
  
Abstract—The present paper focuses on the expectile 

regression for a non-linear model with right-censored responses 
and censoring indicators that are missing at random (MAR). 
Firstly, a calibration estimator and an imputation estimator are 
constructed for the non-linear expectile regression model. 
Secondly, under specific regularity conditions, the asymptotic 
normality of the estimators is established. The validity of the 
proposed estimation methods is finally verified through 
simulation and numerical experiments. 
 

Index Terms—censoring indicators, missing at random, 
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I. INTRODUCTION 
N the domain of regression analysis, the sensitivity of 
the least squares regression method to abnormal data is a 

critical consideration. When the error distribution deviates 
from the standard normal distribution, the effectiveness of 
mean regression estimation is significantly weakened. 
Koenker et al. proposed quantile regression (QR) in 1978, has 
already become an important statistical method for data 
analysis. However, it should be emphasized that the loss 
function associated with QR is not differentiable. Within 
specific complex modeling frameworks, the direct 
implementation of quantile regression may induce bias in 
parameter estimation - a consequence that circumscribes its 
practical applicability across diverse real-world scenarios. To 
address these limitations, expectile regression (ER), proposed 
by Newey et al. [1], adopts the asymmetric sum of squared 
residuals as its loss function. This approach enables the 
accurate estimation of heteroskedasticity embedded in mean - 
based regression frameworks and places heightened 
emphasis on the tail characteristics of the response variable. 
Waltrup et al. [2] conducted a comparison between expectile 
regression and quantile regression, highlighting that the loss 
function of expectile regression is convex and differentiable - 
representing a key advantage in the optimization of complex 
models. Quantile regression is regarded as a generalization 
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of median regression. In contrast, expectile regression is 
regarded as a generalization of mean regression. For instance, 
in simple parametric models, Sobotka et al. [3] established 
the asymptotic normality of expectile regression estimates. 
Kim et al. [4] studied the asymptotic properties of 
asymmetric least squares estimates in non-linear models with 
heteroscedasticity. This line of research has significantly 
advanced the development of estimation frameworks for 
expectile regression. In a further contribution, Jiang et al. [5] 
proposed a penalized asymmetric least squares estimator for 
the single-index expectile model, aiming to enhance the 
model’s flexibility in high-dimensional scenarios. Gao et al. 
[6] developed a two-stage premium calculation model. The 
first stage of this model adopts logistic regression to estimate 
the probability of at least one claim, while the second stage 
integrates generalized linear models with parametric 
expectile regression to refine risk assessment. Litimein et al. 
[7] explored the non-parametric estimation of functional 
expectile regression. 

The aforementioned studies uniformly assume the 
availability of complete datasets. However, in the fields of 
survival analysis and clinical research, constraints from 
limitations in experimental design and restrictions on 
observation time often prevent researchers from accurately 
observing event-specific survival times. For instance, in 
medical trials, the follow-up duration is usually pre- 
determined. Patients are enrolled in the cohort in a relatively 
random manner; some may withdraw early or lose to 
follow-up before the study concludes, while others may die 
from causes unrelated to the disease under investigation. 
Consequently, the collection of survival data is frequently 
incomplete, resulting in censored or missing data. A 
significant number of scholars have previously conducted 
research on data incompleteness. For example, Ji et al. [8] 
proposed a single-index varying coefficient quantile model 
where covariates are MAR. Koul et al. [9] introduced 
expectile regression in a linear model under the condition of 
randomly right-censored observations. Meanwhile, Pan et al. 
[10] proposed a weighted expectile regression method to 
estimate the conditional expectile in the presence of 
covariates are missing at random. Seipp et al. [11] proposed 
an extension of expectile regression that incorporates inverse 
probability weights to address right-censored data. 
Furthermore, Zhao et al. [12] introduced an improved 
weighted expectile average estimator based on the covariate 
balancing propensity score for linear models with response 
variables missing at random. Zhang et al. [13] developed a 
novel weighted expectile regression neural network method, 
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which integrates the inverse probability of censoring 
weighting technique into the expectile loss function to 
address random censoring problems. Ciuperca [14] proposed 
and investigated a random right-censoring model estimated 
via the expectile method, using the expectile loss function 
and the adaptive lasso penalty.  

