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for Solving Time-Fractional (Gas Dynamics
Equation

Athira K, and Narsimhulu D, Member, IAENG

Abstract—A study on the investigation of numer-
ical solutions for two homogeneous nonlinear time-
fractional gas dynamics equations (TFGDEs) using
an innovative hybrid approach, the Tarig Projected
Differential Transform Method (TPDTM), have been
analyzed. The new TPDTM simplifies computations
easier. This method significantly advantages itself by
efficiently handling nonlinear terms through the pro-
jected differential transform, thereby eliminating the
need for Adomian’s and He’s polynomials. By com-
bining the Tarig transform with the Projected Differ-
ential Transform Method (PDTM), we establish key
properties, including linearity, a convolution theorem,
and the existence of solutions. Using TPDTM, we
found the convergence and stability through absolute
error analysis, demonstrating its high accuracy, effi-
ciency, and reliability. To authenticate these findings,
a comprehensive comparative analysis is conducted
against established numerical methods, namely the
Laplace Adomian Decomposition Method (LADM),
Finite Difference Method (FDM), Homotopy Pertur-
bation Method (HPM), and Finite Element Method
(FEM). The results are presented in tabular and
graphical (2D and 3D) formats, highlight TPDTM’s
superior computational performance. Notably, the so-
lutions obtained from TPDTM and LADM exhibit
strong consistency and uniformity, with TPDTM of-
fering a simplified approach to handling Adomian
polynomials in LADM. Through two illustrative nu-
merical tests examples, TPDTM demonstrates en-
hanced computational efficiency and flexibility com-
pared to FDM, LADM, HPM, and FEM, emphasizing
its potential as a robust tool for addressing nonlinear
fractional differential equations with high accuracy
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and reliability. The performance of proposed method
has been verified using polar and convergence plots,
with numerical simulations in MATLAB software.

Index Terms— approximate solution, fractional cal-
culus, gas dynamics equation, numerical methods,
tarig projected differential transform technique

1 Introduction

Gas dynamics (GD) is crucial in the design and de-
velopment of devices, engines, and gas-powered vehicles,
as it provides insights into the forces-such as the body
or duct in contact with gas is influenced by several fac-
tors, including pressure, temperature, friction, and heat
flow. Mathematical modeling is indispensable for predict-
ing and understanding the behavior of these systems and
phenomena. Researchers developed various methods to
derive approximate and analytical solutions for homoge-
neous and nonhomogeneous TFGDEs. Several prominent
researchers in this field include the work of Jafari et al. [1],
Kumar et al. [2], Mohamed et al. [3], Al-luhaibi [4], Esen
et al. [5], and Tamsir and Srivastava [6]. To efficiently
analyze and solve GD equations, these researches used
a variety of numerical and semi-analytical approaches,
such as the HPM, Homotopy Analysis Transform Method
(HATM), New Iteration Method (NIM), FDM and Re-
duced Differential Transform Method (RDTM).

The recent work reports in the field of fractional calcu-
lus were led to the development of diverse methodologies
for solving fractional GD equations (FGDEs). The Re-
producing Kernel Hilbert Space Method (RKHSM) was
used to solve the nonhomogeneous FGDEs by Akgul et
al. [7]. Jassim and Mohammed [8] integrated the Natural
Transform (NT) with HPM to explore solutions for non-
linear FGDEs. Iyanda [9] introduced a Modified Iterative
Method (MIM) to obtained numerical solutions for non-
linear FGDEs. Alaroud et al. [10] proposed the Laplace
Residual Power Series Method (LRPSM), an innovative
analytical, for solving nonlinear TFGDEs. Additionally,
Jebreen and Cattani [11] employed a Collocation Method
based on Muntz-Legendre polynomials, (CM M-L), rep-
resenting the unknown solution allowing for flexible and
accurate approximation of the solution.

Recently, the authors Yousif et al. [12] and Sadaf et
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al. [13] applied the Conformal Finite Difference Method
(CFDM) and the Elzaki Decomposition Method (EDM),
respectively to derive approximate analytical solutions for
both homogeneous and nonhomogeneous TFGDEs. Ra-
bia et al. [14] employed an extended cubic B-spline col-
location method incorporating local fading memory via
the Caputo-Fabrizio fractional-order differential operator
to numerically solve the nonlinear fractional-order GD
equation. In 2025, they [15] and [16] employed exponen-
tial cubic B-spline and cubic B-spline function to examine
the nonlinear fractional-order GD equation incorporating
Caputo-fractional, Atangana Baleanu derivatives, respec-
tively.

Several researchers perform comprehensive research in-
vestigations on approximate analytical and numerical
methods. To solve both the homogeneous and nonhomo-
geneous nonlinear GD equations [10, 17, 18], the diverse
techniques, such as the HPM [19], the fractional Homo-
topy Analysis Transform Method (HATM) [20], the Dif-
ferential Transform Method (DTM) [21], the Laplace Ho-
motopy Perturbation Method (LHPM) [22], FDM [23],
and Homotopy Analysis Method (HAM) [24] illustrated
lucidly. These methodologies demonstrate the diverse
strategies employed to address the complexities with GD
systems.

