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Abstract—Quasi-MV* algebras, introduced as a
generalization of MV*-algebras and quasi-MV algebras,
provide a general algebraic framework in the setting of
many-valued logic and quantum computational logic. In
this paper, we study the congruence extension property of
quasi-MV* algebras. First, we present the subdirect product
decomposition of any quasi-MV* algebra. Next, we prove
that any MV*-algebra has the congruence extension property.
Finally, we extend this property to quasi-MV* algebras.

Index Terms—Congruences, Congruence extension property,
Ideals, MV*-algebras, Quasi-MV* algebras.

I. INTRODUCTION

NON-CLASSICAL mathematical logic, as the
foundation of intelligent science, has received

increasing attentions in recent years. It is well-known
that the algebraic structures play a crucial role in the
study of non-classical mathematical logic [3], [10], [13],
[14], [15], [16], [18]. For example, in order to prove
the completeness of Łukasiewicz’s many-valued logic,
Chang introduced MV-algebras in 1958 [3]. Since then,
the algebraic structures of MV-algebras have been widely
investigated. For another example, in order to characterize
quantum computational logic, Ledda et al. introduced
quasi-MV algebras in 2006 [10]. The study of the algebraic
structures of quasi-MV algebras has played a positive role
in quantum computational logic [1], [5], [8], [9], [17].
In 1965, to further characterize the structure of the real
closed interval r´1, 1s equipped with truncated addition
% Z ς “ maxt´1,mint1, % ` ςuu and negation ´%, Chang
introduced MV*-algebras in [4], paralleling similar work
done for MV-algebras. Moreover, the logic associated with
MV*-algebras was also investigated in [4], [12]. Recently,
Jiang and Chen proposed quasi-MV* algebras in [7] as
a unified framework for further research on quasi-MV
algebras and MV*-algebras. The logic associated with
quasi-MV* algebras has been preliminarily studied in [2].
To obtain additional characterizations of this logical system,
we want to study more algebraic properties of quasi-MV*
algebras.

The congruence extension property (CEP), an important
property of varieties, characterizes whether a congruence on
a subalgebra can be extended to the entire algebra. In 2005,
Gispert and Mundici proved that the variety of MV-algebras
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satisfies CEP [6]. Subsequently, Paoli et al. generalized this
result to quasi-MV algebras using the subdirect product
decomposition of a quasi-MV algebra. Now, it is natural
to ask whether quasi-MV* algebras, as a generalization of
MV*-algebras and quasi-MV algebras, have CEP. We will
give a positive answer in this paper.

The paper is organized as follows. In Section 2, we
recall some definitions and results of MV*-algebras and
quasi-MV* algebras. In Section 3, we present the subdirect
product decomposition of a quasi-MV* algebra. Based on
this decomposition, we establish the CEP for the variety of
quasi-MV* algebras. Finally, a conclusion is given.

II. PRELIMINARIES

In this section, we recall some definitions and results of
MV*-algebras and quasi-MV* algebras which will be used
in what follows.

Definition 1: [4] Let Σ “ xΣ;Z,´, 0, 1y be an algebra of
type p2, 1, 0, 0q. If the following conditions are satisfied for
any %, ς, κ P Σ,

(MV*1) %Z ς “ ς Z %,
(MV*2) p1Z%qZ pς Zp1Zκqq “ pp1Z%qZ ςqZ p1Zκq,
(MV*3) %Z p´%q “ 0,
(MV*4) p%Z 1q Z 1 “ 1,
(MV*5) %Z 0 “ %,
(MV*6) ´p%Z ςq “ p´%q Z p´ςq,
(MV*7) ´p´%q “ %,
(MV*8) %Z ς “ p%` Z ς`q Z p%´ Z ς´q,
(MV*9) p´%Z p%Z ςqq` “ ´p%`q Z p%` Z ς`q,
(MV*10) %_ ς “ ς _ %,
(MV*11) %_ pς _ κq “ p%_ ςq _ κ,
(MV*12) %Z pς _ κq “ p%Z ςq _ p%Z κq,

in which ones define %` “ 1Zp´1Z%q, %´ “ ´1Zp1Z%q,
and %_ ς “ p%` Z p´%` Z ς`q`q Z p%´ Z p´%´ Z ς´q`q,
then Σ “ xΣ;Z,´, 0, 1y is called an MV*-algebra.

Example 1: Let Σ “ t%, ς, 0, ϑ, 1u be a 5-element set and
define operations on Σ as follows:

Z % ς 0 ϑ 1
% % % % ς 0
ς % % ς 0 ϑ
0 % ς 0 ϑ 1
ϑ ς 0 ϑ 1 1
1 0 ϑ 1 1 1

% ς 0 ϑ 1
´ 1 ϑ 0 ς %

Then Σ “ xΣ;Z,´, 0, 1y is an MV*-algebra.
The variety of MV*-algebras is denoted by MV˚.

In the following, we abbreviate an MV*-algebra Σ “

xΣ;Z,´, 0, 1y as Σ. Below we list some properties of ideals
of any MV*-algebra.