The aforementioned papers all assume that the censoring 
indicators are always observable. In fact, in many practical 
scenarios, the censoring indicators may not be fully observed 
because various reasons. For instance, Wang et al. [15] 
studied least squares regression in a linear model using 
regression calibration and imputation when some censoring 
indicators are missing. Shen et al. [16] proposed quantile 
regression for a partially linear varying-coefficient model 
using regression calibration and imputation when the 
responses are right-censored and the censoring indicators 
missing at random. Wang et al. [17] conducted a study on 
weighted composite quantile regression in a linear model 
with right-censored data and censoring indicators missing at 
random. Zhou et al. [18] developed a varying-coefficient 
partially non-linear quantile regression model for 
right-censored response variables with censoring indicators 
missing at random. To the best of our knowledge, existing 
research on expectile regression estimation remains limited 
in this context. Therefore, studying the expectile regression 
under the scenario of censored data and censoring indicators 
missing at random holds clear practical significance. 

Building upon the research of Seipp et al. [11], this paper 
extends the scenario of right-censored data to the case where 
responses are right-censored and censoring indicators 
missing at random, and then focuses on studying the 
expectile regression estimation for non-linear models. Firstly, 
we construct a calibration estimator and an imputation 
estimator within the framework of the non-linear expectile 
regression model. Subsequently, under certain assumptions, 
the asymptotic properties of the parameters estimated by 
different methods are established. Finally, the effectiveness 
of the proposed estimation methods is verified through 
simulation studies and real data analyses. 

The rest of this paper is organized as follows. In Section 2, 
we introduce the expectile regression method in the 
non-linear model when the data are the right-censored and the 
censoring indicators are MAR. The asymptotic properties of 
the main results are established in Section 3 under certain 
suitable conditions. A simulation study is presented to 
evaluate the performance of the proposed methods in Section 
4. We apply the proposed methods to analyze data from the 
German breast cancer study group in Section 5. 

 

II. MODEL AND ESTIMATORS 
In this paper, the following non-linear model will be 

considered: 
( ), , 1, 2,3, ,i i iT f X i nβ ε= + = 

 (1) 

where iT  denotes the response variable, iX  is a random 
vector of covariates, pβ ∈  represents an unknown 
parameter, iε  is the error terms, and ( )f ⋅  is a known 
non-linear function. 

In Survival Analysis, iT  is usually logarithm of survival 
time. Let iC  be the censoring variable, and its distribution 
function being ( )G ⋅ , ( )min ,i i iY T C= , and censoring 

indicators ( )i i iI T Cδ = ≤ . We suppose that iY  and iC  are 

independent conditional under iX . For simplicity, define a 
missing indicator iξ , if 1iξ = , when iδ  is observed, and 

0iξ =  when iδ  is missing. Then, we can observe an 
independent identically distributed (i.i.d.) sample 
( ), , , ,1i i i i iY X i nξ δ ξ ≤ ≤ . We assume iT  and iC  are 

mutually independent, and iδ  is missing at random (MAR), 
which means that iδ  and iξ  are conditionally independent 
given ( ),i iY X , that is 

( ) ( ) ( )1 , , 1 , : , .i i i i i i i i iP Y X P Y X Y Xξ δ ξ= = = = ∆  

Let ( )TE Xτ  be the τ  conditional expectile of T given 

X , then ( ) ( )( )arg minTE X E T Xτ
α

τ ρ α= − , where 

( ) ( )2 0u u I uτρ τ= − <  is an asymmetric squared loss 

function, ( )I ⋅  denotes the indicator function, ( )0,1τ ∈  is 
the expectile index. The derivative of ( )uτρ is 

( ) ( )2 0 .u uI uτρ τ′ <= −  

Under the presence of censoring, given the conditional 
independence of iY  and iC  given iX , we derive 

( ) ( ) ( ){ }.
1

i
i i i i

i

E Y X E XT
G Y τ τ
δ

ρ α ρ α
  − = − 

−  
 

Thus, it can be concluded that the expectile regression 
estimator of β  can be defined by solving the minimization 
problem of the following objective function:  

( )
( )( )

1
, ,ˆ1

n
i

i i
i i

Y f X
G Y τ
δ

ρ β
=

−
−

∑  (2) 

where ( )Ĝ ⋅  is the Kaplan-Meier estimator [19]. 

However, since the censoring indicator iδ  is missing at 
random. By replacing iδ with its conditional expectation 

( ) ( ), ,i i i i im Y X E Y Xδ= , we have 

( )
( ) ( ) ( ) ( )
,

.
1 1

i i i
i i i i

i i

m Y X
E Y X E Y X

G Y G Yτ τ
δ

ρ α ρ α
      − = −   

− −      
   Thus, the expectile regression estimator of β  can be 
defined by solving the minimization problem of the 
following objective function  

( )
( ) ( )( )

1
.

