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Abstract—Over the past few years, there has been an in-
creasing interest in fractional differential equations (FDEs),
owing to the enhanced effectiveness of fractional calculus
compared to traditional calculus. Fractional calculus, with its
non-integer order derivatives, provides more accurate models
for complex phenomena in science and engineering, capturing
memory effects and hereditary properties in processes like
viscoelasticity, anomalous diffusion, and signal processing. This
has made FDEs a valuable tool for advancing the modeling of
intricate systems. This paper aims to examine various numerical
methods for solving fractional initial value problems associated
with FDEs. A comparative analysis of the Fractional Explicit
Adams Method of Order 3, the Fractional Adams Method
of Explicit Order 2, Implicit Order 2, the Fourth-order 2-
point Fractional Block Backward Differentiation Formula, the
Fractional Explicit Method and the PECE method of Adams-
Bashforth-Moulton type are presented with respect to their
performance against the exact solution. The comparison focuses
on key metrics, including convergence and accuracy of the
methods. Three numerical problems were successfully solved
to evaluate the methods. The results showed that all of the five
methods are reliable when solving FDEs.

Index Terms—fractional differential equations, fractional ini-
tial value problems, numerical method, convergence, accuracy.

I. INTRODUCTION

FRACTIONAL calculus is a mathematical domain fo-
cused on the study of derivatives and integrals with non-

integer orders, extending to both real and complex numbers.
This field extends the principles of classical calculus by
adapting its foundational concepts to accommodate fractional
orders. As a result, many of the core properties from classical
calculus are retained in fractional calculus, albeit with mod-
ifications to handle the nuances introduced by fractional or-
ders. The origins of fractional calculus can be traced back to
notable mathematicians, including Leibniz, L’Hôpital, Abel,
Liouville, Riemann, and others, who laid the groundwork for
its development. In essence, fractional calculus provides tools
and methodologies to solve differential equations involv-
ing fractional derivatives of unknown functions, commonly
known as fractional differential equations (FDEs).

FDEs play a significant role across a broad spectrum of
disciplines, such as speech signal modelling [1], viscoelastic
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materials [2], diffusion process modelling [3] and control
theory [4]. According to [5], FDEs have shown excep-
tional potential in modeling complex phenomena in various
scientific and engineering domains, primarily due to their
unique property of nonlocality. Unlike conventional differ-
ential equations, which are influenced by the local behavior
of a system, FDEs consider the system’s global evolution,
offering a more comprehensive view of its dynamics. This
feature enables FDEs to provide more accurate approxima-
tions of real-world behaviors, surpassing the precision of
traditional derivatives. Consequently, the solutions to FDEs
have garnered significant interest among researchers and
practitioners, reflecting their critical applications in numerous
fields and underscoring the value of fractional calculus in
advancing our understanding of complex systems. Besides,
FDEs enable the representation of memory effects, as men-
tioned in [6]. Several mathematical models that utilize FDEs
are the Pharmacokinetics [7], the SIR [8], the Economic
Growth [9], FitzHugh–Nagumo [10], the COVID-19 [11] and
the Viscoelastic models [12].

Many methods have been proposed to solve FDEs includ-
ing block and non-block methods. This article concentrates
on four prominent non-block methods: the Adams-Bashforth
method Fractional Explicit Adams Method of Order 3
(FEAM3), the Adams-Moulton method Fractional Adams
Method of Explicit Order 2, Implicit Order 2 (FAM22),
Fractional Explicit Method (FE) and Fractional Explicit
Method and the PECE method of Adams-Bashforth-Moulton
type (FDE12) alongside one significant block method: the
Block Backward Differentiation Formula (Fourth-order 2-
point Fractional Block Backward Differentiation Formula
(2FBBDF(4)). The convergence and accuracy of these meth-
ods will be examined and compared to understand their
strengths and suitability for solving FDEs.

FEAM3 [20] is a non-block multistep method which is
explicit inspired by the principles of the Adams-Bashforth
method. It serves as an effective approximation technique
for solving FDEs. The main benefit of the FEAM3 method
is that it can handle both linear and nonlinear FDEs, making
it versatile to solve different types of applications in math-
ematical modeling and scientific computations. Despite its
advantages, the method has certain limitations. Specifically,
it encounters challenges when applied to solve systems of
FDEs. FAM22 [21] is a non-block implicit multistep method
that derived by using the concept of Adam-Moulton method
to solve FDEs. Similar to FEAM3, FAM22 method is capable
of effectively solving both linear and nonlinear FDEs. This
makes it versatile for addressing a wide range of problems
in fractional calculus. Moreover, FAM22 has a distinct ad-
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vantage over FEAM3 whereby it is specifically designed to
handle systems of FDEs. FE [22] is an explicit method that
is formulated based on the concept of a second-order Adam-
Bashforth method by implementing Lagrange interpolation
for fractional case. FE is an appropriate method to solve
different types of FDEs, similar to FEAM3 and FAM22.
FDE12 initially developed by [13], offers a reliable and
effective numerical method for addressing fractional-order
initial value problems. The method was derived according to
the concept of predictor-corrector Adams-Bashforth-Moulton
in order to deal with the singular kernel and memory effects
typical in fractional systems. Lastly, 2FBBDF(4) [23] is a 2-
point implicit multistep block method derived to solve FDEs.
Similar to other methods, it is also capable of solving various
types of FDEs, including linear, nonlinear and system. The
advantage of 2FBBDF(4) lies in its ability to compute
multiple solution points simultaneously within a single step.
This approach significantly reduces computational time and
requires fewer steps compared to non-block methods that
calculate one solution point at a time.

