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The Congruence Extension Property of
Quasi-MV* Algebras

Heyan Wang, Lei Cai, and Wenjuan Chen

Abstract—Quasi-MV*  algebras, introduced as a
generalization of MV*-algebras and quasi-MV algebras,
provide a general algebraic framework in the setting of
many-valued logic and quantum computational logic. In
this paper, we study the congruence extension property of
quasi-MV#* algebras. First, we present the subdirect product
decomposition of any quasi-MV#* algebra. Next, we prove
that any MV*-algebra has the congruence extension property.
Finally, we extend this property to quasi-MV* algebras.

Index Terms—Congruences, Congruence extension property,
Ideals, MV*-algebras, Quasi-MV* algebras.

I. INTRODUCTION

ON-CLASSICAL mathematical logic, as the

foundation of intelligent science, has received
increasing attentions in recent years. It is well-known
that the algebraic structures play a crucial role in the
study of non-classical mathematical logic [3], [10], [13],
[14], [15], [16], [18]. For example, in order to prove
the completeness of Lukasiewicz’s many-valued logic,
Chang introduced MV-algebras in 1958 [3]. Since then,
the algebraic structures of MV-algebras have been widely
investigated. For another example, in order to characterize
quantum computational logic, Ledda et al. introduced
quasi-MV algebras in 2006 [10]. The study of the algebraic
structures of quasi-MV algebras has played a positive role
in quantum computational logic [1], [5], [8], [9], [17].
In 1965, to further characterize the structure of the real
closed interval [—1,1] equipped with truncated addition
ow¢ = max{—1,min{l, o + ¢}} and negation —p, Chang
introduced MV*-algebras in [4], paralleling similar work
done for MV-algebras. Moreover, the logic associated with
MV+*#-algebras was also investigated in [4], [12]. Recently,
Jiang and Chen proposed quasi-MV* algebras in [7] as
a unified framework for further research on quasi-MV
algebras and MV*-algebras. The logic associated with
quasi-MV* algebras has been preliminarily studied in [2].
To obtain additional characterizations of this logical system,
we want to study more algebraic properties of quasi-MV*
algebras.

The congruence extension property (CEP), an important
property of varieties, characterizes whether a congruence on
a subalgebra can be extended to the entire algebra. In 2005,
Gispert and Mundici proved that the variety of MV-algebras
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satisfies CEP [6]. Subsequently, Paoli et al. generalized this
result to quasi-MV algebras using the subdirect product
decomposition of a quasi-MV algebra. Now, it is natural
to ask whether quasi-MV* algebras, as a generalization of
MV*#-algebras and quasi-MV algebras, have CEP. We will
give a positive answer in this paper.

The paper is organized as follows. In Section 2, we
recall some definitions and results of MV*-algebras and
quasi-MV* algebras. In Section 3, we present the subdirect
product decomposition of a quasi-MV* algebra. Based on
this decomposition, we establish the CEP for the variety of
quasi-MV* algebras. Finally, a conclusion is given.

II. PRELIMINARIES

In this section, we recall some definitions and results of
MV*#-algebras and quasi-MV* algebras which will be used
in what follows.

Definition 1: [4] Let ¥ = (3;w, —,0, 1) be an algebra of
type (2,1,0,0). If the following conditions are satisfied for
any o,¢,k € X,

MV*1) pws =cwop,

MV*2) lwo)w(cw(lwk)) = (1wo)ws)w (lwk),

MV*3) pw (—0) =0,

(MV#4) (pw1)wl=1,

(MV*5) pw 0 = o,

(MV*#6) —(0w <) = (—0) w (=),

MV*7) —(—0) = o,

MV*8) pw¢ = (ot wem)w (o™ we),

MV*9) (—ow (ews))" = —(07) w (0" we™),

(MV*10) o v s =<V o,

MV*11) ov (s vK)=(0Vs) VK,

MV*12) pw (s vK) = (ows) v (0w k),
in which ones define o7 = 1w (—1wp), o~ = 1w (lwp),
and o v = (0" w(—0"wch) M) w (o w (-0  we)T),
then 3 = (¥; w, —,0, 1) is called an MV*-algebra.

Example 1: Let ¥ = {p,5,0,9,1} be a 5-element set and
define operations on X as follows:
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Then ¥ = (¥; w,—,0,1) is an MV*-algebra.

The variety of MV*-algebras is denoted by MV*.
In the following, we abbreviate an MV*-algebra ¥ =
(35w, —,0,1) as 3. Below we list some properties of ideals
of any MV*-algebra.