For solving GD equations, existing methods will often
have some drawbacks and notable limitations, while use-
ful. Computational cost can be a significant issue for
methods like HAM, HPM, HATM, KHSM. The LRPSM,
and MIM may convergence slowly and low accuracy in
some cases. Instability and sensitivity to boundary con-
ditions were analyzed with FDM and CM M-L. Fur-
thermore, the standard methods NIM, DTM, EDM, and
CFDM were partially discussed to solve the GD type
equations because of potential inaccuracies and numer-
ical instability. These limitations motivate the develop-
ment of more robust and efficient approaches for tackling
many complex problems. This study introduces TPDTM
[25], a novel hybrid approach that combines the Tarig
transforms [26] with PDTM [27] to solve homogenecous
nonlinear TFGDEs.

With aid of PDTM, this technique transforms the frac-
tional derivatives into a series expansion to solve the
problem. The PDTM and its advanced variant, the
TPDTM, build upon the classical Differential Trans-
form Method (DTM) by incorporating fractional deriva-
tives and customized projection techniques to enhance
convergence and computational efficiency. The proposed
semi-analytical TPDTM addresses the limitations of the
aforementioned traditional methods. This method signif-
icantly improves the numerical stability and performance
and reduces computational overhead by combining the
projection mechanism with the differential framework.
The TPDTM offers an efficient solution for solving com-
plex time-fractional partial differential equations (TF-
PDESs), in particularly those arising in GD.

Rooted in fractional calculus [28], these equations extend

classical GD equations by incorporating time-fractional
derivatives, enabling the modelling of complex phenom-
ena such as turbulent flow, heat transfer in rarefied gases,
and GD behaviors influenced by memory effects and
anomalous diffusion. TFGDEs are particularly relevant
in scenarios involving shock waves, fractional-order ef-
fects, and contact discontinuities, making them essen-
tial for understanding intricate GD systems. Athira et
al. [32] proposed TPDTM in their research work to solve
nonlinear TFPDESs, such as the Newell-Whitehead-Segel
(N-W-S) and Burger’s equations, demonstrating its supe-
rior efficiency, reliability, and stability compared to other
established methods in literature. In 2024, Elzaki [33]
employed PDTM to derived the solution for non-linear
GDEs. To the best of author’s investigation, this study
presents the first application of the TPDTM to obtain
numerical approximate solutions for TFGDEs.

We produce the TPDTM as a robust and efficient method
for addressing homogeneous GD equation with various
particular non-integer initial and boundary conditions.
To validate the present results and assess the computa-
tional efficiency of TPDTM, a comprehensive compar-
ative analysis was performed against the solutions ob-
tained using FDM, LADM, HPM, and FEM. Addition-
ally, TPDTM functions effectively without requiring any
linearization, perturbation techniques, discretization of
variable, or imposing restrictive assumptions. It ensures a
high degree of accuracy, is computationally efficient, uti-
lizes minimal memory and time, and effectively handles
both linear and nonlinear differential equations without
necessitating boundary condition adjustments. Due to its
intrinsic stability and ability to control errors while en-
hancing solution accuracy, TPDTM emerges as a highly
effective and adaptive approach, making it a compelling
alternative to conventional methods documented in the
literature.

The paper follows this structure: Section 2 provides key
terminology and the mathematical principles underlying
the fractional calculus theory. The application of the pro-
posed method to numerically solve the TFGDEs is de-
tailed in Section 3. Section 4 illustrates and discusses the
numerical results. Section 5 concludes the paper, summa-
rizing key insights and findings. This structure provides
a clear and logical flow, guiding the reader through the
theoretical underpinnings, methodology, results, and con-
clusions of the study.

2 Methodology

The choice of a fractional derivative determines the
mathematical structure and physical fidelity of a system,
playing a critical role in extending models to capture
complex phenomena accurately [14, 16, 34]. Various def-
initions — “Caputo, Riemann-Liouville, Riesz, Caputo-
Fabrizio, Atangana-Baleanu, and Grunwald-Letnikov” —
address different modeling needs. Samko et al. [29] pro-
vide a thorough mathematical basis for fractional calcu-
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lus, offering various definitions and properties. Caputo
[30] introduces the Caputo fractional derivative, modi-
fying the traditional Riemann-Liouville definition for im-
proved handling of initial conditions in physical problems.
From this, the definitions required for this study are dis-
cussed below.

2.1 Basic Definitions

This section provides fundamental definitions as fol-
lows:
Definition 1. [29] Let function f(t) € Li(a,b) and o >
0. Then the fractional integral under Reimann-Liouville
framework of order o from
a) left-sided for f(t) defined as:

faoo(t —5)*"Lf(s)ds

R
b) right-sided for f(t) defined as:
N f_ )t —s)*"Lds
([b—f)() F(a) ) s < a.

Definition 2. [29] One can define the Riemann integral
with a variable limit on the half axis as follows

151 = S SO

Definition 3. [29] The Reimann-Liouville derivative of
fractional order «, a € (0, 1) in the interval [a, b] of
a) left-sided for f(t) is given as

LAt — 5)7f(s) ds].
'l -—a)

0<t<oo.