Although several numerical techniques are available for
addressing FDEs, there is a deficiency in the literature
on hybrid methods that integrate the advantages of both
block and non-block methods. Although the advantages of
individual block and non-block methods are well-established,
there has been insufficient research on the integration of these
methods to improve computational efficiency and accuracy.
Thus, the objective of this review paper is to investigate the
potential of hybrid methods by comparing the strengths and
weaknesses of each method. Thus, the review of FEAM3,
FAM22, FE, 2FBBDF(4) and FDE12 for solving linear and
non-linear FDEs is presented. The novelty of this review
lies in its systematic evaluation of both block and non-
block numerical methods for solving fractional differential
equations. This study compares different approaches inside a
shared framework by employing similar tested problems and
error metrics. The majority of prior research have focused
on the performance of individual methods while they were
in isolation. This approach offers a deeper comprehension of
the selection of methods based on several criteria, including
accuracy, convergence, and efficiency. Thus, this study pro-
vides an extensive review of various numerical approaches
for addressing both linear and nonlinear FDEs, with a par-
ticular focus on five distinct approaches: FEAM3, FAM22,
2FBBDF(4), FE and FDE12. The article is structured as
follows: section 2 discusses the preliminaries, section 3 dis-
cusses the existence and uniqueness of the solution, section
4 analyzes the methods, section 5 presents three illustrative
examples and section 6 discusses the results and concludes
the findings.

II. PRELIMINARIES
Fractional calculus encompasses various types of frac-

tional differential operators, including the Hilfer, Riemann-
Liouville, Caputo, Caputo-Fabrizio and Atangana-Baleanu
among others. Despite this diversity, the Riemann-Liouville
and Caputo operators are the most frequently utilized in
FDEs. Many researchers prefer to use the Caputo defini-
tion of fractional derivatives in their studies. According to
[16], one of the main advantages of employing the Caputo
definition is its ability to provide a clear, interpretable

physical meaning for fractional derivatives, which can of-
ten be directly linked to measurable quantities. Due to its
interpretability, the Caputo derivative is highly effective in
real-world processes, as it allows researchers to connect
mathematical formulations with observable phenomena. The
fractional Caputo’s derivative operator of order α, Dα is
defined as [14]:

Dαy(t) =
1

Γ (m− α)

∫ t

t0

y(m) (τ)

(t− τ)
α−m+1 dτ,

m− 1 < α < m, m ∈ Z+.

(1)

According to [14], cDαt0y(t) = RLD
α
t0y(t)−y(t0) where

RLD
α
t y(t) represents the Rieman-Liouville differential oper-

ator, defined as follows:

RLD
α
t0y(t) =

1

Γ(m− α)

(
d

dt

)m ∫ t

t0

y(τ)

(t− τ)α−m+1
dτ,

α > 0, m = [α].
(2)

III. EXISTENCE AND UNIQUENESS OF THE
SOLUTION

According to [15], the fractional initial value problems
(FIVP) for a system of FDEs are of the form:

cDα
t0y(t) = f(t, y(t)), y(t0) = y0. (3)

Theorem 1: [16] (Existence of solution) Let
D := [0, X∗] × [y

(0)
0 − α, y

(0)
0 − α] where X∗ > 0

and some α > 0, and assume that the function
f : D → R be continuous. Furthermore, define
X := min

(
X∗, (αΓ(q + 1)/∥f∥∞)

1/q
)
. Under these

conditions, there exists a function y : [0, X∗] → R that
solves the FIVP in (3).

Theorem 2: [16] (Uniqueness of solution) Consider D :=

[0, X∗]× [y
(0)
0 −α, y

(0)
0 −α] where X∗ > 0 and some α > 0.

Moreover, suppose that the function f : D → R is bounded
on D and satisfies a Lipschitz condition in relation to its
second variable:

|f(x, y)− f(x, z)| ≤ K|y − z|. (4)

with constant K > 0 that does not depend on x, y, and
z. Then, letting X as specified in Theorem 1, there exists
a unique function y : [0, X] → R that solves the FIVP in (3).

Lemma 1: [16] Provided that f is continuous, the FIVP in
(3) can be reformulated into an equivalent Volterra integral
equation, which is expressed as

y(x) =
m−1∑
k=0

xk

k!
y(k)(0) +

1

Γ(p)

∫ x

0

(x− z)p−1f(z, y(z)) dz.

(5)
with m − 1 < p ≤ m. In other words, any solution to the
original initial value problem (3) is also a solution of the
Volterra equation.