Let 3 be an MV*-algebra. The operation © is defined by
06¢ = pw (=) for any o, € ¥ in [4].

Volume 55, Issue 9, September 2025, Pages 2726-2731



TAENG International Journal of Applied Mathematics

Definition 2: [11] Let ¥ be an MV*-algebra. A
non-empty subset ® of ¥ is called an ideal of 3, if the
following conditions are satisfied:

(®1) If p,c € P, then 0O € P,

(®2) If g € D, then o+ € D,

(®3) If o,k € @ and ¢ € X with p < ¢ < K, then ¢ € .

Proposition 1: [11] Let 3 be an MV*-algebra and ® be
an ideal of X. Then for any g, <, k,e,9 € 3, we have

1) 0€e ®,

2)If p€ ®, then —p € @,

B)If pe P, then o~ € P,

@) If p,ce ®, then pwg e P,

O)If p&ce P and ¢ € D, then pe P,

6)If ©ce® and ke D, then (pw k) O (swk) €D,

NHIf pcePand O ke P, then pSk € P,

B)If p©¢ce @ and eV € D, then (pwe)O(cwd) € .

Theorem 1: [11] Let ¥ be an MV*-algebra. Then the
lattice of congruences on ¥ and the lattice of ideals of X
are isomorphic.

Now, we present the definition and related properties of a
quasi-MV* algebra.

Definition 3: [7] Let A A;w,—,7,70,1) be an
algebra of type (2,1,1,1,0,0). If the following conditions
are satisfied for any g,¢, Kk € A,

(QMV*]) pw ¢ =cwp,

(QMV*2) (1w g)w (s w (Lwk)) =

(QMV*3) (pw 1) wl=1,

(QMV*4) (pws) w0 =pwg,

(QMV*#5) 0 = -0,

(QMV*6) o w (—0) =

(QMV*7) —(pws) =

(QUV*8) —(—g) = o,

(QMV*9) p* w0 = (0w
—1lw(lwp),

@QMV*10) v ¢ = (0" wct)

Q@MY1) (~0 o (00 <))+ ~

(QMV*12) o v ¢ =<V o,

(QMV*13) o v (s v k) = (0 Vv$) Vv

(QMV*14) pw (s v k) = (0w <) v (Q W k),
in which ones define o v ¢ = (o7 w (—pt we) ) w
(—0” we)t), then A = (Ajw, —
quasi-MV* algebra.

Example 2: Let A = {o,¢,k,0,¢,9,1} be a 7-element
set and define operations on A as follows:

(lwe)we)w(lwr),

—QU( S),

w0)T =1lw(—1wp)and o~ =

w (o~ we),
(—o") w (0" weh),

(0" w
,7,0,1) is called a

wlo ¢ k 0 ¢ 9 1
olo 0 0 ¢ s s O
slo 0o o s 0 0 9
klo o o ¢ 0 0 9
0Ojlo ¢ ¢ 0 9 9 1
el¢ 00 ¢ 1 1 1
Jd]{¢ 0 0 ¢ 1 1 1
110 ¢ 9 1 1 1 1

o ¢ kK 0 ¢ 9 1
-1 9 ¢ 0 kK ¢ p
T10 0 0 0 ¢ 9 1
“lo ¢ k 0 0 0 O

Then A = {A;w,—,7 7 ,0,1) is a quasi-MV* algebra.
Example 3: Let N = {o,¢,K,w,0,6,6,9,1} be a
9-element set and define operations on A’ as follows:
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Then A’ = (A';w,—,7 .7 ,0,1) is a quasi-MV* algebra.

The variety of quasi-MV* algebras is denoted by QMV™.
In the following, we abbreviate a quasi-MV* algebra A =
<Aa Y, 77+ - 07 1> as A

Obviously, any MV*-algebra is a quasi-MV* algebra.
Conversely, for any quasi-MV* algebra A, if pw 0 =
for any p € A, then it is an MV*-algebra. Moreover, let A
be a quasi-MV* algebra and o € A. If pw 0 = p, then g is
called regular. We denote that R(A) is the set of all regular
elements in A. Then Ry = (R(A);w,—,%7,7,0,1) is an
MV*-algebra, where the operations w, —,%, and ~ are those
of A restricted to R(A).

In any quasi-MV* algebra A, we consider that the
operations T and ~ (which have the same priority) have
priority to operations w and —, the operation — has priority
to the operation w.