,
,

1

n
i i

i i
i i

m Y X
Y f X

G Y τρ β
=

−
−∑  (3) 

However, we should note that two components in (3) are 
usually unknown in practice: the conditional expectation 
function ( )m ⋅ and the censoring distribution function ( )G ⋅ . 
Thus, we need to estimate them in advance before 
implementing the estimator. 

One usual way to estimate ( )m ⋅  is to assume it follows a 
parametric model ( ) ( )0, , ,m Y X m Y X θ= , where ( )0 ,m ⋅ ⋅  is 
a known function and θ  is an unknown parameter vector. 
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Following Wang and Dinse [15], the estimator n̂θ  of θ  can 
be obtained by maximizing the likelihood function 

( ) ( )( ) ( )
0

1

1
0, , 1 , , .i ii i

n

i i i i
i

m Y X m Y X
ξ δξ δθ θ

−

=

−∏  

The definition of ( )Ĝ ⋅  was consistent with the approaches 
outlined in the works of Li and Wang [20] and Wang and Ng 
[21]. The Nadaraya-Watson estimator of  

( ) ( )u y E Y yδ= =  defined by ( ) 1

1

ˆ
n

i
i i

ni
n

i
i

ni

Y y
K

h
n Y y

K
h

u y
δ ξ

ξ

=

=

 −
  
 

 −
  
 

∑
=

∑
 

with kernel function ( )K ⋅  and bandwidth sequence 

0 0nh< → as n → ∞ . Thus 

( )
( )ˆ1

:

ˆ 1 ,
1

n i

i

u Y

i
n

i Y y i

n R
G y

n R

−

≤

 −
= −  − + 

∏  

where ( )
1

.
n

i j i
j

R I Y Y
=

= ≤∑  

Let ( )0 , ,ca
i i im Y Xδ θ= . We can estimate ca

iδ  and 

( )iG Y by ( )0
ˆ ˆ, ,ca
i i i nm Y Xδ θ= and ( )ˆ

n iG Y , respectively. 

Then, we propose the expectile regression calibration 
estimator β̂  defined as follows 

( )
( )( )

1

ˆ
ˆ arg min , .ˆ1

can
i

i i
i n i

Y f X
G Y τ

β

δ
β ρ β

=

= −
−

∑  (4) 

In addition, imputation is often used in statistical analyses 
with missing data. Next, the expectile regression estimator of 
the non-linear model is established based on the imputation 
method. Let ( ) ( )01 , ,im

i i i i i im Y Xδ δ ξ ξ θ= + − , we can 

estimate m
i
iδ  by ( ) ( )0

ˆ ˆ1 , ,im
i i i i i i nm Y Xδ δ ξ ξ θ= + − . Then, we 

propose the expectile regression imputation estimator ˆ Iβ , 
defined as follows 

( )
( )( )

1

ˆ
ˆ arg min , .ˆ1

imn
I i

i i
i n i

Y f X
G Y τ

β

δ
β ρ β

=

= −
−

∑  (5) 

 

III. ASSUMPTIONS AND MAIN RESULTS 

A. Main Results 
The following notations are needed to state the results. 

( )H ⋅  is the distribution function of Y , 1H H= − . 
Define 

( ){ }inf : 1Ha t H t= = , and ( ){ }inf : 1Ga t G t= = , 

( ) ( ) ( )0 0
0

1

, , , ,
, , , ,

l

m Y X m Y X
m Y X

θ θ
θ

θ θ
∂ ∂ 

∇ =  
∂ ∂ 

 , 

( ) ( )
( ) ( )
0 0

0 0

, , , ,
( ) ,

, , 1 , ,

T
m Y X m Y X

I E
m Y X m Y X

ξ θ θ
θ

θ θ

  


 ∇ ∇ =  
  − 

( ) ( ), ,T
i if X f X

E
β β

β β
 ∂ ∂

Σ =  
∂ ∂  

, 

( )( )
( )

( ) ( ) ( )
2

20
1 2

, , , ,

1

T

i

m Y X f X f X
E

G Y
τ

θ β β
ρ ε

β β

 ∂ ∂ ′Ω =    ∂ ∂−    
, 

( ) ( ) ( )( )
( )

( ) ( ) ( )

0 0
2 2

2

, , , 1 , ,
*

1

, ,
,

T

i

Y X m Y X m Y X
E

G Y

f X f X
τ

θ θ

β β
ρ ε

β β

∆ −Ω = 
−   

∂ ∂ ′   ∂ ∂ 

 

( )

( )