Theorem 3: [17] Suppose that f(t, y) is Lipschitz contin-
uous at each point (t, y) in the region R, defined by

a ≤ t ≤ b, −∞ < y < ∞. (6)
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where a and b are finite. Assume a constant L exists such
that for all values of t, y, y∗, both the coordinates (t, y) and
(t, y∗) lie within the region R,

|f(t, y)− f(t, y∗)| ≤ L|y − y∗|. (7)

Theorem 4: [15], [17], [18] A linear multistep method is
considered convergent if, for all initial value problems that
satisfy the assumptions outlined in Theorem 3 as t ∈ [a, b]
and 0 < α < 1, the following condition holds:

|y − y ∗ | ≤ M · t1+αhp. (8)

where M is a constant depending exclusively on p and α,
where p is between 0 and 1. Moreover,

lim
h→∞

yn = y∗(tn). (9)

Theorem 5: [19] Convergence of the method will be
satisfied when the method achieves both consistency and
zero stability.

Definition 1: [19] When the order is is greater than or
equal to p, where p ≥ 1, the fractional linear multistep
method (FLMM) is said to be consistent.

Definition 2: [19] When no root of the polynomial’s
initial features have modulus greater than one, the FLMM
is said to be zero stable, and each root with a modulus of
one is a simple root.

IV. ANALYSIS OF THE METHODS

This section presents the analysis of the five methods under
consideration.

A. Fractional Explicit Adams Method of Order 3 (FEAM3)

FEAM3 utilizes Lagrange interpolation technique to build
on the third-order Adam–Bashforth numerical scheme by
adapting it for fractional calculus. The fractional derivative
used is Caputo sense. The solution to the FIVP of FDEs is
obtained from the following scheme [20]:

y(tn+1) = y(tn) +
h

Γ(α)

[(
3(n+ 1)α − (n)α

α
+

4(n+ 1)α+1 − 2(n)α+1

α+ 1
+

(n)α+2 − (n+ 1)α+2

α+ 2

)
yn+(

−3(n+ 1)α

α
+

4(n+ 1)α+1 − 2(n)α+1

α+ 1
+

(n)α+2 − (n+ 1)α+2

α+ 2

)
yn−1+(

(n+ 1)α

α
+

(n)α+1 − 3(n+ 1)α+1

2α+ 2
+

(n+ 1)α+2 − (n)α+2

2α+ 4

)
yn−2

]
.

(10)

Based on Theorem 2, FEAM3 is said to be convergent if
and only if |y − y∗| ≤ Ktα−1hp, by which K is a constant

and lim
h→∞

yn = y(tn). From (10), let

P =
3(n+ 1)α − (n)α

α
+

3(n)α+1 − 5(n+ 1)α+1

2α+ 2
+

(n+ 1)α+2 − (n)α+2

2α+ 4
,

Q =
−3(n+ 1)α+4

α
+

4(n+ 1)α+1 − 2(n)α+1

α+ 1
+

(n)α+2 − (n+ 1)α+2

α+ 2
,

R =
(n+ 1)α

α
+

(n)α+1 − 3(n+ 1)α+1

2α+ 2
+

(n+ 1)α+2 − (n)α+2

2α+ 4
.

(11)

Substituting equation (11) into Equation (10) yield the
following exact form:

y∗(tn+1)− y∗(tn) =
hα

Γ(α)
(P )F ∗

n +
hα

Γ(α)
(Q)F ∗

n−1+

hα

Γ(α)
(R)F ∗

n−2 +
3

8
h4y∗(4)ϵ,

(12)

and the following approximate form:

y(tn+1)− y(tn) =
hα

Γ(α)
(P )Fn +

hα

Γ(α)
(Q)Fn−1+

hα

Γ(α)
(R)Fn−2.

(13)

Subtracting equation (12) from equation (13) leads to:

y(tn+1)−y∗(tn+1) = y(tn)− y∗(tn)+

hα

Γ(α)
(P )[f(tn, yn)− f(t∗n, y

∗
n)]+

hα

Γ(α)
(Q)[f(tn−1, yn−1)− f(t∗n−1, y

∗
n−1)]+

hα

Γ(α)
(R)[f(tn−2, yn−2)− f(t∗n−2, y

∗
n−2)]+

3

8
h4y∗(4)ϵ.

(14)

Let

|dn+1 = |yn+1 − y∗n+1|,
|dn| = |yn − y∗n|,

|dn−1| = |yn−1 − y∗n−1|,
|dn−2| = |yn−2 − y∗n−2|.

(15)

By using the assumption outlined in equation (15) and
Theorem 3, along with the application of the Lipschitz
condition, we obtain:

|dn+1| ≤
(
1 +

hαP

Γ(α)

)
|dn|+

hαQ

Γ(α)
|dn−1|+

hαR

Γ(α)
|dn−2|+

3

8
h4y∗(4)ϵ.

(16)

Rewriting equation (16) based on Theorem 4 yield:
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|dn+1| ≤(1 +Khα)|dn|+Khα|dn−1|+

Khα|dn−2|+
3

8
h4y∗(4)ϵ.

(17)

Hence, the initial value goes to zero when h is small
enough or gets closer to zero, that is, it is proven that |dn+1 ≤
|dn|. This leads to the conclusion that |yn+1| = |y∗n+1|
and |yn| = |y∗n|. Therefore, since Theorem 2 is satisfied,
it follows that FEAM3 is convergent.