Let A be a quasi-MV* algebra. For any o, ¢ € A, we define
an operation p A ¢ = —((—p) v (—¢)). We can also define a
binary relation ¢ < ¢ iff o v ¢ = ¢ w 0. Then the following
results hold.

Proposition 2: [7] Let A be a quasi-MV* algebra. Then
for any p,¢, k,e,9 € A, we have

| PO RPETTTITON N N[O

T O R

MHOw0=0,1lw0=1,-1w0=-1,1wl =1,
1w (-1) = -1,

2) —(ow0) =—pw0,

B)ows=(ow0)ws=pw(cw0) =(ow0)w(scw0),

@D oveo=0w0=0pnop,
Gron(snr)=(ens)nr
©6)ow(sAnk)=(0ws) A (0wK),

(7)) If p <, then —¢ < —p,

8) If p <, then p* < ¢t and o~ < ¢,
D Ifpo<cand¢<p,then pw 0 =¢cw0,
(10)If p<cand e < ¥, then pwe < g w ¥,
(I Ifo<cgand e <V, then p A e < A,
(12)Ifo<cand e <V, then pve<gv .

III. CONGRUENCE EXTENSION PROPERTY

In this section, we investigate the congruence extension
properties of QMV™ mainly. To achieve it, we first discuss
the subdirect product decomposition of a quasi-MV* algebra.

Definition 4: [2] Let A be a quasi-MV* algebra. Then A
is called flat, if it satisfies the equation 0 = 1.

Remark 1: Let A be a flat quasi-MV* algebra. Then for
any 0,¢ € A, we have pw¢ = ((pws)w0) w0 = ((ow
Jwl)wl=1=0by (QMV*4) and (QMV*3).
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Example 4: Let Ay = {k,0,e} be a 3-element set and
define operations on A; as follows:

wl|k 0 ¢ |k 0 ¢

k10 0 0 —1]e 0 K

0jo 00 *|o o0 e =

e|l0 00 ~ |k 00O
Then Ay = {Aj;w,—,17,7,0,1) is a flat quasi-MV*
algebra.

Example 5: Let Ay = {k,w,0,5,e} be a 5-element set
and define operations on Ay as follows:

wlk w 0 ¢ ¢
k[0 0 0 0 0 |k @ 0 ¢ ¢
w|0 0 0 0 0 —le ¢ 0 w kK
0/0 0 0OOO *T|0 0 0 ¢ ¢’
s|/0 0 000 “|k w O 0 O
e|l0 0 0 0 O
and 1 = 0.
Then A, Ag;w,—,7,7,0,1) is a flat quasi-MV*
algebra.

The variety of flat quasi-MV* algebras is denoted by
FQMV*,

Definition 5: Let A be a quasi-MV#* algebra. For any
0,6 € A, we define a binary relation

(0.<) e Riff o <

Remark 2: Let A be a quasi-MV* algebra and o,¢ € A.
Then {p, sy € R iff o w 0 = ¢ w 0 by Proposition 2(9).

Lemma 1: Let A be a quasi-MV* algebra. Then R is a
congruence on A.

Proof: For any p,¢,e € A, since pw0 = pw0, we have
{0,0)€ R.If {p,¢) e R, then pw 0 = ¢ w0, it turns out that
¢w0 = pw0 and then (s, gy € . If {p,¢) € R and (s,e) € R,
then pw0 = ¢w0 and ¢w0 = w0, it follows that pw(0 = w0
and then {p,e) € R, so RN is an equivalence relation on A.
Now, we prove that 3t satisfies the compatibility property.
For any p,¢,e,9 € A, if {p,s) € R and {¢,¥) € R, then
ow0 =¢w0 and ew0 = Yw0. By Proposition 2(3), we have
(owe)wl = (pw0)w(ew0) = (cw0)w (Pwl) = (swd) w0,
so{pwe,cwdye R If (o,¢) e R, then pw 0 =c w0, it
turns out that —pw 0 = —(pw0) = —(¢w0) = —cw0
by Proposition 2(2), so {—g, —¢) € R. Moreover, o7 w 0 =
lw(-lwp)=1lw(-1lw(pw0) =1lw(—-1lw(cw0)) =
lw(-lws) =¢"wland p w0 = -1w (lwp) =
—1lw(lw(pw0)) = —lw(lw(cw0)) = —1w(lwg) = ¢~ w0
by Proposition 2(3), so (¢7,¢") € R and {(p™,¢") € R.
Hence R is a congruence on A. [ |