( )
1

,
ˆ

,ˆ1

i
can
i

i
i n i

f X

W
G Y n τ

β
δ β ρ ε

=

∂
∂ ′= −

−
∑

( )
( )

( )

( )

( )

( )

,
ˆ
ˆ1

,

.

i
ca
i

i
n

i

i i

n
i

iL

f X

G Y n

f X

n τ

τ

τ

β
γ

δ βρ ε

β
γ

βρ ε ρ

γ

ε

 ∂ 
  ∂  −
  −
  

 
∂ 

∂ ′+

=

−




 

To formulate the main results, it is necessary to impose the 
following regularity conditions: 

A1: ( )F ⋅  is common cumulative distribution function of 

iε , the errors iε  are independent and identically distributed. 

Moreover, ( ) 0iE ε = , ( )2
i iE Xε < ∞ and 

( ) ( ) ( ) ( )2 1 0 2 0 0i i i i iE I I E τε ρ ετ ε ε τε− ≤ + > = =     ′ . 

A2: ( )K ⋅ is a kernel function of order 1 with bounded 

support, satisfies ( )
1

1
1K u du

−
=∫ , ( )

1

1
0uK u du

−
=∫ . 

A3: The bandwidth nh  satisfies the following asymptotic 
conditions as n → ∞ , nnh → ∞ , 2 0nnh → . 

A4: The matrix Σ , 1Ω  and 2Ω  are positive definite. 
A5: ( ), , 1, 2,3, ,i iY X i n= 

 are an independent identically 
distributed (i.i.d) random vector. 

A6: ( )0 , ,m Y X θ∇  is continuous at θ . The function ( )u ⋅  
has bound derivatives of order 1, and ( )I θ  is positive 
definite matrix. 

A7: H Ga a<  , ( )G ⋅ is continuous. For Ht a< , ( )H ⋅  is 
continuous. 

A8: For any i , there is a compact set E , such that 
p

iX E∈ ⊂  . 

A9: ( )2E X < ∞ and 
( )
( )

2

2

1 G Y
E

H Y

 −    < ∞ 
  

. 

Remark1: In accordance with the findings outlined in the 
proof of Theorem 2.1 in the article by Li and Wang [20], we 
derive the following conclusions: 
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(a).

( )
( ) ( )

( ) ( )
( )

0 01

1 0 0

, , , ,1ˆ

,

1

1

, , , ,

n
i i i i i i

n
i i i i i

p

m Y X m Y X
I

n m Y X m Y X

o

ξ δ θ θ
θ θ θ

θ θ
−

=

− ∇
− =

−



+

 
  

∑  

where 
( ) ( )

( ) ( )
( )0 0

1 0 0

, , , ,1 .
, , 1 , ,

1
n

i i i i i i
p

i i i i i

m Y X m Y X
o

n m Y X m Y X
ξ δ θ θ

θ θ=

  
 

=
−

− ∇
∑  

(b). by (a) and conditions A6, 

( ) ( ) ( )0 0
ˆmax , , , , .1i i n i i pi

m Y X m Y X oθ θ− =  

Theorem 1: (Asymptotic Normality) Under conditions 
A1-A9, let 0β  is the true value of parameter β . We have 

( ) ( )
1 1

0 12

1ˆ 0, ,
4

Dn N
g

β β
τ

− − 
− Σ Ω Σ  

 
→  

( ) ( ) ( )1 1
0 1 22

1ˆ 0, ,
4

I Dn N
g

β β
τ

− − 
− Σ Ω + Ω Σ  

 
→  

where ( ) ( ) ( ) ( )( )1 0 + 1 0g F Fτ τ τ= − − . 

B. Proof of Main Result 
To prove the Theorem, we introduce a lemma. 
Lemma 1: When all the assumptions are true, 

( ) ( ) ( ) ( ) ( )1/2

1

1ˆ , , ;
n

n j j j p
j

G y
G y G y Y y o n

n
ψ δ ξ −

=

−
− = +∑ , 

where 

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )
( )

0
20

, , ;
1

, 0

1 1

j

j j j j
j j j j

j j

Y yj j

j

Y Y
Y y I Y y

Y H Y

I Y y dH
H Y H

s

s

ξ π δ µ
ψ δ ξ

π

δ ∧

   − −   = ≤
 − 

≤ =
+ +

 − −    
∫

, and 

( ) ( )0 , 0j jH t P Y y δ= > = .  

Lemma 1 is proven in Li and Wang [20] . Moreover, it is 

also proved that ( ), , ; 0j j j i iE Y Y Yψ δ ξ  =  , and 

( ) ( )
( )

2

2
2

1
, , ; i

j j j i i
i

G Y
E Y Y Y

H Y
ψ δ ξ

−    ≤  , for i j≠ . 