Let Σ be an MV*-algebra. The operation a is defined by
%a ς “ %Z p´ςq for any %, ς P Σ in [4].
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Definition 2: [11] Let Σ be an MV*-algebra. A
non-empty subset Φ of Σ is called an ideal of Σ, if the
following conditions are satisfied:

(Φ1) If %, ς P Φ, then %a ς P Φ,
(Φ2) If % P Φ, then %` P Φ,
(Φ3) If %, κ P Φ and ς P Σ with % ď ς ď κ, then ς P Φ.
Proposition 1: [11] Let Σ be an MV*-algebra and Φ be

an ideal of Σ. Then for any %, ς, κ, ε, ϑ P Σ, we have
(1) 0 P Φ,
(2) If % P Φ, then ´% P Φ,
(3) If % P Φ, then %´ P Φ,
(4) If %, ς P Φ, then %Z ς P Φ,
(5) If %a ς P Φ and ς P Φ, then % P Φ,
(6) If %a ς P Φ and κ P Φ, then p%Z κq a pς Z κq P Φ,
(7) If %a ς P Φ and ς a κ P Φ, then %a κ P Φ,
(8) If %a ς P Φ and εaϑ P Φ, then p%ZεqapςZϑq P Φ.
Theorem 1: [11] Let Σ be an MV*-algebra. Then the

lattice of congruences on Σ and the lattice of ideals of Σ
are isomorphic.

Now, we present the definition and related properties of a
quasi-MV* algebra.

Definition 3: [7] Let Λ “ xΛ;Z,´,` ,´ 0, 1y be an
algebra of type p2, 1, 1, 1, 0, 0q. If the following conditions
are satisfied for any %, ς, κ P Λ,

(QMV*1) %Z ς “ ς Z %,
(QMV*2) p1Z%qZpςZp1Zκqq “ pp1Z%qZ ςqZp1Zκq,
(QMV*3) p%Z 1q Z 1 “ 1,
(QMV*4) p%Z ςq Z 0 “ %Z ς ,
(QMV*5) 0 “ ´0,
(QMV*6) %Z p´%q “ 0,
(QMV*7) ´p%Z ςq “ ´%Z p´ςq,
(QMV*8) ´p´%q “ %,
(QMV*9) %` Z 0 “ p%Z 0q` “ 1Z p´1Z %q and %´ “

´1Z p1Z %q,
(QMV*10) %Z ς “ p%` Z ς`q Z p%´ Z ς´q,
(QMV*11) p´%Z p%Z ςqq` “ p´%`q Z p%` Z ς`q,
(QMV*12) %_ ς “ ς _ %,
(QMV*13) %_ pς _ κq “ p%_ ςq _ κ,
(QMV*14) %Z pς _ κq “ p%Z ςq _ p%Z κq,

in which ones define %_ ς “ p%`Z p´%`Z ς`q`q Z p%´Z
p´%´ Z ς´q`q, then Λ “ xΛ;Z,´,` ,´ , 0, 1y is called a
quasi-MV* algebra.

Example 2: Let Λ “ t%, ς, κ, 0, ε, ϑ, 1u be a 7-element
set and define operations on Λ as follows:

Z % ς κ 0 ε ϑ 1
% % % % % ς ς 0
ς % % % ς 0 0 ϑ
κ % % % ς 0 0 ϑ
0 % ς ς 0 ϑ ϑ 1
ε ς 0 0 ϑ 1 1 1
ϑ ς 0 0 ϑ 1 1 1
1 0 ϑ ϑ 1 1 1 1

% ς κ 0 ε ϑ 1
´ 1 ϑ ε 0 κ ς %
` 0 0 0 0 ε ϑ 1
´ % ς κ 0 0 0 0

Then Λ “ xΛ;Z,´,` ,´ , 0, 1y is a quasi-MV* algebra.
Example 3: Let Λ1 “ t%, ς, κ,$, 0, ς, ε, ϑ, 1u be a

9-element set and define operations on Λ1 as follows:

Z % ς κ $ 0 ς ε ϑ 1
% % % % % % ς ς ς 0
ς % % % % ς 0 0 0 ϑ
κ % % % % ς 0 0 0 ϑ
$ % % % % ς 0 0 0 ϑ
0 % ς ς ς 0 ϑ ϑ ϑ 1
ς ς 0 0 0 ϑ 1 1 1 1
ε ς 0 0 0 ϑ 1 1 1 1
ϑ ς 0 0 0 ϑ 1 1 1 1
1 0 ϑ ϑ ϑ 1 1 1 1 1

% ς κ $ 0 ς ε ϑ 1
´ 1 ϑ ε ς 0 $ κ ς %
` 0 0 0 0 0 ς ε ϑ 1
´ % ς κ $ 0 0 0 0 0

Then Λ1 “ xΛ1;Z,´,` ,´ , 0, 1y is a quasi-MV* algebra.
The variety of quasi-MV* algebras is denoted by QMV˚.

In the following, we abbreviate a quasi-MV* algebra Λ “

xΛ;Z,´,` ,´ 0, 1y as Λ.
Obviously, any MV*-algebra is a quasi-MV* algebra.

Conversely, for any quasi-MV* algebra Λ, if % Z 0 “ %
for any % P Λ, then it is an MV*-algebra. Moreover, let Λ
be a quasi-MV* algebra and % P Λ. If % Z 0 “ %, then % is
called regular. We denote that RpΛq is the set of all regular
elements in Λ. Then RΛ “ xRpΛq;Z,´,` ,´ , 0, 1y is an
MV*-algebra, where the operations Z,´,`, and ´ are those
of Λ restricted to RpΛq.

In any quasi-MV* algebra Λ, we consider that the
operations ` and ´ (which have the same priority) have
priority to operations Z and ´, the operation ´ has priority
to the operation Z.

Let Λ be a quasi-MV* algebra. For any %, ς P Λ, we define
an operation %^ ς “ ´pp´%q_ p´ςqq. We can also define a
binary relation % ď ς iff %_ ς “ ς Z 0. Then the following
results hold.