Let A be a quasi-MV* algebra and N be a congruence on
A. For any g € A, the equivalence class of ¢ with respect
o N is denoted by o/X = {¢ € A | {g,¢) € R}. The set of
all equivalence classes of elements in A is denoted by A/N.
For any o/N,¢/X € A/X, the operations on A/X are defined
as follows: (o/R) w2 (¢/R) = (0 w<)/R, —AR(g/R) =
(=o)X (/) = (o)X, and (o) = (o)X
Then A/R = (A/R; wAR AR+ A GAR JA/RY ¢
a quasi-MV* algebra and we call that A/R is the quotient
algebra of A with respect to N. Furthermore, we discuss the
quotient algebra of a quasi-MV* algebra with respect to .

Lemma 2: Let A be a quasi-MV* algebra. Then A/R is
an MV*-algebra.

cand¢ < o

Proof: We only need to prove that any element in A/R
is regular. For any o/ft € A/R, since (o w0) w0 = pw0
by (QMV*4), we have (o w 0, ) € R, it turns out that (o w
0)/R = o/R, so (¢/R) & (0/R) = (0w 0)/R = o/R.
Hence A/R is an MV*-algebra. |

Likewise, we introduce a congruence which is called the
flat congruence on any quasi-MV* algebra.

Definition 6: Let A be a quasi-MV* algebra. For any
0,6 € A, we define a binary relation

{o,6)e S iff o =corp,c € R(A).

Lemma 3: Let A be a quasi-MV* algebra. Then S is a
congruence on A.

Proof: 1t is easy to see that & is an equivalence relation
on A. Now, we prove that & satisfies the compatibility
property. For any p,¢,e,9 € A, if {p,¢) € S and {¢,¥) € G,
then o = ¢ or o, € R(A), and ¢ = ¢ or €, € R(A)
Since pwe and ¢ w1 € R(A), we have (pwe,cw i) € . If
{o,s) € S, then p = ¢ or p,s € R(A). We distinguish several
cases to discuss. If 9 =, then —p = —¢, s0 (—p,—¢) e T
If 9,¢ € R(A), then p w0 = ¢ and ¢ w 0 = <. Since
—owl0=—(pw0)=—pand w0 =—(cw0) =—¢ by
Proposition 2(2), we have —g, —¢ € R(A), so (—p, —¢) € ¥
Moreover, if o = ¢, then p© = ¢ and o~ = ¢, so
(ot,sT) € $ and {p7,¢7) € Q. If g,¢ € R(A), then
0T w0=(pw0)" =p" and ¢ w0 = (cw0)t =¢*t by
(QMV*9), it turns out that o*,¢T € R(A), so {ot,cTHe T
Similarly, we have (p~,¢~ ) € . Hence & is a congruence
on A. ]

Lemma 4: Let A be a quasi-MV* algebra. Then A/S is
a flat quasi-MV* algebra.

Proof: Since 0,1 € R(A), we have {0,1) € S, it turns
out that 0/ = 1/, so A/S is a flat quasi-MV* algebra. W

Lemma 5: Let A be a quasi-MV* algebra. Then

(1) Rn S = A, where A is the diagonal relation,

2) Rv &=V, where ® v S is the smallest congruence
which contains ® U & and V is the all relation.

Proof: (1) For any {p, ¢y € A, then o = ¢, 50 A € RNS.
Conversely, for any {(p,s) € R n S, then {p,¢) € R and
{0,y € Y, we have 9 = ¢ or g,¢ € R(A). If o = ¢, then
{o,sy e A. If g, € R(A), then pw 0 =pand w0 = .
Since {0,¢) € R, we have o w 0 = ¢ w 0, it follows that
0=¢,50{0,¢y€ A and then £ n ¥ = A. Hence, we have
RS =A.

(2) It is clear that ® v & < V. Now, we prove that V
RvS Foranyg,§eA1f<g,>eiR0r<g,>e\sthen
we have (p,¢) € R v S If (o,¢) ¢ R and {p,<) ¢ I, then
ow0#cw0, o #¢,and g,¢ ¢ R(A), it turns out that there
exist o w 0,¢ w0 € R(A) such that pw 0 = (pw 0) w0
and ¢ w0 = (¢ w0) w0, it means that {p,p w 0) € R,
(s,sw0) e R, (ow0,cw0) €S, and then (g, pw0) e RV S,
Gsw0heRVS, (ow0, guO>E§Rv\f Since R v I is a
congruence on A, we have (p,¢) € ® v S, it turns out that
VCcRv S Hence Rv S =V. ]

Let A be a quasi-MV* algebra. Then A is called simple,
if the set of all congruences on A is {A, V}.