Proof of Theorem 1: We can only prove the result about 
β̂ , the result of ˆ Iβ  can be prove similarly. To prove the 

asymptotic normality of ( )0
ˆn β β− , we can estimate by 

minimizing the following objective function: 

( )( ) ( )( ){ }0
1

ˆ
ˆ, , .ˆ1 ( )

cn
i

i i i i
i n i

y f X y f X
G Y τ

αδ
ρ β β

=

− − −
−

∑  

Let 0( , )i i iy f Xε β= − , ( )0
ˆnγ β β= − , Then, it is easy 

to see that γ  is minimized, we have 

( ) ( ) ( ) ( )( )
( )

0 0
ˆ ˆ, , , ,

,

.

i i i i i i

i

i

y f X y f X f X f X

f X

n

β β β β

β
η γ

βε

 − = − − −  
∂

+
∂= −

 

We can about the following objective function: 

( )
( )( ) ( )( ) ( )

( )( )
( )

( )

( ))
( )

( )

( )

( )

( )

( )

( )

1

1

1

,
ˆ
ˆ1

,

,
ˆ
ˆ1

,
ˆ
ˆ1

n

n n n

i
cn
i

n i
i n i

i

i i

i
cn
i

i
i n i

i
cn
i

i
i n i

G

G G G

f X

G
G Y n

f X

n

f X

G Y n

f X

G Y n

E E

E E τ

τ τ

τ

α

α

α

τ

γ

γ γ γ

β
γ

δ βγ ρ ε

β
γ

βρ ε ρ ε

β
γ

δ β ρ ε

β
γ

δ βρ ε

=

=

=

=

 ∂ 
  ∂  −  −     

∂
∂

− +

 
 
 = −  
  



′


+ ′−

∂
∂−










−

∂ 
 ∂ −
 −



+





∑

∑

∑ ( )

( )

( )
( )

( )

( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

1

1 1

1 1
.

, ,
ˆ
ˆ1

+

+

i

i i
cn
i

i i
i n i

n n
T T

n in in
i i

n n
T T

n in in
i i

f X f X

n G Y n

G L W L W

G L L W

E E

E E E W

τ

τ

α

τ

ρ ε

β β
γ γ

δβ βρ ε ρ ε

γ γ γ γ γ

γ γ γ γ γ

=

= =

= =



 −



∂ ∂ 
 ∂ ∂ ′ ′− 

− 
  

=

 
 
 
 
 
 

+

   − +   +
   

 = + − − 
 

∑

∑ ∑

∑ ∑

 

By the condition A1, we have 
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According to Lindeberg-Feller central limit theorem, and 
condition A5, we have 

( )10,DW N→ Ω ， (6) 

Now, we calculate  ( )( )nE G γ , 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2752-2760

 
______________________________________________________________________________________ 



( )( )

( )
( )

( )

( )

( ) ( )
( )

( )

( )

( ) ( ) ( )

0

1

0 0

1

0

=E

,
, ,

1

ˆ ,
*

, , ,

1

,

ˆ ˆ,
+

,

n

i
n

i i
i i

i n i

n i i n i i

i n i

i

i i

i i n n i i

E

Y

G

f X
m Y X

G Y n

m Y X m X

G Y

f X

n

m Y X G Y Y

E

G
E

τ τ

τ τ

γ

β
γθ βρ ε ρ ε

θ θ

β
γ

βρ ε ρ ε

θ

=

=

∂
∂− −

−

−

−

∂
∂−

   
   
   
   
 



      

+



  
  
  
  
  


−

 

−



 


∑

∑

( ) ( )

( )

( )

( )( ) ( )( ) ( )( )

1

1 2 3 .

ˆ1

,

=

1
*

n

i i n i

i

i i

n n n

G

E

Y

E E

G Y

f X

n

G G G

τ τ

β
γ

βρ ε ρ ε

γ γ γ

=






  
  
  
  
 



   

 − −   

∂
∂

+

−

+

−

∑

 

By the condition A7, we have ( )
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By the condition A1, we can obtain the function 
( ) ( ) ( )( )i iM t E tτ τρ ε ρ ε− −=  has a unique minimizer at 

zero, and its Taylor expansion at the origin has the 
form ( ) ( ) ( )2 2M t g t o tτ= +  given that ( )0 0M = , and 
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Therefore, when n → ∞ , we have 
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According to the A4, we have 
( )( ) ( ) ( )1 1 .T

n pE ogG γτγ γ= Σ +  (7) 