(DG f) (8) =
b) right-sided for a function f(¢) defined as

I[Pt — 5)7 f(s) ds).
I'l-a)

(Dy- f) (1) =

Definition 4. [30] The Caputo definition defines the frac-
tional derivative of f(t) for « € (n — 1,n], t > 0 and n
belongs to N by

D*jor(n-a) = [ " (5)(¢ = 5) (@ n g,

Definition 5. [31] The Mittag-Leffler function, is defined
for a € C,
2.2 Tarig Transform

The definition of the Tarig transforms of a temporal
function, f(¢) is given by [26]:

Je 9 f(t) dt

T[f(t)] = #a v 7é 0, (1)

where ¥ serves as a frequency variable.

Let f(t) is the temporal function, its corresponding fre-
quency space function representation through the Tarig
transform of order « is denoted by F(¢#). Then, the frac-
tional integral of f(¢) under the Tarig transform frame-
work for order « [26] is:

T3 H(®)] = 9**F(9) = 9**T[f(1)]. (2)

In a similar manner, the fractional derivative of f(t) of
order a under the Tarig transform framework [25] is given
by:

FO@0) =T [Df(1)]

Z,ﬂZ(z a)— 1fz 1) ( ) (3)

0204

2.3 Definition, Property and Theorem of
PDTM

If f(X), with X = (SUl,.’EQ,...
able function. Define Xp,_1) = (21, 22,...,

,Zn) is a multivari-
Zp—1). Then

PDTM of f(Xj,_1), k) [27] as:
ak
f(X[n—1]7k) ]i' |: éfafk ):| ) (4)

here f(Xp,_1),k
J(X).

The differential inverse transform of f(X
defined [27] as follows:

) is PDT function of original function

m—1], k) can be

o0

Zf Xin-1, k

k=0

(z — z0)F. (5)

Now, we present some basic theorems [27]of the PDTM
that are relevant to this work.
Condider two multi variable functions u(X) and v(X)
with w(Xp,—17, k) and v(X[,_1}, k) are PDT functions of
u and v respectively.
Consider ¢ as a constant.

o If 2(X) = u(X)v(X), then
Z(X[n,l] 5 k’) = U(X[n,l], kJ)U(X[n,l] s k)

o If 2(X) = cu(X), then 2(Xp,—1), k) = cu(Xp—1), k).

o If 2(X) = d(dz%), then
A Xpn1p k) = EE (X, _y), k + ).
o If 2(X) = u(X)v(X), then
Z(X[nfl] ) k) = an:O U(X[nfl]a m)U(X[nfl]a m)

o If 2(X) = w1 (X)uz(X)..un(X), then 2(Xp,_15,k) =

Z Z ZZUlX[n 11 k1)

kn—1=0kp_2=0 ko=0k1=0
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UQ(X[nflth - kl)n-unfl(X[nfl]a kp—1—

. —

kn72)
un(X[nfl]v K,

2.4 TPDTM Methodology
Consider the nonlinear TF PDE:
(D*+ R+ N)U(x,t) = g(x, 1), (6)

subjected to the rudimentary:

= f(z). (7)
where D = 63;1 is the fractional derivative operator of

order «, where g(x,t) represents the source term, R and
N correspond to linear and nonlinear differential opera-
tors, respectively [32].

By operating the Tarig transform on Eq.(6), we derive
32

U(z,0)

T(D“+ R+ N)U(z,t)] = T[g(z,1)]. (8)

Using the differential property of the Tarig transform
given in Eq. (3) of the Tarig transform on Eq.(6) and
(7), we obtain [25]:
TIDU (2, 8)] = 0f () + 02 (Tg(w,t) — (R+ N)U =z, ).
(9)

Inverting the Tarig transform to the Eq. (9) and using
the fact that T=1(9) = 1, we obtain [32]

U(z,t) = G(x,t) = T [9**(T[(R + N)U (=, 1))]
where G(z,t) denoted the term arise from the rudimen-
tary and the source term.

Using PDTM, the Eq. (10) reduces as [25]

(10)

U(x,m+1) = =T '9?**(T[(R+ N)U(x

where m > 0,U(x,0) = f(x)
The closed form of solution for Eq. (6) and (7) takes the
form of the series:

D] (1)

U(x,t) =U(x,0)+U(x,1) + U(x,2) + (12)

where each function U(x,m),m = 0 to oo are in terms of
x and ¢ only.

2.5 Linearity property of TPDTM:

We consider two functions f(t) and g(¢), then
T[D*(af(t) + bg(t))] = aT[D*f(t)] + bT[D*g(t)], where
a and b serves as a constants.

Proof: Let F'(9) and G(¢) be the Tarig transforms of f(t)
and g(t) respectively.