Lemma 6: Let A be a simple quasi-MV* algebra. Then
either A is an MV*-algebra or A is a flat quasi-MV* algebra.

Proof: Let A be a simple quasi-MV* algebra. Then
either ® = A or ® = V. If it is the former, then A is an
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MV*-algebra. If it is the latter, then A is a flat quasi-MV*
algebra. [ ]

Definition 7: Let A7 and Ay be quasi-MV* algebras. A
mapping f : Ay — Ay is called a quasi-MV* algebra
homomorphism from Ay to Ag, if f(0A1) = 082, f(181) =
142, flor o™ 0y) = fler) w2 f(09), f(*Alé}) =
A2 f(01), flor ) = fle) ™2, flor ) = flor) " for
any 01,02 € A;. Moreover, if the mapping f is injective,
then f is called monomorphism. Such a mapping f is also
called an embedding.

Proposition 3: Let A be a quasi-MV* algebra. Then there
exist an MV*-algebra X and a flat quasi-MV* algebra I" such
that A can be embedded into the direct product 3 x T'.

Proof: Denote X=A/® and T' = A/S. Then we
have that ¥ is an MV*-algebra by Lemma 2 and T
is a flat MV*-algebra by Lemma 4. Define a mapping
f:A— A/Rx A/ by fo) =<o/R, 0/S) for any g € A.
We show that f is a homomorphism. Obviously, we have
f(0) = O/R,0/3), f(1) = <(1/R,1/3). For any g,c € A,
we have f(o) wATXAS f(o) = (o/R, o/F) wNRXAS
RS/ = (/R oM /R 0/S M /)
(e w )R (0w <)) = flews). For any o €
we have —ARXAS f(p) —ATAS(o/R, 0/3)
(o), M (o/%)) = (-0)/R, (~0)/3) = (-0

JRXAN]S A/RXNA/S
Moreover, we have f gg)

= (o/R, 0o/)*

=

~—

a7 (g8) ™) = (" /RoT/3) = fle")
and  f(o)” ao. = Se/R,0/3)” S =
/M), (0/S)™ ) = (e /Mo /S) = [flo7)

Finally, if f(0) = f(<), then (o/R, 0/S) = (¢/R,</S), it
turns out that /R = ¢/ and ¢/ = ¢/, which means
that {p,¢) € R and {p,¢) € §. By Lemma 5(1), we have
o =¢, so f is injective. Hence A can be embedded into the
direct product 3 x I'. ]

Corollary 1: Let A be a simple quasi-MV* algebra. Then
the embedding in Proposition 3 is an isomorphism.

Based on the subdirect product decomposition of a
quasi-MV* algebra, we can transform the study on the
CEP of quasi-MV* algebras into the study on the CEPs of
MV*-algebras and flat quasi-MV* algebras, respectively.

Definition 8: [17] A variety K is called to have the
congruence extension property (for short, CEP), iff for any
A € K, any subalgebra Y of A and for any congruence X on
Y, there exists a congruence ¢ on A such that X = ¢ 1 T2,

According to Theorem 1, we have that MV* has the CEP
iff MV™ has the ideal extension property, i.e., iff for any
3 € MV*¥, any subalgebra X of X and for any ideal ® of
Y, there exists an ideal ¥ of X such that ® = ¥ n Y.

Lemma 7: Let 3 be an MV*-algebra, Y be a subalgebra
of X, and ® be an ideal of Y. Then (®] = {pe X :a1w - w
an <0< by w--wby, for some ay,...,an,,b1,..., b, € D}
is an ideal of 3.

Proof: Since ® < (®], we have that the set (P]
is non empty. If o,¢ € (®], then there exist aq, ..., ap,
bi,...;bm,c1,...,co,d1,...,d; € P such that a; w - - - wa, <
0<biw---wbpandciw---wey << dyw---wd,. By
Proposition 1(4) and Proposition 2(7), we have a1 w--- w ay,,
bhw:--wby, cirw---weg, dyw---wd, € P, and
—(d1w- - wd) < =< —(c1w---weyp). Since D is an
ideal of X', we have (a1 w---wa,)O(diw---wd,) € ® and
brw - wby)O(c1w---wce) € P by (P1). Meanwhile,
we have (a1 w - wa,)w(—(diw-wd,))) < ow(—) <

(biw---wby) w(—(c; w---wce)) by Lemma 2(7), it
turns out that (a3 w -+ - wa,)O(diw---wd,)) < pO¢ <
1w - wby)O(crw: - wcy), so 0O € (P] by (93).