Now that ( ) ( ) ( )( )( )ˆ ˆ 1 (1)T
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and Remark 1, we get 

( ) ( ) ( ).ˆm 1ax i n i pi
m m oθ θ− =  

Similarly to the calculation of ( )1nG γ , we can 
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From (7), (8), and (9), it follows that 
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where ⋅ denotes the Euclidean norm operator. Here is the 
final step of convergence to zero, because 
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It can be obtained from the above formula, we can 
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From (6) to (10), we can obtain 
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guarantees the only existence of minimization, therefore we 
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IV. SIMULATION STUDY 

In this section, we illustrate several simulation studies to 
evaluate the finite sample properties of the proposed 
estimation methods. 

We assume the following non-linear model  
1 1 2 2 , 1, 2,3, ,i iX X

i iT e i nβ β ε+= + = 

 
where 1 22, 1β β= = , ( )1 1, 2iX U , ( )2 0,0.5iX U are 

i.i.d., and the model error iε are i.i.d.. Let the censoring time 

iC  is from ( )exp µ , ( )min ,i i iY T C= , and ( )i i iI T Cδ = ≤ , 
where µ  is adjusted based on different censoring ratio (CR). 
For the missing mechanism and iδ is MAR, we assume  

( ) ( )1 2 1 2 1 3 2 4, , 1 1 exp ,i i i i i i iP X X Y X X Yξ α α α α= + − − − −  
where ( )1 2 3 4, , ,α α α α=α  is adjusted based on different 
missing ratio (MR). We suppose that ( )1 20 , ,,i i im X XY θ  
follows a logistic model, that is 

( )( ) 10 1 2 31 2 2 4, ,o +l g ,i ii i i iit X X X Xm Y Yθ θ θ θ θ++= . 

The sample size is set to be 300n =  and 500 , the number 
of simulations is 200M = , and choose kernel function 

( )K x  to be the Epanechnikov kernel ( ) ( )23
4 1K x x

+
= − . In 

addition, in this simulation, we take 10%,30%CR = , 
10%,30%MR = , respectively. These are achieved by 

adjusting different µ , ( )1 2 3 4, , ,α α α α=α and 

( )1 2 3 4, , ,θ θ θ θ=θ . Moreover, we need to consider the 
following different distributions of the random error: (1) 
standard normal distribution: ( )0,1i Nε 

; (2) 
t-distribution: ( )2i tε 

. We are considering the following 
approaches: the expectile regression estimator given that 
regression calibration approach (C-ER) and imputation 
approach (I-ER), for each setting, bias (Bias) , mean square 
error (MSE) and standard deviation (SD) of the C-ER 
( 0.25τ = , 0.5  and 0.75 ), and I-ER ( 0.25τ = , 0.5  and 
0.75 ) estimators of parameter 1 0,β β  are summarized in 
Table I-IV.  
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From Table I-IV in Appendix, it can be seen that:  
(i) for each setting, as the sample size n  increases, the 
performance of estimators from both the calibration and the 
imputation methods improve; (ii) as the censoring ratio (CR) 
and missing ratio (MR) increase, the estimation performance 
deteriorates; (iii) regardless of whether ε follows a standard 
normal distribution or a t-distribution, the ER ( 0.5τ = ) 

estimators outperform both ER ( 0.25τ = ) and ER 
( 0.75τ = ); (iv) for any given censoring ratio and missing 
ratio, the standard deviation (SD) and mean square error 
(MSE) of the simulation results obtained  from the calibration 
method are smaller than those from the imputation method, 
indicating that the calibration method performs better than 
the imputation method.  

 
 

Table I 
THE SIMULATION RESULTS OF THE BIAS, MES AND SD FOR ( )300, 0,1in Nε=   

CR MR Methods 1β  2β  

Bias MSE SD Bias MSE SD 
10% 10% C-ER (0.5) 0.35461 0.00206 0.44377 1.91732 0.06070 2.46374 

C-ER (0.25) 1.22981 0.01740 0.55978 2.48233 0.10962 3.05053 
C-ER (0.75) 0.98779 0.01243 0.53804 2.44955 0.09659 2.86376 
I-LS (0.5) 0.35431 0.00206 0.44716 1.96761 0.06316 2.51305 