Using the differential property given in Eq. (3) of the
Tarig transform,

(aF + bG) ()

T[D*(af) +bg®))] = ——ga

f: 920~ (af + b)Y (0).

i=1

1
= [l (0) + bG ()]

iﬁQ(i—a)—l (af(i—l)(o) n bg(i—l)(o)) .
i=1

_JFO)

2 Zﬁ2z a)— lfz 1()

19204

b Z 192(1‘—(1)—19(1'—1) (0)
=1

Since PDTM holds linearity, after rearranging terms in
the above expression, we get

T[D*(af(t) + bg(t))] = aT[D f(1)] + bT[Dg(1)]

2.6 TPDTM Convolution theorem:

The convolution of two functions f(¢) and g(t) of frac-
tlonal order « is given by

(f = fo f@t—7)g(7) (dr)?,
and then the convolutlon of TPDTM of fractional order
« is given by

7100 (] » g)att) = L)

where

n

i—2
7 — Z Z Y2i=e)=1 r()(0) g=7=2)(0),
i=1 j=0

is the correction term.
Proof: Using the differential property of the Tarig trans-
form given in Eq. (3)

(Fx@)(9)

T [D(f * oo

9)(t)] =

Zﬂ?l )

Since, convolution theorem of the Tarig transform is

“H(fx9)8(0).

TI(f*g)(t)] = (F *G)(9) = 9*Fa(¥)Go(V9), where
S

and W (1
Ga(¥) = 7‘119&@)

where H, and W, related to the Laplace transform [31].
This implies

T[D*(f % 9)a(t)] =
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Lf = g)571(0).

25219%1 )

Since, the convolutlon of f and g are (f * g)a(t) =

IS f(t=7)g(r) (dr)*, implies
T[D(f * g)a(t)] = 5 Fa(9)Ga(9)~
i S 192(2'—&)—1]0(]')(0) g(i—j—2)(0),
i=1 j=0
Ie, .
T[D(f*9)at)] = 53 Fa(0)Ga(V) ~ Z,
where
n t—2
7 - Z Z 192(2'—&)—1]0(]')(0) g(i—j—2)(0)
i=1 j=0

is the correction term depends on the specific character-
istics of the problem (e.g., initial condition and fractional
order a).

2.7 Theorem: Existence of solutions for the
TPDTM

If f(t) € A is sectionally continuous in every finite
interval 0 < t < n and is continuously differentiable in A,
where

A=

{f(t):EIM,nl,ng > 0,f(t) < MeF |t € (—1)7 x [O,oo)}

and of exponential order 3, for t > n, then the existence
of the solution of TPDTM of the TFPDE of order «,
D= f(t) with initial condition f(0), happens under the
following conditions:

(1)The Tarig transform F(9) of f(t) exists for all ¥ > S.
(existence of solution of Tarig transform) [31].

(2) The convergence of nonlinear term in the series form
(existence of a solution of PDTM) guarantees the exis-
tence of a solution of TPDTM.

Proof: By using the differential property given in Eq. (3),

T [D*f(t)] = F*(9) = Zﬁ“ )=t =1 (0)

ﬁQa

Since T[f(t)] = F(¢¥), this implies:

LT[f(] - Y R0 o)

i=1

TD*f(t)] =
Then, (1) For any positive number n,

i) = o SO

1 " _ o _
19[/0 ft)e dt—l—/n f(t)e 92 dt

(13)

Since f(t) is sectionally continuous in every finite interval
[0,n], then the right side first integral exists. Since f(¢)
is of exponential order 3 for t > n,

t)e‘ﬂtzdt’< / ‘f(t)e_ﬁ% dt

< [ 1)

o0 t B Afﬂ
< e 2 Me?dt=———-,8#1
/ i-p"7

which implies the existence of a solution of the Tarig
transform.

Implies first term in the Eq. (13) exists.

(2) Since f(t) is continuously differentiable in A, there
series term, > i 920~ =1 fG=1(0) in the second term
in RHS of Eq. (13) is well defined.

Using the inverse property of Tarig transform and decom-
position of nonlinear term using PDTM, the exact solu-
tion is series form obtained as f(t) = Y. °_, Fn ()™,
where each F,,(t) obtained recursively using PDTM.
Since f(t) with respect to the exponential order 8 > 0
and 8 # 1 (by part (1) of the proof) for ¢ > n. Then
there exists M > 0, |f(¢)| < MB™ (since each f(t) € A)
implies the series f(t) = Y .°_, Fn(£)t™, converges uni-
formly. Then part (1) and (2) guarantee the existence of
a solution of TPDTM.

2.8 Error Calculation and Convergence and
Stability of the Method

A thorough convergence analysis is necessary to estab-
lish the trustworthiess of the solution in Eq. (12). The
approximate numerical solution for the Eq.(6) with (7)
can be obtained [25] as

ZUl’m

m=0

app(k)

By disregarding higher-order term (m > n) in the sum-
mation in Eq. (12) the exact solution of Eq. (6) and (7)
can be obtained [25] as
Uz, t) = (Uapp(k) +eiU)(z,t)
clearly e,U(x,t) is defined as a error function.
Now, the absolute error can be expressed as

exU(x,t) = |(U - Uapp(k))(x’tﬂ'

For the highly practical scenarios, a closed form solution,
U(z,t), is not possible. So, the absolute error associated
with the approximate numerical solution [25] is

EyU(@,t) = |(Uapp(s) — (14)

Uapp(k+1))(xv t)].

Demonstrating convergence for equation (12) necessary
to prove that {E,U(x,t)} is convergent. As this sequence
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{ExU(z,t)} has a lower bound, establishing its mono-
tonic decreasing nature would suffice to guarantee con-
vergence. Hence, the convergence criteria [25] is

‘E”U(w’t) <1 for k <p.