If o € (®], then there exist ay,...,an,b1,...,0, € ® such
that a; w - - - wa, < o < by w---wby,. By Proposition
14), we have a1 w - -wa, € Pand by w---wb,, € E.
Since @ is an ideal of Y, we have (a1 w -+ - wa,)t € &
and (by w- - wby)T € ® by (92). By Proposition 2(8),
we have (a1 w - way)" <ot < (byw- - wby)T, so

ot € (@] by (®3). If g, € (P] and ¢ € 3 with p < ¢ < K,

then there exist ay, ..., an, b1, ...,bm, c1, ..., co,d1, ..., d; € ®

such that ¢y w - - - wa, < o < by w---wb, and

QW we <K< dw---wd, it turns out that

a W wa, <s < dw---wdy, so s e (D] by (23).

Hence (@] is an ideal of X. |
Theorem 2: The variety MV* has the CEP.

Proof: For any ¥ € MV*, Y is a subalgebra of X,
and @ is an ideal of Y. Then we have that (®] is an ideal
of ¥ by Lemma 7. Below we prove that & = (®] n T.
For any o € ®, since o < o < p, we have g € (D] by
(®3) and then p € (P] " Y, so & < (P] n Y. For any
0 € (®] n Y, then there exist ay, ..., ap, b1, ..., by, € @ such
that a; w---wa, < o <byw---wb,,. Since ¥ is an ideal
of Y, wehave a; w---wa, € ®Pand by w---wb, € ®
by Proposition 1(4), it turns out that p € ® by (®3), so
(2] n T < ® and then (?] N T = ®. Hence the variety
MV* has the CEP. [ ]

Since MV* has the CEP, we next need to discuss the
variety FQMV*,
Lemma 8: The variety FQMV* has the CEP.

Proof: For any A € FQMV™, Y is a subalgebra of A,
and N is a congruence on Y. We define a binary relation
N = {{p,s) € A2 | {p,s) € R or o = c}. Then N is
the congruence on A such that X = X' Y2, Indeed, it is
easy to see that N’ is an equivalence on A. Suppose that
{o,5y € X and (e,9) € N. Since A is flat, we have (p w
g,swdy =0,0) € N. For any {p, ) € ¥, then {p,¢) € Ror
0=c¢.If (0,¢) € X, since N is a congruence on Y, we have
(—o,—sye N, 50(—p,—c)e N .If p = ¢, then —p = —¢, we
also have (—g, —¢) € N'. Moreover, if ¢ =, then g7 = ¢™
and o~ =¢7,s0{pT,¢THYeN and(p~,¢ ) e N . If {g,c) €
N, since N is a congruence on Y, we have (o7, ¢t) € W
and (o7,s7) € N, so {pt,¢t) € W and (o~,¢7) € V.
Hence XN’ is a congruence on A. For any {p,¢) € X, then
{0,5y € T? and {p,s) € W', it turns out that {p,¢) € X' N T2,
so X © N n T2 Conversely, for any (g,s) € X n T2,
then (,s) € Y2 and (p,s) € N/, it turns out that ¢ = ¢ or
{0,6) € . If {p,¢) € R, then the result is true. If o = ,
since N is a congruence on Y, we also have {p,¢) € X, so
N A T2 < N and then X = X n T2 Hence the variety
FQMV* has the CEP. [ |

Lemma 9: Let A be a quasi-MV* algebra and N be a
congruence on A. Then there exist a congruence N; on
A/R and a congruence Ny on A/S such that (p,¢) € N
HE (C0/R, 0/, (/R 5/ € Ny x Ro.