I-ER (0.25) 1.20829 0.01742 0.57046 2.59956 0.11855 3.20105 
I-ER (0.75) 1.00007 0.01268 0.53898 2.45610 0.09756 2.88261 

30% C-ER (0.5) 0.36268 0.00213 0.45290 1.93355 0.06268 2.50351 
C-ER (0.25) 1.23213 0.01764 0.57424 2.55272 0.11365 3.12215 
C-ER (0.75) 0.99126 0.01253 0.54409 2.46791 0.09827 2.89234 
I-LS (0.5) 0.36099 0.00214 0.45415 1.96080 0.06398 2.52933 

I-ER (0.25) 1.21729 0.01804 0.57928 2.60140 0.11924 3.20495 
I-ER (0.75) 1.00090 0.01271 0.54510 2.47446 0.09843 2.90119 

30% 30% C-ER (0.5) 0.49802 0.00394 0.61107 2.49253 0.10399 3.22175 
C-ER (0.25) 1.48776 0.02613 0.74168 3.08984 0.16060 3.76411 
C-ER (0.75) 1.12160 0.01759 0.74313 3.09887 0.15876 3.84162 
I-LS (0.5) 0.49990 0.0040 0.62056 2.62846 0.11170 3.34076 

I-ER (0.25) 1.45142 0.02669 0.78053 3.40547 0.18618 4.11106 
I-ER (0.75) 1.12981 0.01781 0.74411 3.15799 0.16245 3.87961 

 
Table II 

THE SIMULATION RESULTS OF THE BIAS, MES AND SD FOR ( )500, 0,1in Nε=   

CR MR Methods 1β  2β  

Bias MSE SD Bias MSE SD 
10% 10% C-ER (0.5) 0.25034 0.00104 0.31660 1.37648 0.03073 1.73258 

C-ER (0.25) 1.18034 0.01546 0.41765 2.21295 0.07125 2.16488 
C-ER (0.75) 1.00619 0.01160 0.38398 1.88369 0.05212 2.07229 
I-LS (0.5) 0.26103 0.00111 0.33009 1.40656 0.03209 1.77007 

I-ER (0.25) 1.15807 0.01568 0.45229 2.28177 0.07762 2.31001 
I-ER (0.75) 1.01822 0.01189 0.38963 1.87334 0.05217 2.07478 

30% 30% C-ER (0.5) 0.38467 0.00230 0.45379 1.83025 0.05524 2.34970 
C-ER (0.25) 1.44795 0.02360 0.55077 2.40331 0.09185 2.72849 
C-ER (0.75) 1.07356 0.01444 0.56171 2.35991 0.09411 2.81729 
I-LS (0.5) 0.39392 0.00243 0.47584 1.90292 0.06106 2.47022 

I-ER (0.25) 1.41137 0.02397 0.61261 2.61716 0.10998 3.04604 
I-ER (0.75) 1.09101 0.01487 0.57163 2.38524 0.09727 2.88018 
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Table III 
THE SIMULATION RESULTS OF THE BIAS, MES AND SD FOR ( )300, 2in tε=    

CR MR Methods 1β  2β  

Bias MSE SD Bias MSE SD 
10% 10% C-ER (0.5) 0.86566 0.01303 1.03054 3.96860 0.26850 5.15399 

C-ER (0.25) 2.89352 0.11304 1.73155 5.55598 0.57960 7.09602 
C-ER (0.75) 1.61650 0.03982 1.27423 5.42255 0.49081 6.85035 
I-LS (0.5) 1.04890 0.02244 1.42198 5.68773 0.61968 7.70326 

I-ER (0.25) 2.92856 0.15714 2.85048 9.71510 2.18368 14.39755 
I-ER (0.75) 1.76051 0.04681 1.43964 6.14784 0.62005 7.83334 

30% C-ER (0.5) 0.93149 0.01510 1.12205 4.01988 0.27972 5.26017 
C-ER (0.25) 2.93450 0.12379 1.96818 5.76487 0.63475 7.47163 
C-ER (0.75) 1.63282 0.04107 1.31810 5.45363 0.49182 6.86661 
I-LS (0.5) 1.01228 0.02339 1.43895 5.34145 0.63865 7.96403 

I-ER (0.25) 2.91836 0.16069 2.90262 9.14646 2.21025 14.55924 
I-ER (0.75) 1.74401 0.04721 1.44260 5.93292 0.65274 7.96468 

30% 30% C-ER (0.5) 1.25761 0.02483 1.33665 4.87671 0.39908 6.18785 
C-ER (0.25) 3.64349 0.17331 2.03036 6.40179 0.73776 7.70207 
C-ER (0.75) 1.70217 0.05020 1.65324 6.38323 0.67366 8.16364 
I-LS (0.5) 1.42685 0.03642 1.81054 7.10242 0.71878 9.33903 