Proposition 2: [7] Let Λ be a quasi-MV* algebra. Then
for any %, ς, κ, ε, ϑ P Λ, we have

(1) 0 Z 0 “ 0, 1 Z 0 “ 1, ´1 Z 0 “ ´1, 1 Z 1 “ 1,
´1Z p´1q “ ´1,

(2) ´p%Z 0q “ ´%Z 0,
(3) %Z ς “ p%Z 0qZ ς “ %Zpς Z 0q “ p%Z 0qZ pς Z 0q,
(4) %_ % “ %Z 0 “ %^ %,
(5) %^ pς ^ κq “ p%^ ςq ^ κ,
(6) %Z pς ^ κq “ p%Z ςq ^ p%Z κq,
(7) If % ď ς , then ´ς ď ´%,
(8) If % ď ς , then %` ď ς` and %´ ď ς´,
(9) If % ď ς and ς ď %, then %Z 0 “ ς Z 0,
(10) If % ď ς and ε ď ϑ, then %Z ε ď ς Z ϑ,
(11) If % ď ς and ε ď ϑ, then %^ ε ď ς ^ ϑ,
(12) If % ď ς and ε ď ϑ, then %_ ε ď ς _ ϑ.

III. CONGRUENCE EXTENSION PROPERTY

In this section, we investigate the congruence extension
properties of QMV˚ mainly. To achieve it, we first discuss
the subdirect product decomposition of a quasi-MV* algebra.

Definition 4: [2] Let Λ be a quasi-MV* algebra. Then Λ
is called flat, if it satisfies the equation 0 “ 1.

Remark 1: Let Λ be a flat quasi-MV* algebra. Then for
any %, ς P Λ, we have % Z ς “ pp% Z ςq Z 0q Z 0 “ pp% Z
ςq Z 1q Z 1 “ 1 “ 0 by (QMV*4) and (QMV*3).
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Example 4: Let Λ1 “ tκ, 0, εu be a 3-element set and
define operations on Λ1 as follows:

Z κ 0 ε
κ 0 0 0
0 0 0 0
ε 0 0 0

κ 0 ε
´ ε 0 κ
` 0 0 ε
´ κ 0 0

, and 1 “ 0.

Then Λ1 “ xΛ1;Z,´,` ,´ , 0, 1y is a flat quasi-MV*
algebra.

Example 5: Let Λ2 “ tκ,$, 0, ς, εu be a 5-element set
and define operations on Λ2 as follows:

Z κ $ 0 ς ε
κ 0 0 0 0 0
$ 0 0 0 0 0
0 0 0 0 0 0
ς 0 0 0 0 0
ε 0 0 0 0 0

κ $ 0 ς ε
´ ε ς 0 $ κ
` 0 0 0 ς ε
´ κ $ 0 0 0

,

and 1 “ 0.
Then Λ2 “ xΛ2;Z,´,` ,´ , 0, 1y is a flat quasi-MV*
algebra.

The variety of flat quasi-MV* algebras is denoted by
FQMV˚.

Definition 5: Let Λ be a quasi-MV* algebra. For any
%, ς P Λ, we define a binary relation

x%, ςy P < iff % ď ς and ς ď %.

Remark 2: Let Λ be a quasi-MV* algebra and %, ς P Λ.
Then x%, ςy P < iff %Z 0 “ ς Z 0 by Proposition 2(9).

Lemma 1: Let Λ be a quasi-MV* algebra. Then < is a
congruence on Λ.

Proof: For any %, ς, ε P Λ, since %Z0 “ %Z0, we have
x%, %y P <. If x%, ςy P <, then %Z 0 “ ς Z 0, it turns out that
ςZ0 “ %Z0 and then xς, %y P <. If x%, ςy P < and xς, εy P <,
then %Z0 “ ςZ0 and ςZ0 “ εZ0, it follows that %Z0 “ εZ0
and then x%, εy P <, so < is an equivalence relation on Λ.
Now, we prove that < satisfies the compatibility property.
For any %, ς, ε, ϑ P Λ, if x%, ςy P < and xε, ϑy P <, then
%Z0 “ ςZ0 and εZ0 “ ϑZ0. By Proposition 2(3), we have
p%ZεqZ0 “ p%Z0qZpεZ0q “ pςZ0qZpϑZ0q “ pςZϑqZ0,
so x% Z ε, ς Z ϑy P <. If x%, ςy P <, then % Z 0 “ ς Z 0, it
turns out that ´% Z 0 “ ´p% Z 0q “ ´pς Z 0q “ ´ς Z 0
by Proposition 2(2), so x´%,´ςy P <. Moreover, %` Z 0 “
1Z p´1Z %q “ 1Z p´1Z p%Z 0qq “ 1Z p´1Z pς Z 0qq “
1 Z p´1 Z ςq “ ς` Z 0 and %´ Z 0 “ ´1 Z p1 Z %q “
´1Zp1Zp%Z0qq “ ´1Zp1ZpςZ0qq “ ´1Zp1Zςq “ ς´Z0
by Proposition 2(3), so x%`, ς`y P < and x%´, ς´y P <.
Hence < is a congruence on Λ.

Let Λ be a quasi-MV* algebra and ℵ be a congruence on
Λ. For any % P Λ, the equivalence class of % with respect
to ℵ is denoted by %{ℵ “ tς P Λ | x%, ςy P ℵu. The set of
all equivalence classes of elements in Λ is denoted by Λ{ℵ.
For any %{ℵ, ς{ℵ P Λ{ℵ, the operations on Λ{ℵ are defined
as follows: p%{ℵq ZΛ{ℵ pς{ℵq “ p% Z ςq{ℵ, ´Λ{ℵp%{ℵq “
p´%q{ℵ, p%{ℵq`Λ{ℵ

“ p%`q{ℵ, and p%{ℵq´Λ{ℵ
“ p%´q{ℵ.

