$ quasi-MV algebras. Part II," Soft Computing, vol. 12, no. 4, pp. 341-352, 2008.
- [2] L. Cai, Y. Y. Jiang, W. J. Chen, "The logic of quasi-MV* algebras," http://doi.org/10.48550/arXiv.2503.14081.
- [3] C. C. Chang, "Algebraic analysis of many valued logics," Transactions of the American Mathematical Society, vol. 88, no. 2, pp. 467-490, 1958.
- [4] C. C. Chang, "Logic with positive and negative truth values," Acta Philosophica Fennica, vol. 16, pp. 19-39, 1963.
- [5] A. Dvurečcenskij, O. Zahiri, "Some results on quasi-MV algebras and perfect quasi-MV algebras," *Studia Logica*, vol. 24, pp. 1-37, 2025.
- [6] J. Gispert, D. Mundici, "MV-algebras: a variety for magnitudes with archimedean units," Algebra Universalis, vol. 53, pp. 7-43, 2005.
- [7] Y. Y. Jiang, W. J. Chen, "Quasi-MV* algebras: a generalization of MV*-algebras," Soft Computing, vol. 26, no. 15, pp. 6999-7015, 2022.
- [8] P. Jipsen, A. Ledda, F. Paoli, "On some properties of quasi-MV algebras and \sqrt{I} quasi-MV algebras. Part IV," Reports on Mathematical logic, vol. 48, pp. 3-36, 2013.
- [9] T. Kowalski, "On some properties of quasi-MV algebras and \sqrt{I} quasi-MV algebras. Part III," Reports on Mathematical Logic, vol. 45, pp. 161-199, 2010.
- [10] A. Ledda, M. Konig, F. Paoli, R. Giuntini, "MV-algebras and quantum
- computation," *Studia Logica*, vol. 82, pp. 245-270, 2006. [11] R. Lewin, M. Sagastume, P. Massey, "MV*-algebras," *Logic Journal* of the IGPL, vol. 12, no. 6, pp. 461-483, 2004.
- [12] R. Lewin, M. Sagastume, P. Massey, "Changs L* logic," Logic Journal of IGPL, vol. 12, no. 6, pp. 485-497, 2004.
- [13] M. Liu, H. X. Liu, "Pseudo-ehoops," IAENG International Journal of Applied Mathematics, vol. 55, no. 1, pp. 90-103, 2025.
- [14] T. Liu, H. X. Liu, "ET-norms and n-roots on EBL-algebras," IAENG International Journal of Applied Mathematics, vol. 55, no. 5, pp. 1227-1234, 2025.
- [15] L. L. Lu, Y. W. Yang, "Generalized additive derivations on MV-algebras" Engineering Letters, vol. 29, no. 2, pp. 789-794, 2021.
- [16] Y. J. Lv, W. J. Chen, "Quasi-Boolean algebras: a generalization of Boolean algebras," Engineering Letters, vol. 30, no. 4, pp. 1372-1376,
- [17] F. Paoli, A. Ledda, R. Giuntini, H. Freytes, "On some properties of quasi-MV algebras and $\sqrt{\prime}$ quasi-MV algebras," Reports Math. Log., vol. 44, pp. 31-63, 2009.
- [18] B. Satyanarayana, S. Baji, "Positive implicative, implicative, and commutative SB-neutrosophic ideals in BCK/BCI-algebras," IAENG International Journal of Applied Mathematics, vol. 54, no. 5, pp. 815-830, 2024.