Proof: Define a binary relation X = {{{o/R, 0/S),
(/R,6/S)) : {o,¢y € N}, Then N is a congruence
on A such that {(p,¢) € N iff o/R,0/I),{/R,
¢/SY) € N. It is clear that N is an equivalent
relation. For any {{o/R,0/3),{s/RN,¢/F)) € W
and {(g/R,e/I), (I/R,¥/S)) € W, then {o,¢) € N
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and {e,9) € N. Since N is a congruence on A,
we have {(p w €, w ¥J) € N, it turns out that
{lewe)/R, (0 we)/I),{(c wd)/R,(cw)/I)) €N, s0
{o/R) &M (e/R), (/) &M (/) ((/R) &M
W/R), (s/I) &M (9/3))) € N.  For any
Lo/, 0/3),(s/R, /)y € W, then {p,¢) € N. Since
N is a congruence on A, we have (—p, —¢) € R, it turns
out that ({(—0)/R, (—0)/3),{(~5)/R, (—)/3) € ¥,
which means that {=DR(9/R), A3 (0/I)),
(AR /R), —M3(¢/3))y € N. Moreover, we
have (p*,¢*) € N and {p7,¢7) € N, it turns out
that  (((¢")/R, (¢¥)/S),{(sT)/R, (7)/S) € RN and
L@™)/M, (e7)/3), ()R, (¢7)/S) € R, which means
that (((o/R)*" " (o/9)7" ") (/R (/)" en
and ((e/B)"" (/) e (/)7

N. So N is a congruence on A and {p,¢) € N iff
Lo/R, 0/3),(s/R,¢/F)) € W for any o, € A.

Define a binary relation ®; on A/R by (o/®,¢/R) € Ny iff
Ko/R, 0/3),{s/R, /)y € N. Define a binary relation Ry
on A/ by {0/, ¢/3) € Ry iff ((o/R, 0/3), (s/R,</I)) €
W. It is clear that N; is a congruence on A/R and
Ny is a congruence on A/, Moreover, {p,s) € N iff
(o/R, 0/3),(c/R.c/I)) € W, iff (o/R,¢/R) € Ny and
(0/3,5/S) € Vo, iff ((o/R, 0/I),{(s/R,¢/I)) € Ry x Ny,

|

Lemma 10: Let A be a quasi-MV* algebra and Y be a
subalgebra of A. Then the congruence RY on Y extends
to the congruence R™ on A and the congruence ¥ on Y
extends to the congruence 3 on A.

Proof: We only prove that RY = R4 ~ Y2 and 3¥ =
32 A Y2, For any {g,¢) € RY, then {0,¢) € T? and pw 0 =
¢w0. Because Y is a subalgebra of A, we have (p,¢) € A2,
it turns out that {g,¢) € R and then {p,s) € R* A T2, so
RY < RA ~ T2, For any (p,¢) € R* n Y2, then {g,¢) € T2
and ow0 = ¢w0, it turns out that {9, <) € RY, so RANT2 <
RY and then RY = RA A T2, Similarly, for any (g,¢) € Y,
then {(p,s) € T2, and ¢ = < or p,s € R(Y). Because Y is
a subalgebra of A, we have {p,¢) € A2, it turns out that
{0,s) € ™ and then (g,¢) e A N T2, 50 IY < IA T2
For any {(g,s) € S* n Y2, then {0,¢) € T2, and g0 = < or
0,6 € R(A), it turns out that {g,¢) € IY, s0 FANT2 = ¥
and then ¥ = 3 ~ T2, Hence the congruence RY on Y
extends to the congruence R on A and the congruence &Y
on Y extends to the congruence ™ on A. ]

Lemma 11: Let A be a quasi-MV* algebra and Y be a
subalgebra of A. Then Y/RY is a subalgebra of A/R* and
Y /ST is a subalgebra of A/JA.

Proof: Let A = (A;wh, fA,JFA ,’A ,0,1) be a
quasi-MV* algebra and ¥ = (T; &Y —Y +" =" 0,1)
be a subalgebra of A. Then A/RA =
(A/RA wp,—1, 71 70 0/RA 1/RAY and Y/RY =
(T/RY; wo, —2,72,72 0/RY 1/RY) are MV* algebras.
For any o/RY e T/RY, then o/RY = o/(RA n Y?) =
(o/RA) Y < o/RA by Lemma 10. Since Y is a subalgebra
of A, we have Y/RA < A/RA and then T/RY < A/RA. For
any o/RY,¢/RY € T/RY, we have (o/RY) w; (s/RY) =
(0 o™ /R = (0w ¢)/RT = (o/RT) w2 (/RT).
For any o/R®Y e Y/RY, we have —(o/RY) =
(—2o)/RY = (=To)/RY = —3(0/RY). Moreover, we

A

have (o/RY)*1 = (o%")/RY = (o7 )/RT = (o/RT)*>

and (g/RY)~1 = (07")/RY = (07" )/RT = (o/RT)>.
Hence Y/RY is a subalgebra of A/RA. Similarly, ¥ /3T
is a subalgebra of A/JA. [ |

Theorem 3: The variety QMV™ has the CEP.