B. Fractional Adams Method of Explicit Order 2, Implicit
Order 2 (FAM22)

FAM22 is developed by combining the principles
of Lagrange interpolation with the concepts of the
Adams–Moulton method, specifically adapted for the frac-
tional case. The numerical approach for solving the FIVP of
FDEs is expressed as follows [21]:

y(tn+1) =y(tn) +
h

Γ(α)

[(
(n+ 1)α

α
+

(n)α+1 − (n+ 1)α+1

α+ 1

)
yn+1+(

−(n)α

α
+

(n+ 1)α+1 − (n)α+1

α+ 1

)
yn

]
.

(18)

According to Theorem 4, FAM22 is said to be convergent
if and only if |y − y∗| ≤ Mtα−1hp, where M is a constant
and lim

h→∞
yn = y∗(tn). Based on equation (18), let

P =
(n+ 1)α

α
+

(n)α+1 − (n+ 1)α+1

α+ 1
,

Q =
−(n)α

α
+

(n+ 1)α+1 − (n)α+1

α+ 1
.

(19)

Substituting equation (19) into equation (18) yield the
exact and approximate form of the system as shown in
equation (20) and equation (21), respectively.

y∗(tn+1)− y∗(tn) =
hα

Γ(α)
(P )F ∗

n+1 +
hα

Γ(α)
(Q)F ∗

n−

1

12
h3y∗(3)ϵ.

(20)

y(tn+1)− y(tn) =
hα

Γ(α)
(P )Fn+1 +

hα

Γ(α)
(Q)Fn. (21)

Subtracting equation (20) from equation (21) leads to:

y(tn+1)−y∗(tn+1) = y(tn)− y∗(tn)+

hα

Γ(α)
(P )[f(tn+1, yn+1)− f(t∗n+1, y

∗
n+1)]+

hα

Γ(α)
(Q)[f(tn, yn)− f(t∗n, y

∗
n)]−

1

12
h3y∗(3)ϵ.

(22)

Let

|dn+1| = |yn+1 − y∗n+1|,
|dn| = |yn − y∗n|.

(23)

Applying the assumption from equation (23) and Theorem
3, and utilizing the Lipschitz condition, we obtain:

(
1− hαP

Γ(α)

)
|dn+1| ≤

(
1 +

hαQ

Γ(α)

)
|dn| −

1

12
h3y∗(3)ϵ.

(24)

By reformulating equation (24) in accordance with Theo-
rem 4, we obtain:

(1−Khα)|dn+1| ≤ (1 +Khα)|dn| −
1

12
h3y∗(3)ϵ. (25)

Based on the above analysis, the initial value goes to zero
when h is small enough or gets closer to zero, hence, it
is proven that |dn+1 ≤ |dn| . This implies that |yn+1| =
|y∗n+1| and |yn| = |y∗n| . Therefore, Theorem 2 is fulfilled,
confirming that FAM22 is convergent.

C. Fractional Explicit Method (FE)

FE is formulated by involving the approximation at the
point tn and tn−2 by which the step size is 2h. The method
is derived by integrating the concept of Adams-Bashforth
method of fractional case and implementing Lagrange inter-
polation for fractional case. The numerical solution to the
FIVP of FDEs is presented as follows [22]:

y(tn+1) = y(tn) +
h

Γ(α)[(
3(n+ 1)α − 2(n)α

2α
+

(n)α+1 − (n+ 1)α+1

2(α+ 1)

)
Fn +(

−(n+ 1)α

2α
+

(n+ 1)α+1 − (n)α+1

2(α+ 1)

)
Fn−2

]
.

(26)

According to Theorem 4, FE is said to be convergent if
and only if |y − y∗| ≤ Mtα−1hp , where M is a constant
and lim

h→∞
yn = y∗(tn). Based on equation (26), let

X =
3(n+ 1)α − 2(n)α

2α
+

(n)α+1 − (n+ 1)α+1

2(α+ 1)
,

Y =
−(n+ 1)α

2α
+

(n+ 1)α+1 − (n)α+1

2(α+ 1)
.

(27)

Substituting equation (27) into equation (26) generates
the exact and approximate forms of the system, given by
equation (28) and equation (29), respectively.

y∗(tn+1)− y∗(tn) =
hα

Γ(α)
(X)F ∗

n +
hα

Γ(α)
(Y )F ∗

n−2−

2

3
h3y∗(3)ϵ.

(28)

y(tn+1)− y(tn) =
hα

Γ(α)
(X)Fn +

hα

Γ(α)
(Y )Fn−2. (29)

Subtracting equation (28) from equation (29) leads to:
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y(tn+1)−y∗(tn+1) = y(tn)− y∗(tn)+

hα

Γ(α)
(X)[f(tn+1, yn+1)− f(t∗n+1, y

∗
n+1)]+

hα

Γ(α)
(Y )[f(tn−2, yn−2)− f(t∗n−2, y

∗
n−2)]−

2

3
h3y∗(3)ϵ.

(30)

Let

|dn+1| = |yn+1 − y∗n+1|,
|dn| = |yn − y∗n|,

|dn−2| = |yn−2 − y∗n−2|.
(31)

Applying the assumption from equation (31) along with
Theorem 3, and utilizing the Lipschitz condition, we obtain:

|dn+1| ≤
(
1 +

hαX

Γ(α)

)
|dn|+

hαY

Γ(α)
|dn−2|+

2

3
h3y∗(3)ϵ.