Then Λ{ℵ “ xΛ{ℵ;ZΛ{ℵ,´Λ{ℵ,`
Λ{ℵ

,´
Λ{ℵ

, 0Λ{ℵ, 1Λ{ℵy is
a quasi-MV* algebra and we call that Λ{ℵ is the quotient
algebra of Λ with respect to ℵ. Furthermore, we discuss the
quotient algebra of a quasi-MV* algebra with respect to <.

Lemma 2: Let Λ be a quasi-MV* algebra. Then Λ{< is
an MV*-algebra.

Proof: We only need to prove that any element in Λ{<
is regular. For any %{< P Λ{<, since p% Z 0q Z 0 “ % Z 0
by (QMV*4), we have x%Z 0, %y P <, it turns out that p%Z
0q{< “ %{<, so p%{<q ZΛ{< p0{<q “ p% Z 0q{< “ %{<.
Hence Λ{< is an MV*-algebra.

Likewise, we introduce a congruence which is called the
flat congruence on any quasi-MV* algebra.

Definition 6: Let Λ be a quasi-MV* algebra. For any
%, ς P Λ, we define a binary relation

x%, ςy P = iff % “ ς or %, ς P RpΛq.

Lemma 3: Let Λ be a quasi-MV* algebra. Then = is a
congruence on Λ.

Proof: It is easy to see that = is an equivalence relation
on Λ. Now, we prove that = satisfies the compatibility
property. For any %, ς, ε, ϑ P Λ, if x%, ςy P = and xε, ϑy P =,
then % “ ς or %, ς P RpΛq, and ε “ ϑ or ε, ϑ P RpΛq.
Since %Zε and ςZϑ P RpΛq, we have x%Zε, ςZϑy P =. If
x%, ςy P =, then % “ ς or %, ς P RpΛq. We distinguish several
cases to discuss. If % “ ς , then ´% “ ´ς , so x´%,´ςy P =.
If %, ς P RpΛq, then % Z 0 “ % and ς Z 0 “ ς . Since
´%Z 0 “ ´p%Z 0q “ ´% and ´ς Z 0 “ ´pς Z 0q “ ´ς by
Proposition 2(2), we have ´%,´ς P RpΛq, so x´%,´ςy P =.
Moreover, if % “ ς , then %` “ ς` and %´ “ ς´, so
x%`, ς`y P = and x%´, ς´y P =. If %, ς P RpΛq, then
%` Z 0 “ p% Z 0q` “ %` and ς` Z 0 “ pς Z 0q` “ ς` by
(QMV*9), it turns out that %`, ς` P RpΛq, so x%`, ς`y P =.
Similarly, we have x%´, ς´y P =. Hence = is a congruence
on Λ.

Lemma 4: Let Λ be a quasi-MV* algebra. Then Λ{= is
a flat quasi-MV* algebra.

Proof: Since 0, 1 P RpΛq, we have x0, 1y P =, it turns
out that 0{= “ 1{=, so Λ{= is a flat quasi-MV* algebra.

Lemma 5: Let Λ be a quasi-MV* algebra. Then
(1) <X = “ ∆, where ∆ is the diagonal relation,
(2) <_ = “ ∇, where <_ = is the smallest congruence

which contains <Y = and ∇ is the all relation.
Proof: (1) For any x%, ςy P ∆, then % “ ς , so ∆ Ď <X=.

Conversely, for any x%, ςy P < X =, then x%, ςy P < and
x%, ςy P =, we have % “ ς or %, ς P RpΛq. If % “ ς , then
x%, ςy P ∆. If %, ς P RpΛq, then % Z 0 “ % and ς Z 0 “ ς .
Since x%, ςy P <, we have % Z 0 “ ς Z 0, it follows that
% “ ς , so x%, ςy P ∆ and then <X = Ď ∆. Hence, we have
<X = “ ∆.

(2) It is clear that <_ = Ď ∇. Now, we prove that ∇ Ď

< _ =. For any %, ς P Λ, if x%, ςy P < or x%, ςy P =, then
we have x%, ςy P < _ =. If x%, ςy R < and x%, ςy R =, then
%Z 0 ‰ ς Z 0, % ‰ ς , and %, ς R RpΛq, it turns out that there
exist % Z 0, ς Z 0 P RpΛq such that % Z 0 “ p% Z 0q Z 0
and ς Z 0 “ pς Z 0q Z 0, it means that x%, % Z 0y P <,
xς, ςZ0y P <, x%Z0, ςZ0y P =, and then x%, %Z0y P <_=,
xς, ς Z 0y P <_=, x%Z 0, ς Z 0y P <_=. Since <_= is a
congruence on Λ, we have x%, ςy P <_ =, it turns out that
∇ Ď <_ =. Hence <_ = “ ∇.

Let Λ be a quasi-MV* algebra. Then Λ is called simple,
if the set of all congruences on Λ is t∆,∇u.

Lemma 6: Let Λ be a simple quasi-MV* algebra. Then
either Λ is an MV*-algebra or Λ is a flat quasi-MV* algebra.

Proof: Let Λ be a simple quasi-MV* algebra. Then
either < “ ∆ or < “ ∇. If it is the former, then Λ is an
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MV*-algebra. If it is the latter, then Λ is a flat quasi-MV*
algebra.

Definition 7: Let Λ1 and Λ2 be quasi-MV* algebras. A
mapping f : Λ1 Ñ Λ2 is called a quasi-MV* algebra
homomorphism from Λ1 to Λ2, if fp0Λ1q “ 0Λ2 , fp1Λ1q “

1Λ2 , fp%1 ZΛ1 %2q “ fp%1q Z
Λ2 fp%2q, fp´Λ1%1q “

´Λ2fp%1q, fp%`
Λ1

1 q “ fp%1q
`

Λ2 , fp%´
Λ1

1 q “ fp%1q
´

Λ2 for
any %1, %2 P Λ1. Moreover, if the mapping f is injective,
then f is called monomorphism. Such a mapping f is also
called an embedding.