E, U (z,t)
To establish the convergence, the iterative approximation
Uapp(k) (2, ) to the closed form solution U(x,t) involves
the following 4 steps [25].

1. Determine Ugpp(ry (1), Uapp(t1) (1)
2. Determine Ugppp) (7,1), Uspp(p+1)(7,1),k < p

3. Delineate

EkU(Ivt) = ‘Uapp(k)(x7t) - Uapp(k-i-l)(xv )|7
EyU(x,t) = |Ugppp) (2, 1) = Uapp(pt1) (2, )| for some
x and t.

4. If ExU(z,t) > EpU(x,t), then Ugppey(z,t) con-
verges to the closed form solution U(x,t) when k —
0

This algorithm is applied in this paper to prove the con-
vergence of the series solution obtained by TPDTM. If
the series converges, then it is stable.

3 Numerical Test Examples

Test Example 1. We assume the homogenous TFGDE

DU+UU,-U(1-U)=0,ac(0,1]. (15)
subjected to the rudimentary:
U(z,0) =e™". (16)

Apply Tarig transform in Eq. (15), with initial condition
given in Eq. (16) and using the differential property given
in Eq. (3) of the Tarig transform, we obtain

TU (2, )] —de™* = =9 [T[UU, — U1 - U)]] (17)
Inverting the Tarig transform to the Eq. (17) and using
the fact that T-1(9) = 1, we obtain

Ulz,t) =e =T H9?TUU, -UQ1-U)])]] (18)
Using PDTM, Eq. (18) become
U(z,m+1) = =T~ [**[TUU, - UL - U)]]],
m > 0,U(x,0) = e " (19)

Based on the Eq. (19), the following expression is ob-
tained:

e T 67mt2a
1 = - 2 [ —
U1 = 5y Ve = fom
efxtfia efxt4a
- 4) = —————
V@3 =501 Ve = a1y

e*flﬁtna
I'(na+1)
Continuing in the same manner, the subsequent iterations

can be obtained accordingly. we get the the remaining

iterations.
Therefore, the series of Egs. (15) and (16) is by TPDTM
is given by

U(z,t) =U(z,0)+U(z,1) +U(x,2) + ...,

. U(x,n) =

tkoc

U(z,t)=e "+ Z el ——
— F(ka+1)

Test Example 2. Consider the homogenous nonlinear
TFGDE

DU+4+UU,-U(1—-U)loga=0,0<a<1.  (20)
subjected to the rudimentary:
U(z,0)=a"". (21)

Taking Tarig transform on both sides of Eq. (20), with
rudimentary given in Eq. (21) and using the differential
property given in Eq. (3) of the Tarig transform, we ob-
tain

TU (z,t)] = Ya™" —9**[T[(UU, —U(1 —U))loga]] (22)

Inverting the Tarig transform to the Eq. (22) and using
the fact that T71() = 1, we obtain

Ux,t) =a =T '0**[T[(UU,—~U(1-U))logal]] (23)
Using PDTM, the Eq. (23) become
U(z,m+1) = =T 9**T[(UU, — U(1 — U))logal]],
m>0,U(x,0)=a"" (24)

Based on the Eq. (24), the following expression is ob-

tained:
(loga)a—*t*

VD= T
..,U(x,n):W

Continuing in the same manner, the subsequent iterations
can be obtained accordingly.

Therefore, the series of Egs. (20) and (21) is by TPDTM
is given by

U(z,t) =U(x,0)+ U(x,1) + U(x,2) + ...,

—x - —x tka k
U(l’,t)—a +I;a m(lOQQ) .
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Fig. 1: Analysis of U(xz,t) of test example 1 is presented for o = (0.25,0.50,0.75 and 1) in a, b, ¢ and d respectively

using TPDTM.

Table 1: Tllustration of U(x,t) of test example 1 for range of @ and « when ¢t = 1

U(z,t) with respect to the fractional order o
z-value

a=0.25 a=0.5 a=0.75 a=1
0 9.5541 5.009 3.4859 2.7183
1 3.5148 1.8427 1.2824 1
2 1.293 0.67789 0.47176 0.36788
3 0.47567 0.24938 0.17355 0.13534
4 0.17499 0.091743 0.063846 0.049787
5 0.064375 0.03375 0.023488 0.018316
6 0.023682 0.012416 0.0086406 | 0.0067379
7 0.0087122 | 0.0045676 | 0.0031787 | 0.0024788
8 0.003205 0.0016803 | 0.0011694 | 0.00091188
9 0.0011791 | 0.00061816 | 0.00043019 | 0.00033546
10 0.00043376 | 0.00022741 | 0.00015826 | 0.00012341

4 Results and Discussion

This study investigates the approximate solutions for
two homogeneous nonlinear TFGDEs using the TPDTM.