(32)

Reformulating equation (32) in accordance with Theorem
4, we obtain:

|dn+1| ≤ (1 +Khα)|dn|+Khα|dn−2| −
2

3
h3y∗(3)ϵ. (33)

Based on the above analysis, the initial value tends to
closer to 0 when h is approaching to 0 or very small. This
proves that |dn+1 ≤ |dn|; hence, |yn+1| = |y∗n+1| and
|yn| = |y∗n|. Therefore, FE is confirmed to be convergent.

D. Fourth-order 2-point Fractional Block Backward Differ-
entiation Formula (2FBBDF(4))

2FBBDF(4) is formulated by combining the fractional
linear multistep method (FLMM) with the linear difference
operator. The numerical solution to the FIVP of FDEs is
presented as follows [23]:

y(tn+1) =− α(α2 − 8α+ 13)

4(2α3 − 22α2 + 77α− 72)
yn−2+

α(2α2 − 14α+ 21)

2α3 − 22α2 + 77α− 72
yn−1−

3(5α2 − 35α+ 48)

2(2α3 − 22α2 + 77α− 72)
yn+

α(α2 − 10α+ 27)

4(2α3 − 22α2 + 77α− 72)
yn+2−

3Γ(5− α))

2α3 − 22α2 + 77α− 72
hαcDα

t0yn+1.

y(tn+2) =
α(α2 − 7α− 12)

α3 − 11α2 + 16α+ 144
yn−2−

8α(α2 − 5α− 8)

α3 − 11α2 + 16α+ 144
yn−1+

12(5α2 − 35α+ 12)

α3 − 11α2 + 16α+ 144
yn+

8α(α2 − 13α+ 48)

α3 − 11α2 + 16α+ 144
yn+1+

12(2α−1)Γ(5− α)

α3 − 11α2 + 16α+ 144
hαcDα

t0yn+2.

(34)

According to [23], 2FBBDF(4) demonstrates an error
constant localized at C5 , which confirm the method to be
order 4. Based on Definition 1, the method is proven to be
consistent due to the presence of the order of the method. By
referring to Definition 2, [23] has proved that the method is
zero stable due to the existence of the roots, |rs|, satisfying
|rs| ≤ 1 . From Theorem 5, the combination of zero stability
and consistency of this method implies convergence.

E. PECE Method of Adams-Bashforth-Moulton Type
(FDE12)

According to [13], the primary concept behind developing
the method is to convert the fractional differential equation
into integral equation with a weak singularity. A product
trapezoidal quadrature formula is used to solve this integral
equation. Thus, the numerical solution to the FIVP of FDEs
is presented as follows:

y(tn+1) = y(tn) +
1

Γ(α)

 n∑
j=0

a
(n+1)
j Fn + an+1F

(p)
n+1

 .

(35)

This method is proven to be second-order convergence
[13]. Second-order convergence may not seem very good,
because the fractional order of the differential equations are
usually known in two or three decimal places. Due to the
limited accuracy of the input, using a higher-order method
is often not a good idea. In fact, higher-order methods often
are less stable than their lower-order methods, which makes
them less reliable.

In numerical techniques, the term “convergence” refers
to the degree to which a numerical solution approaches
the exact answer even if the discretisation parameters such
asthe time step are improved or made more precise. As the
approximation grows ever more exact, it essentially measures
the degree to which the computer model is able to accurately
reflect the real-life behaviour of the system. Several ap-
proaches, such as non-block methods which is FEAM3, have
been shown to converge more rapidly than block methods
such as 2FBBDF(4). In general, non-block approaches are
more efficient in terms of the number of computation steps
required to reach a high degree of accuracy. These methods
analyse data in an orderly way. Block methods, on the other
hand, which process data in bigger blocks, may be slower
to converge, taking more steps to obtain a same degree of
precision. FAM22, FE and FDE12 have been analyzed for its
stability and convergence. Research indicates that while they
are stable, their convergence rates may be slower compared
to explicit methods.

V. ILLUSTRATIVE EXAMPLE

To showcase the methods’ effectiveness and practical
applicability, several FIVP of FDEs are sourced directly for
comparative analysis. The evaluation approach included a
careful comparison of the numerical results derived from
the methods with the corresponding exact answers, with the
findings clearly presented in Tables I - VIII and Figures 1-
12. Tables I until III present the absolute error of different
methods at t with h = 0.1, h = 0.01 and h = 0.001 for
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Problem 1 respectively. Next, the absolute error of different
methods at various t with α = 0.70 and α = 0.50 for solving
Problem 2 are presented in Tables IV and V. Tables VI until
VIII present the absolute error of different methods at t with
h = 0.1, h = 0.01 and h = 0.001 for Problem 3 respectively.
Furthermore, the plots of the exact and approximate solution
for Problem 1 with h = 0.1, h = 0.01 and h = 0.001 are
figured out as in Figures 1 until 3 while Figure 4 shows the
efficiency curves for Problem 1. Moreover, Figures 5 until
6 show the plots of the exact and approximate solutions for
Problem 2 with α = 0.70 and α = 0.50 respectively. Also,
Figures 7 and 8 show the efficiency curves with α = 0.70
and α = 0.50 respectively. Besides, the plots of the exact and
approximate solution for Problem 3 with h = 0.1, h = 0.01
and h = 0.001 are figured out as in Figures 9 until 11 while
Figure 12 shows the efficiency curves for Problem 3. This
comparison allows for a comprehensive assessment of both
accuracy and efficiency. The following are the notations that
are used in this study:

h : Step size
AbsE : Absolute error
Method : Comparison method
FEAM3 : Fractional Explicit Adams Method of