Proposition 3: Let Λ be a quasi-MV* algebra. Then there
exist an MV*-algebra Σ and a flat quasi-MV* algebra Γ such
that Λ can be embedded into the direct product Σˆ Γ.

Proof: Denote Σ=Λ{< and Γ “ Λ{=. Then we
have that Σ is an MV*-algebra by Lemma 2 and Γ
is a flat MV*-algebra by Lemma 4. Define a mapping
f : Λ Ñ Λ{<ˆ Λ{= by fp%q “ x%{<, %{=y for any % P Λ.
We show that f is a homomorphism. Obviously, we have
fp0q “ x0{<, 0{=y, fp1q “ x1{<, 1{=y. For any %, ς P Λ,
we have fp%q ZΛ{<ˆΛ{= fpςq “ x%{<, %{=y ZΛ{<ˆΛ{=

xς{<, ς{=y “ x%{< ZΛ{< ς{<, %{= ZΛ{= ς{=y “

xp% Z ςq{<, p% Z ςq{=y “ fp% Z ςq. For any % P Λ,
we have ´Λ{<ˆΛ{=fp%q “ ´Λ{<ˆΛ{=x%{<, %{=y “

x´Λ{<p%{<q,´Λ{=p%{=qy “ xp´%q{<, p´%q{=y “ fp´%q.
Moreover, we have fp%q`

Λ{<ˆΛ{=
“ x%{<, %{=y`Λ{<ˆΛ{=

“

xp%{<q`Λ{<
, p%{=q`Λ{=

y “ x%`{<, %`{=y “ fp%`q

and fp%q´
Λ{<ˆΛ{=

“ x%{<, %{=y´Λ{<ˆΛ{=
“

xp%{<q´Λ{<
, p%{=q´Λ{=

y “ x%´{<, %´{=y “ fp%´q.
Finally, if fp%q “ fpςq, then x%{<, %{=y “ xς{<, ς{=y, it
turns out that %{< “ ς{< and %{= “ ς{=, which means
that x%, ςy P < and x%, ςy P =. By Lemma 5(1), we have
% “ ς , so f is injective. Hence Λ can be embedded into the
direct product Σˆ Γ.

Corollary 1: Let Λ be a simple quasi-MV* algebra. Then
the embedding in Proposition 3 is an isomorphism.

Based on the subdirect product decomposition of a
quasi-MV* algebra, we can transform the study on the
CEP of quasi-MV* algebras into the study on the CEPs of
MV*-algebras and flat quasi-MV* algebras, respectively.

Definition 8: [17] A variety K is called to have the
congruence extension property (for short, CEP), iff for any
Λ P K, any subalgebra Υ of Λ and for any congruence ℵ on
Υ, there exists a congruence ϕ on Λ such that ℵ “ ϕXΥ2.

According to Theorem 1, we have that MV˚ has the CEP
iff MV˚ has the ideal extension property, i.e., iff for any
Σ P MV˚, any subalgebra Υ of Σ and for any ideal Φ of
Υ, there exists an ideal Ψ of Σ such that Φ “ ΨXΥ.

Lemma 7: Let Σ be an MV*-algebra, Υ be a subalgebra
of Σ, and Φ be an ideal of Υ. Then pΦs “ t% P Σ : a1Z¨¨¨Z
an ď % ď b1 Z ¨ ¨ ¨ Z bm, for some a1, ..., an, b1, ..., bm P Φu
is an ideal of Σ.

Proof: Since Φ Ď pΦs, we have that the set pΦs
is non empty. If %, ς P pΦs, then there exist a1, ..., an,
b1, ..., bm, c1, ..., c`, d1, ..., d P Φ such that a1 Z ¨ ¨ ¨ Z an ď
% ď b1Z ¨ ¨ ¨ Z bm and c1Z ¨ ¨ ¨ Z c` ď ς ď d1Z ¨ ¨ ¨ Z d. By
Proposition 1(4) and Proposition 2(7), we have a1Z¨¨ ¨Zan,
b1 Z ¨ ¨ ¨ Z bm, c1 Z ¨ ¨ ¨ Z c`, d1 Z ¨ ¨ ¨ Z d P Φ, and
´pd1 Z ¨ ¨ ¨ Z dq ď ´ς ď ´pc1 Z ¨ ¨ ¨ Z c`q. Since Φ is an
ideal of Υ, we have pa1Z¨¨ ¨Zanqapd1Z¨¨ ¨Zdq P Φ and
pb1 Z ¨ ¨ ¨ Z bmq a pc1 Z ¨ ¨ ¨ Z c`q P Φ by (Φ1). Meanwhile,
we have pa1Z ¨ ¨ ¨ Z anqZ p´pd1Z ¨ ¨ ¨ Z dqq ď %Zp´ςq ď

pb1 Z ¨ ¨ ¨ Z bmq Z p´pc1 Z ¨ ¨ ¨ Z c`qq by Lemma 2(7), it
turns out that pa1 Z ¨ ¨ ¨ Z anq a pd1 Z ¨ ¨ ¨ Z dq ď %a ς ď
pb1 Z ¨ ¨ ¨ Z bmq a pc1 Z ¨ ¨ ¨ Z c`q, so %a ς P pΦs by (Φ3).
If % P pΦs, then there exist a1, ..., an, b1, ..., bm P Φ such
that a1 Z ¨ ¨ ¨ Z an ď % ď b1 Z ¨ ¨ ¨ Z bm. By Proposition
1(4), we have a1 Z ¨ ¨ ¨ Z an P Φ and b1 Z ¨ ¨ ¨ Z bm P Φ.
Since Φ is an ideal of Υ, we have pa1 Z ¨ ¨ ¨ Z anq