MATLAB software. The theoretical and numerical im-
plementation of TPDTM is straightforward, providing a

We have performed all the computational work using
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clear insight into the solution behavior. A comparative
analysis against established numerical methods, specifi-
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Fig. 2: Analysis of U(x,t) vs. x of test example 1 at different value of o = 0.25,0.5,0.75, and « = 1 with fixed value
of t = 1 using TPTDM.
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Fig. 3: Analysis of U(z,t) behavior of test example 1 using TPDTM
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Fig. 4: Analysis of U(xz,t) behavior of test example 1 using FDM
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Fig. 7: Analysis of U(x,t) behavior of test example 1 using FEM
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Fig. 8: Illustrative of approximate vs. exact solution of test example 1 at a« =1
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Fig. 9: EgU(x,t) = |Exact value—Approximate value| of test example 1
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Fig. 10: Polar representation of U(x,t) of test example 1 using TPDTM
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Table 2: The absolute numerical error E U (x,t) calculation to approximate numerical solution of U(z,t) for range
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Fig. 11: Convergence behavior of U(z,t) of test example 1 using TPDTM

of x and t, in the case of test example 1.

k E,U(x,t) corresponding to various values of x

z=0 T =2 =4 z=06 =38 =10
1 0.5 0.067668 0.0091578 0.0012394 | 0.00016773 2.27e-05
2 0.16667 0.022556 0.0030526 | 0.00041313 | 5.591e-05 | 7.5667¢-06
3 0.041667 0.005639 | 0.00076315 | 0.00010328 | 1.3978e-05 | 1.8917e-06
4 0.0083333 0.0011278 | 0.00015263 | 2.0656e-05 | 2.7955e-06 | 3.7833e-07
5 | 0.0013889 | 0.00018797 | 2.5438e-05 | 3.4427e-06 | 4.6592e-07 | 6.3055e-08
6 | 0.00019841 | 2.6852e-05 | 3.6341e-06 | 4.9182e-07 6.656e-08 9.0079e-09
7 | 2.4802e-05 | 3.3565e-06 | 4.5426e-07 | 6.1477e-08 8.32¢-09 1.126e-09
8 | 2.7557e-06 | 3.7295e-07 | 5.0473e-08 | 6.8308e-09 | 9.2445e-10 | 1.2511e-10
9 | 2.7557e-07 | 3.7295e-08 | 5.0473e-09 | 6.8308e-10 | 9.2445e-11 | 1.2511e-11

Table 3: Illustration of U(x,t) of test example 2 for range of o and x when ¢ =1

U(z,t) with respect to the fractional order o
z-value

a=025 | a=05 | a=0.75 a=1
0 0.80748 | 0.84437 | 0.88275 0.91731
1 1.0766 1.1258 1.177 1.2231
2 1.4355 1.5011 1.5693 1.6308
3 1.914 2.0015 2.0925 2.1744
4 2.552 2.6686 2.7899 2.8992
) 3.4027 3.5582 3.7199 3.8656
6 4.537 4.7442 4.9599 5.1541
7 6.0493 6.3256 6.6132 6.8721
8 8.0657 8.4342 8.8176 9.1628
9 10.754 11.246 11.757 12.217
10 14.339 14.994 15.676 16.289

cally FDM, LADM, HPM, and FEM, has been conducted
to evaluate TPDTM’s effectiveness. The obtained results
are picturized graphically 1-22 in two and three dimen-
sions and in Tables 1-4. Figures 1-11 illustrate results for

test example 1, while Figures 12-22 correspond to test
example 2. This presentation facilitates a comprehensive
visualization and comparison of the results with TPDTM,
FDM, LADM, HPM, and FEM. Tables 1 and 3 present
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Fig. 12: Analysis U(x,t) of test example 2 is presented for a = (0.25,0.50,0.75 and 1) in a, b, ¢ and d respectively

using TPDTM.

Table 4: The absolute numerical error E,U(x,t) calculation to approximate numerical solution of U(z,t) for range

of x and t, in the case of test example 2.

i E,U(z,t) corresponding to various values of x

x=0 =2 r=4 r=26 r=3_8 x=10
1 0.24023 0.96091 3.8436 15.374 61.498 245.99
2 0.055504 0.22202 0.88807 3.9523 14.209 56.836
3 | 0.0096181 0.038473 0.15389 0.61556 2.4622 9.849
4 | 0.0013334 0.0053334 0.021334 0.085335 0.34134 1.3654
5 | 0.00015404 | 0.00061614 | 0.0024646 0.0098583 0.039433 0.15773
6 | 1.5253e-05 | 6.1011e-05 | 0.00024404 | 0.00097617 | 0.0039047 0.015619
7 1.3215e-06 5.2862e-06 2.1145e-05 8.4579e-05 | 0.00033832 0.0013533
8 | 1.0178e-07 | 4.0712e-07 | 1.6285e-06 6.514e-06 2.6056e-05 | 0.00010422
9 | 7.0549e-09 2.822e-08 1.1288e-07 | 4.5151e-07 1.8061e-06 7.2242e-06

approximate numerical solutions for the homogeneous
nonlinear TFGDEs in test examples 1 and 2, respectively,
for various fractional orders (« = 0.25,0.50,0.75,1). The
present results are analyzed with Test Example 1 (Fig-
ures 1-2, Tables 1) and test example 2 (Figures 12-13,
Tables 3) in two and three dimensions.