Order 3 [20]
FAM22 : Fractional Adams Method of Explicit

Order 2, Implicit Order 2 [21]
2EBBDF(4) : Fourth-order 2-point Fractional Block

Backward Differentiation Formula [23]
FE : Fractional Explicit Method [22]
FDE12 : PECE Method of Adams-Bashforth-

Moulton Type - Available in MATLAB

Problem 1:
The following is an application problem of Riccati FDEs [24,
25]:

Dαy(t) = −y2 + 1, y(0) = 0, t ∈ [0, 1].

where the exact solution when α = 1.00 is

y(t) =
e2t − 1

e2t + 1
.

Problem 2:
The linear fractional order equation is given as [26]:

Dαy(t) = −y, y(0) = 1, t ∈ [0, 1].

where the exact solution is

y(t) = Eα(−tα).

and Eα(z) is defined as Mittag-Leffler function:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
.

Problem 3:
The nonlinear fractional order equation is considered as
follows [27]:

Dαy(t) = (1− y)4, y(0) = 0, t ∈ [0, 1].

where the exact solution when α = 1.00 is

y(t) =
1 + 3t− (1 + 6t+ 9t2)

1
3

2 + 3t
.

TABLE I
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.1 IN SOLVING PROBLEM 1

t Method Absolute Error

0.2 FEAM3 1.6247E-06
FAM22 9.5000E-05

2FBBDF(4) 1.6247E-03
FE 1.6247E-03

FDE12 3.4559E-04

0.4 FEAM3 5.3423E-04
FAM22 2.5921E-04

2FBBDF(4) 6.3860E-03
FE 6.3861E-03

FDE12 7.5174E-04

0.6 FEAM3 4.5129E-04
FAM22 3.9363E-04

2FBBDF(4) 5.9010E-03
FE 1.2137E-02

FDE12 1.2023E-03

0.8 FEAM3 3.3488E-04
FAM22 5.0366E-04

2FBBDF(4) 3.9650E-03
FE 1.6670E-02

FDE12 1.6033E-03

1.0 FEAM3 2.3869E-04
FAM22 5.9372E-04

2FBBDF(4) 1.9556E-03
FE 1.8847E-02

FDE12 1.8586E-03

TABLE II
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.01 IN SOLVING PROBLEM 1

t Method Absolute Error

0.2 FEAM3 3.7449E-06
FAM22 8.7304E-06

2FBBDF(4) 6.7106E-06
FE 1.8822E-04

FDE12 3.4563E-06

0.4 FEAM3 1.3975E-05
FAM22 2.2295E-05

2FBBDF(4) 2.5380E-06
FE 6.6446E-04

FDE12 7.4298E-06

0.6 FEAM3 2.1961E-05
FAM22 4.4568E-05

2FBBDF(4) 2.1296E-05
FE 1.2111E-03

FDE12 1.1644E-05

0.8 FEAM3 2.7323E-05
FAM22 5.4616E-05

2FBBDF(4) 4.3499E-05
FE 1.6295E-03

FDE12 1.5153E-05

1.0 FEAM3 3.0198E-05
FAM22 6.2843E-05

2FBBDF(4) 6.1566E-05
FE 1.8277E-03

FDE12 1.7168E-05
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Fig. 1. Plots of the exact and approximate solutions for Problem 1 with
h = 0.1

VI. DISCUSSION

A detailed comparative analysis of five methods can be
performed by evaluating their performance against exact
solutions of the FDEs in problems 1 until 3. For problems
1 and 3, accuracy of each method is increased when N is
increased, as can be observed in tables 1-3 and 6-8. This
indicates that the approximate solution converges towards
the exact solution. Based on figures 1-3 and 9-11, the
convergence of each numerical method is demonstrated using
graphical comparisons between the approximate and exact
solutions. These visual representations clearly illustrate the
gradual alignment of the approximate solutions with the exact
solutions, highlighting the accuracy of the methods. Accord-
ing to Table I until Table III, it can be observed that FEAM3
performs better when h = 0.1. However, when h = 0.01
and h = 0.001, FDE12 produce the smallest absolute error.
Furthermore, according to Table VI until Table VIII, FEAM3
is the most accurate method in terms of absolute error for all
the step size. Not only that, the computational performance
of each method is demonstrated by plotting the efficiency
curve of each method. From Figure 4, it is demonstrated that
FEAM3 method outperforms FAM22, 2FBBDF(4), FE and
FDE12 methods. For problem 2, the approximate solution
converges when α increases. From Table VI and Table V,
FEAM3 generated more comparable results when compared
to FAM22, 2FBBDF(4), FE and FDE12 methods. Based on
Figure 5 and Figure 6, all methods closely approximate the

 

 