` P Φ
and pb1 Z ¨ ¨ ¨ Z bmq

` P Φ by (Φ2). By Proposition 2(8),
we have pa1 Z ¨ ¨ ¨ Z anq

` ď %` ď pb1 Z ¨ ¨ ¨ Z bmq
`, so

%` P pΦs by (Φ3). If %, κ P pΦs and ς P Σ with % ď ς ď κ,
then there exist a1, ..., an, b1, ..., bm, c1, ..., c`, d1, ..., d P Φ
such that a1 Z ¨ ¨ ¨ Z an ď % ď b1 Z ¨ ¨ ¨ Z bm and
c1 Z ¨ ¨ ¨ Z c` ď κ ď d1 Z ¨ ¨ ¨ Z d, it turns out that
a1 Z ¨ ¨ ¨ Z an ď ς ď d1 Z ¨ ¨ ¨ Z d, so ς P pΦs by (Φ3).
Hence pΦs is an ideal of Σ.

Theorem 2: The variety MV˚ has the CEP.
Proof: For any Σ P MV˚, Υ is a subalgebra of Σ,

and Φ is an ideal of Υ. Then we have that pΦs is an ideal
of Σ by Lemma 7. Below we prove that Φ “ pΦs X Υ.
For any % P Φ, since % ď % ď %, we have % P pΦs by
(Φ3) and then % P pΦs X Υ, so Φ Ď pΦs X Υ. For any
% P pΦs X Υ, then there exist a1, ..., an, b1, ..., bm P Φ such
that a1 Z ¨ ¨ ¨ Z an ď % ď b1 Z ¨ ¨ ¨ Z bm. Since Φ is an ideal
of Υ, we have a1 Z ¨ ¨ ¨ Z an P Φ and b1 Z ¨ ¨ ¨ Z bm P Φ
by Proposition 1(4), it turns out that % P Φ by (Φ3), so
pΦs X Υ Ď Φ and then pΦs X Υ “ Φ. Hence the variety
MV˚ has the CEP.

Since MV˚ has the CEP, we next need to discuss the
variety FQMV˚.

Lemma 8: The variety FQMV˚ has the CEP.
Proof: For any Λ P FQMV˚, Υ is a subalgebra of Λ,

and ℵ is a congruence on Υ. We define a binary relation
ℵ1 “ tx%, ςy P Λ2 | x%, ςy P ℵ or % “ ςu. Then ℵ1 is
the congruence on Λ such that ℵ “ ℵ1 X Υ2. Indeed, it is
easy to see that ℵ1 is an equivalence on Λ. Suppose that
x%, ςy P ℵ1 and xε, ϑy P ℵ1. Since Λ is flat, we have x% Z
ε, ςZϑy “ x0, 0y P ℵ1. For any x%, ςy P ℵ1, then x%, ςy P ℵ or
% “ ς . If x%, ςy P ℵ, since ℵ is a congruence on Υ, we have
x´%,´ςy P ℵ, so x´%,´ςy P ℵ1. If % “ ς , then ´% “ ´ς , we
also have x´%,´ςy P ℵ1. Moreover, if % “ ς , then %` “ ς`

and %´ “ ς´, so x%`, ς`y P ℵ1 and x%´, ς´y P ℵ1. If x%, ςy P
ℵ, since ℵ is a congruence on Υ, we have x%`, ς`y P ℵ
and x%´, ς´y P ℵ, so x%`, ς`y P ℵ1 and x%´, ς´y P ℵ1.
Hence ℵ1 is a congruence on Λ. For any x%, ςy P ℵ, then
x%, ςy P Υ2 and x%, ςy P ℵ1, it turns out that x%, ςy P ℵ1XΥ2,
so ℵ Ď ℵ1 X Υ2. Conversely, for any x%, ςy P ℵ1 X Υ2,
then x%, ςy P Υ2 and x%, ςy P ℵ1, it turns out that % “ ς or
x%, ςy P ℵ. If x%, ςy P ℵ, then the result is true. If % “ ς ,
since ℵ is a congruence on Υ, we also have x%, ςy P ℵ, so
ℵ1 X Υ2 Ď ℵ and then ℵ “ ℵ1 X Υ2. Hence the variety
FQMV˚ has the CEP.

Lemma 9: Let Λ be a quasi-MV* algebra and ℵ be a
congruence on Λ. Then there exist a congruence ℵ1 on
Λ{< and a congruence ℵ2 on Λ{= such that x%, ςy P ℵ
iff xx%{<, %{=y, xς{<, ς{=yy P ℵ1 ˆ ℵ2.

Proof: Define a binary relation ℵ1 “ txx%{<, %{=y,
xς{<, ς{=yy : x%, ςy P ℵu. Then ℵ1 is a congruence
on Λ such that x%, ςy P ℵ iff xx%{<, %{=y, xς{<,
ς{=yy P ℵ1. It is clear that ℵ1 is an equivalent
relation. For any xx%{<, %{=y, xς{<, ς{=yy P ℵ1
and xε{<, ε{=y, xϑ{<, ϑ{=yy P ℵ1, then x%, ςy P ℵ
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and xε, ϑy P ℵ. Since ℵ is a congruence on Λ,
we have x% Z ε, ς Z ϑy P ℵ, it turns out that
xxp% Z εq{<, p% Z εq{=y, xpς Z ϑq{<, pς Z ϑq{=yy P ℵ1, so
xxp%{<q ZΛ{< pε{<q, p%{=q ZΛ{= pε{=qy, xpς{<q ZΛ{<