Figures 1-7 and 12-18 present U(x,t) for the GD equa-
tion, obtained using various numerical method such as
TPDTM, FDM, LADM, HPM, and FEM. Figures 3-7
(test example 1) and Figures 14-18 (test example 2) fur-
ther compare U(x,t) obtained using the TPDTM, FDM,
LADM, HPM, and FEM. Fig.3 depicts how the gas ve-

Volume 55, Issue 9, September 2025, Pages 2732-2751



TAENG International Journal of Applied Mathematics

Fig. 13: Analysis of U(x,t) vs. z of test example 2 at different value of « = 0.25,0.5,0.75, and o = 1 with fixed value
of t = 0.30 using TPTDM.
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Fig. 14: Analysis of U(z,t) behavior of test example 2 using TPDTM
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Fig. 15: Analysis of U(x,t) behavior of test example 2 using FDM
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Fig. 16: Analysis of U(x,t) behavior of test example 2 using LADM

12 12
10
10
8
6 8
4 6
2
4
0 -l
0
0 2
0.5 p 4 2
1 8

t

Ux,0)

X

Fig. 17: Analysis of U(z,t) behavior of test example 2 using HPM
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Fig. 18: Analysis of U(z,t) behavior of test example 2 using FEM
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Fig. 19: Tllustrative of approximate vs. exact solution of test example 2 at o = 1
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Fig. 20: EgU (x,t) = |Exact value—Approximate value| of test example 2
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Fig. 21: Polar representation of U(x,t) of test example 2 using TPDTM
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Fig. 22: Convergence behavior of U(z,t) of test example 2 using TPDTM

locity changes over the space x and the time ¢. The so-
lution shows a strong gradient close to x = 0 and decays
quickly as x increases. This trend is common in diffusion-
dominated flow or shock wave propagation, where the
impact of initial conditions decreases with time and dis-
tance. The lack of abrupt gradients indicates that the
present TPDTM approach well captures the diffusive be-
havior without causing numerical oscillations. Fig. 4 dis-
plays a sharp initial spike close to = 0, which is proba-
bly a shock or pulse. As it moves through space and time,
it diffuses and decays. The dissipative process of the GD
over spatial distance is shown in the sharp decrease in
the magnitude of the z-axis. Fig. 5 displays a smooth
and fast declining profile, suggesting that the GD start
with a strong localized effect that gradually fades across
time and space. The lack of abrupt gradients indicates
that the method effectively captures the diffusive behav-
ior without causing numerical oscillations. In the Fig. 6,
the solution exhibits dissipative gas behavior since it be-
gins at a moderate value and decays smoothly across time
and space. This steady, even decrease, indicates that the
technique adequately accounts for the system’s physical
diffusion and damping effects. Fig. 7 indicates a high gra-
dient or initial shock, which is a typical of compressible
gas flow, is suggested by the strong peak at low time val-
ues. The solution smoothes and decays with time, show-
ing that the initial disturbance has dissipated and that
the system has stabilized over time and space.

Fig. 14 shows exponential spatial decay and rapid tem-
poral expansion, indicating that the system dissipates as
the spatial variable x grows and evolves with increas-
ing intensity over time, nonlinear wave propagation and
shock-like characteristics, which are typical of GD sys-
tems with fractional memory effects, are reflected in this
behavior. In the Fig.15, strong initial disturbances that
eventually fade are indicated by the solution’s abrupt ini-
tial peak, which decays quickly with time and smoothes
out spatially as x grows. Shock wave attenuation or pres-
sure drop propagation, common in GD flows, is reflected
in the high initial value followed by a rapid decrease. As

shown in Fig. 16, the gradual decline in the solution mag-
nitude over time and space indicates either shock weaken-
ing or stable wave energy dissipation. This trend suggests
that LADM method effectively captures the GD system’s
nonlinear diffusion process and decay characteristics. In
Fig.17, there are slight oscillations or ripples, particu-
larly close to the lower end of ¢, the solution exhibits an
overall decrease in amplitude over space and time that
is compatible with physical dissipation in GD. These os-
cillations could be a sign of slower convergence of HPM
when dealing with substantial nonlinearity in early-time
behavior, or they could be numerical errors.

We observed from the Fig. 18 is that the surface shows
a quick decline in the velocity over time and space, as
is common in dissipative gas flow. The apparent discon-
tinuity close to higher values of x and ¢ points to po-
tential numerical errors with accurately capturing steep
gradients using the FEM discretization. TPDTM gener-
ates a stable and smooth approximation throughout the
computational domain, devoid of oscillations or numeri-
cal noise, as seen in Fig. 3 and Fig. 14. Similar graphi-
cal representation of solution GD equation with different
numerical techniques for text example 1 is existing in lit-
erature [33, 34, 35, 36, 37, 38, 39]. The TPDTM proves
its superior numerical stability and convergence behav-
ior compared to alternative approaches, especially when
space and time scales are varied. The incredible accu-
racy of TPDTM is shown by the tight adherence of the
approximate solution to the theoretical or expected ana-
lytical behavior of the GD equation. However, unless ex-
tremely precise discretization is employed, techniques like
FEM, and FDM may display numerical diffusion or ar-
tificial shocks. Compared to conventional discretization-
based techniques like FDM and FEM, TPDTM is com-
putationally more economical since it uses fewer terms
or iterations to achieve equivalent or better precision.
TPDTM manages nonlinear variables methodologically
using projection, maintaining the local and global struc-
ture of the solution, in contrast to perturbation-based or
mesh-based approaches that might have difficulty with
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large nonlinearities.