I-ER (0.25) 3.64504 0.22919 3.39743 12.35430 3.55763 18.2304 
I-ER (0.75) 1.87739 0.06148 1.84859 7.18640 0.88877 9.41371 

 
Table IV 

THE SIMULATION RESULTS OF THE BIAS, MES AND SD FOR ( )500, 2in tε=   

CR MR Methods 1β  2β  

Bias MSE SD Bias MSE SD 
10% 10% C-ER (0.5) 0.82372 0.01055 0.78902 3.21830 0.16520 4.06423 

C-ER (0.25) 3.10769 0.11305 1.30671 4.52452 0.31932 5.28188 
C-ER (0.75) 1.36178 0.02658 0.94792 4.61890 0.34429 5.47718 
I-LS (0.5) 0.82668 0.01129 0.95090 4.14842 0.31157 5.56039 

I-ER (0.25) 2.89602 0.11354 1.83333 7.45612 1.11786 10.14173 
I-ER (0.75) 1.46737 0.03030 0.97872 4.84668 0.37389 5.83341 

30% 30% C-ER (0.5) 1.13968 0.02013 1.08473 4.03713 0.26611 5.15294 
C-ER (0.25) 3.61670 0.15870 1.67031 5.17811 0.44314 6.17712 
C-ER (0.75) 1.43543 0.03356 1.28528 5.53664 0.52632 6.96675 
I-LS (0.5) 1.18731 0.02418 1.33697 5.09346 0.49042 6.99555 

I-ER (0.25) 3.61364 0.18818 2.47862 8.55701 1.55426 12.17887 
I-ER (0.75) 1.52641 0.03741 1.35651 5.98445 0.58556 7.39003 

V.  A REAL DATA EXAMPLE 
In this section, we illustrate the practical applications of 

the proposed estimation methods through an analysis of 
datasets in the R software. The GBSG dataset contains 
patient records from a 1984-1989 trial conducted by the 
German Breast Cancer Study Group (GBSG) of 686 patients 
with node positive breast cancer [22]. This dataset comprises 
686 observations and 11 variables: recurrence-free survival 
time (rfstime), age, menopausal status (meno), size, grade, 
number of positive lymph nodes (nodes), progesterone 
receptors (pgr), estrogen receptors (er), hormonal therapy 
(hormon), and event status. The following non-linear model 
is employed in this paper to fit the data:  

1 1 2 2X XY eβ β ε+= +  (12) 
where Y , 1X , and 2X  correspond to recurrence free 
survival time (rfstime), size, and number of positive lymph 
nodes (nodes), respectively. 

From the censoring indicators in the dataset, 299 data sets 
are censored, with a censoring ratio of 43.586%. To study the 
expectile regression of the non-linear model under random 
missingness of censoring indicators, the data missing ratio is 
artificially defined. Using the simulation method in Section 4, 
let

( ) ( )1 2 1 2 1 3 2 4, , 1 1 exp ,iP X X Y X X Yξ α α α α= + − − − −    

we can obtain 
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( ) ( )1 2 1 2, , 1 1 exp 0.15 0.01 1.25 0.1745 ,iP X X Y X X Yξ = + − + −  
and a missing ratio of 10.7%. After introducing missing data, 
among 686 patients, 344 were uncensored with observed 
censoring indicators ( 1, 1δ ξ= = ), 263 were censored with 
observed censoring indicators ( 0, 1δ ξ= = ), and 79 had 
randomly missing censored indicators ( 0ξ = ). To compare 
the effects of different estimation methods more intuitively 
and effectively, we define the overall mean square error 

(MSE) as ( )2

1

1 ˆ
n

i i
i

AMSE y y
n =

= −∑ , with results present in 

Table V. 
From Table V in Appendix, the following observations can 

be made: (i) with a censoring ratio of 43.586% and a missing 
ratio of 10.7%, the ER ( 0.5τ = ) estimators outperform both 
ER ( 0.25τ = ) and ER ( 0.75τ = ); (ii) the mean square error 
(MSE) of the results obtained via the calibration method is 
smaller than that of the imputation method, indicating that the 
calibration method performs better than the imputation 
method. 

Table V 
THE AMSE UNDER DIFFERENT ESTIMATION METHODS 

 method MSE 
0.25τ =  C-ER 0.9381375 

I-ER 0.9584808 
0.5τ =  C-ER 0.7548942 

I-ER 0.7574275 
0.75τ =  C-ER 0.7970802 

I-ER 0.7985787 
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