Proof: For any A € QMV™, Y is a subalgebra of A and
N is a congruence on Y. Then there exist a congruence ®; on
Y/RY and a congruence Ry on Y /Y such that {o,¢) € N
iff ((o/RY, 0/IT), (/RY,¢/IT)H) € Ry x Ny for any g, €
T by Lemma 9. Moreover, since the CEP holds for MV* and
FQMV* by Theorem 2 and Lemma 8, respectively, we have
a congruence ¥} on A/R? and a congruence ¥, on A/JA
such that X; = ¥} n (T/RY) and Ry = N, n (T/S7T).
Now, we only show that ¥; x Ry = (8] x X)) n (T/RT x
Y/SY). For any ((o/RY,0/IT),(s/RT,¢/IT)) € Ny x
Ny, then (o/RY,¢/RYY e N, and (9/I¥,¢/IT) €
Ny, Since ®; = N n (Y/RY) and Ny = N, n
(Y/3Y), we have (o/RY,q/RY) e N, n (Y/RY)
and (o/IY,¢/IY) e N, n (T/IY), it turns out that
(o/RY,¢/RY) e i, (o/RY,¢/RY) e T/RT, and
(/ST ,6/STY e N, (0/SY,¢/ITY e T/IY, which
imply that ((o/RY, 0/I™),{s/RY,s/IT)) € N} x N, and
(o/RY, 0/ST),(/RY,¢/IT)) e T/RY x T/IY. So
Lo/RT, 0/STH(s/RT, /STy € (N x Rp) A (T/RT x
T/3IY), and then we get Ry x Ny S (R] x R) n (T/RY x
T/SY). For any ((o/RY x 0/IT), (¢/RY x¢/IY)) e (W]
NS) N (T/RY x T/SY), then ((o/RT x o/IT), (s/RY x
S/STH & N x N, and ((o/RT x o/3T),(¢/RT
¢/STH)y e T/RY x T/SY, it turns out that (o/RY,c/RY) €
Ry, (o/ST,¢/3T) € Nj, and (g/RT,¢/RT) € T/RT,
(/Y ,¢/ITY e T/IY, which imply that {o/RY,¢/RY) e
N A (T/RY) and (0/SY,¢/ST) e N, n (T/SY). Since
Ny = X n (T/RY) and Ry = R, n (T/IY), we have
Co/RY,¢/RYY € Ny and (o/IY,¢/IY) € Ny, it turns
out that ((o/RY, 0/IT),(s/RY, ¢/IT)) € Ny x Ny, s0
(R x R) N (T/RY x T/IT) < Ry x Ny, and then
(R x RE) A (T/RY x T/IT) = Ry x Ny. Hence the variety
QMV* has the CEP. [ |

At the end of this section, we demonstrate the congruence
extension property of quasi-MV* algebras with an illustrative
example.

Remark 3: Let A’ be the algebra defined in Example 3
and A be the algebra defined in Example 2. Then A is the
subalgebra of A’, where the operations w, —, ©, = of A are
those of A’ restricted to A and A =~ X x Ay, where X is the
algebra defined in Example 1 and A; is the algebra defined
in Example 4. Define a congruence X on A by (g, <) € W iff
ov 0=c¢vO0forany o,¢ € A. Then we have a congruence
N; on ¥ and a congruence Ny on A; following Lemma 9.
Define a binary relation X, on Az by X, = X U A, where
A, is defined in Example 5. Then X/ is a congruence on
Ao. Denote X = 8y x N,. Then N is a congruence on A’
and N = N n A2,

IV. CONCLUSION

In this paper, we have proved that the variety of
quasi-MV* algebras has the congruence extension property.
To complete this work, we have first shown that the subdirect
product decomposition of a quasi-MV* algebra, and then
proved that MV#*-algebras and flat quasi-MV* algebras
have the CEP. These results mean that in these algebras,
the congruence on a subalgebra can be extended to the
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entire algebra, which is helpful to the study of algebraic
structures. Consider that quasi-MV* algebras are the new
non-classical logical algebras arising from many-valued logic
and quantum computational logic, their theoretical research
could be applied to fields such as artificial intelligence and
quantum computation. Thus, future work will discuss more
properties of quasi-MV* algebras in order to characterize the
logical system associated with quasi-MV* algebras.
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