From Figures 3-7 and Figures 14-18, it is evident that the
solutions of TPDTM (Figures 3, 14) and LADM (Figures
5, 16) exhibit a high degree of uniformity. In contrast, the
solutions derived from FDM (Figures 4, 15), and FEM
(Figures 7, 18) show greater fluctuations. Compared to
FDM, FEM, HPM (Figures 6, 17) method provides re-
sults that are more closely aligned with those obtained
through TPDTM and LADM. The comparative analysis
indicates that TPDTM and LADM yield smoother and
more accurate solution profiles. Notably, TPDTM simpli-
fies the computational process by eliminating the need for
polynomial manipulation and integral evaluations, which
are required in the LADM technique.

Figures 8 and 19 illustrate that for « = 1, the exact and
approximate solutions of homogeneous nonlinear TFGDE
for test examples 1 and 2, obtained via TPDTM, exhibit a
perfect alignment. The minimum errors for different val-
ues of z in test example 1 and 2 are tabulated in Tables
2 and 4, providing insights into the stability and conver-
gence of the TPDTM. According to Equation (14) in sub-
section 2. 8, Tables 2 and 4 indicate that increasing the
value of k leads to a decrease in error, signifying that the
sequence {EpU(z,t)} is bounded below, it follows that
the sequence is convergent, confirming the strong conver-
gence properties of TPDTM.

Furthermore, the error analysis confirms the stability of
the solution, as no significant error growth is observed,
reinforcing TPDTM’s stability. Figures 9 and 20 visualize
the magnitude of numerical error of the nineth term of
the obtained series for test examples 1 and 2, respectively.
Increment in the number of iterations further improves
the method’s accuracy, demonstrating its effectiveness in
solving the problem at hand.

Additionally, we plotted the polar and convergence profile
of U(x,t) for test examples 1 and 2, using the TPDTM
technique. The polar plots in Figs. 10 and 21 show the so-
lution magnitude U(z,t) or its converted representation
in polar coordinates (r, ), even though the the PDE was
initially formulated over a cartesian domain (z,t). Polar
curves in both Fig. 10 and Fig. 21 are not centered, which
shows that the solutions behave differently in different di-
rections. The nonlinear term in the GD equation, which
breaks radial symmetry and adds anisotropy. The solu-
tion exhibits spatial irregularities across the domain, as
evidenced by asymmetrical elliptical loop in the plot. This
asymmetry is a reflection of the memory and nonlinear ef-
fects that are present in the equation because of the frac-
tional derivative D®. From the figure, it is clear that the
localized expansion or intensification in particular areas,
is common in pattern development, reaction-diffusion sys-
tems, and shock wave dynamics. The TPDTM approach
yields a stable and consistent solution across all angles,
demonstrating numerical robustness, as evidenced by the
curve’s smooth continuity and absence of sharp spikes
(Figs 10 and 21). The size of the solution remains consis-
tent across most directions, confirming that TPDTM pre-

serves boundedness and ensures stability. The TPDTM
effectively captures the nonlinear coupling and fractional
time memory, which are reflected in the plot’s little varia-
tions. For early-time approximations, where time-domain
memory effects are more critical, the representation pro-
vided by TPDTM is incredibly effective. This supports
the assertion that TPDTM produces a steady and smooth
outcome by highlighting the solution’s behavior in a pro-
jected space. The exponential convergence in the conver-
gence plots, Figs. 11 and 22, indicates a rapid decline in
absolute changes between consecutive terms. Figs. 11 and
22 show that the TPDTM solution achieves rapid conver-
gence with fewer than 20 terms. The error drops below
10~ after about 20 terms in Fig.11 and below 10719 af-
ter about 15 terms in Fig.22, demonstrating exceptional
numerical accuracy.

So, TPDTM is a very dependable technique for resolving
nonlinear fractional PDEs; it reduces the computing costs
by achieving speedy convergence with a few terms. The
convergence plots in Figs.11 and 22, confirm the theoret-
ical and practical soundness of TPDTM and support its
applicability to solve more complex or practical problems.

5 Future scope and Conclusions

In this paper, we proposed TPDTM to resolve the ho-
mogeneous nonlinear TFGDEs with physical conditions.
Present result analysis reveals that the test examples 1
and 2 using TPDTM closely correspond to the exact
solutions, affirming its convergence criterion and com-
putationally efficient while exhibiting remarkable accu-
racy. Our error analysis confirms rapid convergence of
the homogeneous nonlinear TFGDE to its exact solu-
tions, highlighting TPDTM as a stable and robust al-
gorithm. A detailed comparative assessment of TPDTM
with well-established traditional methods, such as FDM,
LADM, HPM, and FEM, demonstrate that TPDTM re-
quires significantly less computational time for fractional-
order derivatives. We observe that, the polar and conver-
gence plots of the approximate solution to test examples
by employing the TPDTM confirmed that its theoretical
analysis is incredible. The present analysis of this research
will be helpful, providing several promising avenues for
future experimental and theoretical across multiple do-
mains.
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