Fig. 2. Plots of the exact and approximate solutions for Problem 1 with
h = 0.01

exact solution as the value of alpha varies. FEAM3 can
be seen to have a higher accuracy method by plotting the
efficiency curve of the each method. Based on Figure 7 and
Figure 8, FEAM3 produces smaller error as compared to
FAM22, 2FBBDF(4), FE and FDE12 methods. In short, the
non-block methods which are FEAM3, FAM22 and FDE12
perform better in terms of accuracy than block method which
is 2FBBDF(4). FE method is the least accurate method
when compared to FEAM3, FAM22, 2FBBDF(4) and FDE12
due to its step size of interpolating points, which is 2h,
while step size of FEAM3, FAM22, 2FBBDF(4) and FDE12
is h. For FEAM3, FAM22 and FDE12, FEAM3 outper-
forms FAM22 and 2FBBDF(4) when solving fractional order
ordinary differential equations because it converges much
closer to the exact solution, exhibiting an exceptionally small
error in comparison to FAM22 and FDE12. FEAM3 also
has higher order than FAM22. In short, non-block method
such as FEAM3 has been highlighted for its accuracy and
efficiency in solving both linear and nonlinear FDEs while
block method which is 2FBBDF(4) allows for simultaneous
computation of multiple solution points, where less number
of steps are involved in the computations.

VII. CONCLUSIONS

In this paper, several numerical methods for solving FDEs
were selected to be reviewed. They are the FEAM3, FAM22,
2FBBDF(4), FE and FDE12. Three numerical problems were
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TABLE III
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.001 IN SOLVING PROBLEM 1

t Method Absolute Error

0.2 FEAM3 1.0653E-07
FAM22 9.8045E-07

2FBBDF(4) 9.3634E-09
FE 1.9067E-05

FDE12 3.4333E-08

0.4 FEAM3 2.0725E-06
FAM22 2.2901E-06

2FBBDF(4) 1.1229E-07
FE 6.6675E-05

FDE12 7.1956E-08

0.6 FEAM3 2.8479E-06
FAM22 4.5064E-06

2FBBDF(4) 3.0807E-07
FE 1.2107E-04

FDE12 1.1900E-07

0.8 FEAM3 3.3549E-06
FAM22 5.5022E-06

2FBBDF(4) 5.3024E-07
FE 1.6259E-04

FDE12 1.5038E-07

1.0 FEAM3 3.6079E-06
FAM22 6.3175E-06

2FBBDF(4) 7.0278E-07
FE 1.8224E-04

FDE12 1.7432E-07

TABLE IV
ABSOLUTE ERROR OF DIFFERENT METHODS AT VARIOUS t

WITH α= 0.70 FOR SOLVING PROBLEM 2

t Method Absolute Error

0.2 FEAM3 9.7441E-05
FAM22 4.3898E-06

2FBBDF(4) 2.8507E-02
FE 1.7272E-01

FDE12 1.0212E-01

0.4 FEAM3 9.0656E-05
FAM22 5.0362E-06

2FBBDF(4) 4.4815E-02
FE 2.9831E-02

FDE12 7.5208E-02

0.6 FEAM3 8.0133E-05
FAM22 3.2049E-06

2FBBDF(4) 4.6510E-02
FE 5.1524E-03

FDE12 5.1374E-02

0.8 FEAM3 6.6562E-05
FAM22 2.1809E-06

2FBBDF(4) 4.0086E-02
FE 8.8992E-04

FDE12 2.2517E-02

1.0 FEAM3 7.0611E-06
FAM22 3.9177E-05

2FBBDF(4) 2.9183E-02
FE 1.5370E-04

FDE12 2.5679E-04

 

 

Fig. 3. Plots of the exact and approximate solutions for Problem 1 with
h = 0.001

Fig. 4. Efficiency curves for Problem 1

presented in order to determine the performance of each
method in terms of accuracy. It is observed that non-block
method which are FEAM3, FAM22 and FDE12 perform
better than block method which is 2FBBDF(4). For non-
block method, FEAM3 outperforms than FAM22 in terms of
accuracy. However, FE is the least accurate method among
the five.

Although a variety of numerical methods have been de-
veloped to address FDEs, including finite difference, spectral
methods, and variational approaches, there is a notable lack
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Fig. 5. Plots of the exact and approximate solutions for Problem 2 with
α = 0.70

of comprehensive studies that investigate a wider range
of techniques. Thus, in future, the exploration of hybrid
methods, which combine the assets of various techniques
to improve both computational efficiency and accuracy, is
a promising research path. For instance, the convergence
and stability of solutions could be enhanced by integrating
conventional numerical schemes, such as the finite differ-
ence method, with contemporary methods, such as fractional
Adam Bashforth-Moulton method or fractional block back-
ward differentiation method. Researchers would be able to
more effectively address the unique challenges presented by
various varieties of FDEs and applications by utilising a
broader range of numerical methods.