pϑ{<q, pς{=q ZΛ{= pϑ{=qyy P ℵ1. For any
xx%{<, %{=y, xς{<, ς{=yy P ℵ1, then x%, ςy P ℵ. Since
ℵ is a congruence on Λ, we have x´%,´ςy P ℵ, it turns
out that xxp´%q{<, p´%q{=y, xp´ςq{<, p´ςq{=yy P ℵ1,
which means that xx´Λ{<p%{<q,´Λ{=p%{=qy,
x´Λ{<pς{<q,´Λ{=pς{=qyy P ℵ1. Moreover, we
have x%`, ς`y P ℵ and x%´, ς´y P ℵ, it turns out
that xxp%`q{<, p%`q{=y, xpς`q{<, pς`q{=y P ℵ and
xxp%´q{<, p%´q{=y, xpς´q{<, pς´q{=y P ℵ, which means
that xxp%{<q`Λ{<

, p%{=q`Λ{=
y, xpς{<q`Λ{<

, pς{=q`Λ{=
y P ℵ

and xxp%{<q´Λ{<
, p%{=q´Λ{=

y, xpς{<q´Λ{<
, pς{=q´Λ{=

y P

ℵ. So ℵ1 is a congruence on Λ and x%, ςy P ℵ iff
xx%{<, %{=y, xς{<, ς{=yy P ℵ1 for any %, ς P Λ.

Define a binary relation ℵ1 on Λ{< by x%{<, ς{<y P ℵ1 iff
xx%{<, %{=y, xς{<, ς{=yy P ℵ1. Define a binary relation ℵ2

on Λ{= by x%{=, ς{=y P ℵ2 iff xx%{<, %{=y, xς{<, ς{=yy P
ℵ1. It is clear that ℵ1 is a congruence on Λ{< and
ℵ2 is a congruence on Λ{=. Moreover, x%, ςy P ℵ iff
x%{<, %{=y, xς{<, ς{=yy P ℵ1, iff x%{<, ς{<y P ℵ1 and
x%{=, ς{=y P ℵ2, iff xx%{<, %{=y, xς{<, ς{=yy P ℵ1 ˆ ℵ2.

Lemma 10: Let Λ be a quasi-MV* algebra and Υ be a
subalgebra of Λ. Then the congruence <Υ on Υ extends
to the congruence <Λ on Λ and the congruence =Υ on Υ
extends to the congruence =Λ on Λ.

Proof: We only prove that <Υ “ <Λ XΥ2 and =Υ “

=ΛXΥ2. For any x%, ςy P <Υ, then x%, ςy P Υ2 and %Z0 “
ςZ0. Because Υ is a subalgebra of Λ, we have x%, ςy P Λ2,
it turns out that x%, ςy P <Λ and then x%, ςy P <Λ X Υ2, so
<Υ Ď <ΛXΥ2. For any x%, ςy P <ΛXΥ2, then x%, ςy P Υ2

and %Z0 “ ςZ0, it turns out that x%, ςy P <Υ, so <ΛXΥ2 Ď

<Υ and then <Υ “ <ΛXΥ2. Similarly, for any x%, ςy P =Υ,
then x%, ςy P Υ2, and % “ ς or %, ς P RpΥq. Because Υ is
a subalgebra of Λ, we have x%, ςy P Λ2, it turns out that
x%, ςy P =Λ and then x%, ςy P =Λ XΥ2, so =Υ Ď =Λ XΥ2.
For any x%, ςy P =Λ X Υ2, then x%, ςy P Υ2, and % “ ς or
%, ς P RpΛq, it turns out that x%, ςy P =Υ, so =ΛXΥ2 Ď =Υ

and then =Υ “ =Λ XΥ2. Hence the congruence <Υ on Υ
extends to the congruence <Λ on Λ and the congruence =Υ

on Υ extends to the congruence =Λ on Λ.
Lemma 11: Let Λ be a quasi-MV* algebra and Υ be a

subalgebra of Λ. Then Υ{<Υ is a subalgebra of Λ{<Λ and
Υ{=Υ is a subalgebra of Λ{=Λ.

Proof: Let Λ “ xA;ZΛ,´Λ,`
Λ

,´
Λ

, 0, 1y be a
quasi-MV* algebra and Υ “ xΥ;ZΥ,´Υ,`

Υ

,´
Υ

, 0, 1y
be a subalgebra of Λ. Then Λ{<Λ “

xA{<Λ;Z1,´1,
`1 ,´1 , 0{<Λ, 1{<Λy and Υ{<Υ “

xΥ{<Υ;Z2,´2,
`2 ,´2 , 0{<Υ, 1{<Υy are MV* algebras.

For any %{<Υ P Υ{<Υ, then %{<Υ “ %{p<Λ X Υ2q “

p%{<ΛqXΥ Ď %{<Λ by Lemma 10. Since Υ is a subalgebra
of Λ, we have Υ{<Λ Ď Λ{<Λ and then Υ{<Υ Ď Λ{<Λ. For
any %{<Υ, ς{<Υ P Υ{<Υ, we have p%{<Υq Z1 pς{<Υq “

p% ZΛ ςq{<Υ “ p% ZΥ ςq{<Υ “ p%{<Υq Z2 pς{<Υq.
For any %{<Υ P Υ{<Υ, we have ´1p%{<Υq “

p´Λ%q{<Υ “ p´Υ%q{<Υ “ ´2p%{<Υq. Moreover, we
have p%{<Υq`1 “ p%`

Λ

q{<Υ “ p%`
Υ

q{<Υ “ p%{<Υq`2

and p%{<Υq´1 “ p%´
Λ

q{<Υ “ p%´
Υ

q{<Υ “ p%{<Υq´2 .
Hence Υ{<Υ is a subalgebra of Λ{<Λ. Similarly, Υ{=Υ

is a subalgebra of Λ{=Λ.
Theorem 3: The variety QMV˚ has the CEP.

Proof: For any Λ P QMV˚, Υ is a subalgebra of Λ and
ℵ is a congruence on Υ. Then there exist a congruence ℵ1 on
Υ{<Υ and a congruence ℵ2 on Υ{=Υ such that x%, ςy P ℵ
iff xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P ℵ1ˆℵ2 for any %, ς P
Υ by Lemma 9. Moreover, since the CEP holds for MV˚ and
FQMV˚ by Theorem 2 and Lemma 8, respectively, we have
a congruence ℵ11 on Λ{<Λ and a congruence ℵ12 on Λ{=Λ

such that ℵ1 “ ℵ11 X pΥ{<Υq and ℵ2 “ ℵ12 X pΥ{=Υq.
Now, we only show that ℵ1 ˆ ℵ2 “ pℵ11 ˆ ℵ12q X pΥ{<Υ ˆ

Υ{=Υq. For any xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P ℵ1 ˆ

ℵ2, then x%{<Υ, ς{<Υy P ℵ1 and x%{=Υ, ς{=Υy P

ℵ2. Since ℵ1 “ ℵ11 X pΥ{<Υq and ℵ2 “ ℵ12 X
pΥ{=Υq, we have x%{<Υ, ς{<Υy P ℵ11 X pΥ{<Υq

and x%{=Υ, ς{=Υy P ℵ12 X pΥ{=Υq, it turns out that
x%{<Υ, ς{<Υy P ℵ11, x%{<Υ, ς{<Υy P Υ{<Υ, and
x%{=Υ, ς{=Υy P ℵ12, x%{=Υ, ς{=Υy P Υ{=Υ, which
imply that xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P ℵ11 ˆ ℵ12 and
xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P Υ{<Υ ˆ Υ{=Υ. So
xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P pℵ11 ˆ ℵ12q X pΥ{<Υ ˆ

Υ{=Υq, and then we get ℵ1 ˆ ℵ2 Ď pℵ11 ˆ ℵ12q X pΥ{<Υ ˆ

Υ{=Υq. For any xx%{<Υˆ%{=Υy, xς{<Υˆς{=Υyy P pℵ11ˆ
ℵ12q X pΥ{<Υ ˆ Υ{=Υq, then xx%{<Υ ˆ %{=Υy, xς{<Υ ˆ

ς{=Υyy P ℵ11 ˆ ℵ12 and xx%{<Υ ˆ %{=Υy, xς{<Υ ˆ

ς{=Υyy P Υ{<ΥˆΥ{=Υ, it turns out that x%{<Υ, ς{<Υy P

ℵ11, x%{=Υ, ς{=Υy P ℵ12, and x%{<Υ, ς{<Υy P Υ{<Υ,
x%{=Υ, ς{=Υy P Υ{=Υ, which imply that x%{<Υ, ς{<Υy P

ℵ11 X pΥ{<Υq and x%{=Υ, ς{=Υy P ℵ12 X pΥ{=Υq. Since
ℵ1 “ ℵ11 X pΥ{<Υq and ℵ2 “ ℵ12 X pΥ{=Υq, we have
x%{<Υ, ς{<Υy P ℵ1 and x%{=Υ, ς{=Υy P ℵ2, it turns
out that xx%{<Υ, %{=Υy, xς{<Υ, ς{=Υyy P ℵ1 ˆ ℵ2, so
pℵ11 ˆ ℵ12q X pΥ{<Υ ˆ Υ{=Υq Ď ℵ1 ˆ ℵ2, and then
pℵ11ˆℵ12qX pΥ{<ΥˆΥ{=Υq “ ℵ1ˆℵ2. Hence the variety
QMV˚ has the CEP.

At the end of this section, we demonstrate the congruence
extension property of quasi-MV* algebras with an illustrative
example.

Remark 3: Let Λ1 be the algebra defined in Example 3
and Λ be the algebra defined in Example 2. Then Λ is the
subalgebra of Λ1, where the operations Z, ´, `, ´ of Λ are
those of Λ1 restricted to Λ and Λ – ΣˆΛ1, where Σ is the
algebra defined in Example 1 and Λ1 is the algebra defined
in Example 4. Define a congruence ℵ on Λ by x%, ςy P ℵ iff
%_ 0 “ ς _ 0 for any %, ς P Λ. Then we have a congruence
ℵ1 on Σ and a congruence ℵ2 on Λ1 following Lemma 9.
Define a binary relation ℵ12 on Λ2 by ℵ12 “ ℵ Y ∆, where
Λ2 is defined in Example 5. Then ℵ12 is a congruence on
Λ2. Denote ℵ1 “ ℵ1 ˆ ℵ12. Then ℵ1 is a congruence on Λ1

and ℵ “ ℵ1 X Λ2.

IV. CONCLUSION

In this paper, we have proved that the variety of
quasi-MV* algebras has the congruence extension property.
To complete this work, we have first shown that the subdirect
product decomposition of a quasi-MV* algebra, and then
proved that MV*-algebras and flat quasi-MV* algebras
have the CEP. These results mean that in these algebras,
the congruence on a subalgebra can be extended to the

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2726-2731

 
______________________________________________________________________________________ 



entire algebra, which is helpful to the study of algebraic
structures. Consider that quasi-MV* algebras are the new
non-classical logical algebras arising from many-valued logic
and quantum computational logic, their theoretical research
could be applied to fields such as artificial intelligence and
quantum computation. Thus, future work will discuss more
properties of quasi-MV* algebras in order to characterize the
logical system associated with quasi-MV* algebras.
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