Besides, when applied to large systems, particularly in
high-dimensional settings, numerous existing methods of
FDEs for solving fractional differential equations may not
scale effectively. This becomes more challenging as FDEs are
frequently employed for modelling complicated, multidimen-
sional phenomena in disciplines such as epidemiology, image
processing, and fluid dynamics. The practical applicability
of numerous existing numerical methods is restricted by the
rapid increase in computational cost associated with solving
large systems of FDEs. Thus, future research is required to
create algorithms that are more computationally efficient and
scalable, and that are capable of resolving high-dimensional
fractional problems. Advancements in distributed computing
and parallel computing could be instrumental in overcoming
this obstacle. Additionally, the improvement of efficiency

TABLE V
ABSOLUTE ERROR OF DIFFERENT METHODS AT VARIOUS t

WITH α= 0.50 FOR SOLVING PROBLEM 2

t Method Absolute Error

0.2 FEAM3 9.5845E-04
FAM22 1.7297E-04

2FBBDF(4) 7.5473E-03
FE 1.7272E-01

FDE12 1.7356E-01

0.4 FEAM3 8.7032E-04
FAM22 9.5146E-05

2FBBDF(4) 3.1492E-02
FE 2.9831E-02

FDE12 1.2951E-01

0.6 FEAM3 7.4739E-05
FAM22 3.8351E-05

2FBBDF(4) 3.7311E-02
FE 5.1524E-03

FDE12 8.3832E-02

0.8 FEAM3 6.0223E-05
FAM22 2.2925E-05

2FBBDF(4) 3.2808E-02
FE 8.8992E-04

FDE12 4.5417E-02

1.0 FEAM3 4.4374E-05
FAM22 6.3798E-05

2FBBDF(4) 2.2799E-02
FE 1.5370E-04

FDE12 1.4437E-02

TABLE VI
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.1 IN SOLVING PROBLEM 3

t Method Absolute Error

0.2 FEAM3 8.5496E-05
FAM22 6.2234E-02

2FBBDF(4) 1.9738E-01
FE 2.0598E-02

FDE12 6.2913E-04

0.4 FEAM3 7.6884E-05
FAM22 3.7348E-02

2FBBDF(4) 1.2772E-01
FE 2.1113E-02

FDE12 1.6726E-04

0.6 FEAM3 7.0944E-05
FAM22 2.6024E-02

2FBBDF(4) 1.6046E-02
FE 1.9345E-02

FDE12 6.3448E-04

0.8 FEAM3 6.6498E-05
FAM22 1.9641E-02

2FBBDF(4) 1.2560E-02
FE 1.7416E-02

FDE12 8.7997E-04

1.0 FEAM3 6.2990E-04
FAM22 1.5588E-02

2FBBDF(4) 1.0427E-02
FE 1.5693E-02

FDE12 1.0172E-03

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2776-2787

 
______________________________________________________________________________________ 



 

 

Fig. 6. Plots of the exact and approximate solutions for Problem 2 with
α = 0.50

Fig. 7. Efficiency curves for Problem 2 with α = 0.70

and accuracy for large systems may be achieved by the
development of improved multigrid and multilevel methods,
which would enable the resolution of more intricate real-
world problems within a reasonable computational budget.

Furthermore, there is a substantial gap in research that
tailors numerical methods to specific applications, despite
the widespread application of FDEs in a variety of fields.
The majority of the present methods are generic, and while
they may be effective for certain issues, they may not
completely address the unique challenges of application-

Fig. 8. Efficiency curves for Problem 2 with α = 0.50

 

 

Fig. 9. Plots of the exact and approximate solutions for Problem 3 with
h = 0.1

specific scenarios. For example, the accuracy and efficiency
of a solution can be substantially influenced by the numerical
method selected in biological modelling, where FDEs are
employed to simulate complex processes such as cell growth
or diffusion. Similarly, in finance, where fractional calculus
is employed to simulate anomalous diffusion in asset prices
or volatility, specialised methods that consider the stochastic
nature of financial systems are required. Future research
could concentrate on the development of numerical methods
that are specific to the application and that are tailored
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TABLE VII
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.01 IN SOLVING PROBLEM 3

t Method Absolute Error

0.2 FEAM3 4.3778E-06
FAM22 5.4235E-03

2FBBDF(4) 4.5628E-04
FE 1.7050E-03

FDE12 3.2091E-05

0.4 FEAM3 4.1394E-06
FAM22 3.5526E-03

2FBBDF(4) 3.3346E-04
FE 1.8602E-03

FDE12 3.9051E-05

0.6 FEAM3 1.0483E-05
FAM22 2.5881E-03

2FBBDF(4) 2.6830E-04
FE 1.7561E-03

FDE12 4.5799E-05

0.8 FEAM3 1.5097E-05
FAM22 2.0109E-03

2FBBDF(4) 2.2627E-04
FE 1.6084E-03

FDE12 5.0438E-05

1.0 FEAM3 1.8343E-05
FAM22 1.6317E-03

2FBBDF(4) 1.9629E-04
FE 1.4654E-03

FDE12 4.1005E-05

TABLE VIII
ABSOLUTE ERROR OF DIFFERENT METHODS AT t WITH

h = 0.001 IN SOLVING PROBLEM 3

t Method Absolute Error

0.2 FEAM3 4.3778E-06
FAM22 5.4235E-03

2FBBDF(4) 4.5628E-04
FE 1.6774E-04

FDE12 2.8013E-05

0.4 FEAM3 4.1394E-06
FAM22 3.5526E-03

2FBBDF(4) 3.3346E-04
FE 1.8393E-04

FDE12 4.0941E-05

0.6 FEAM3 1.0483E-05
FAM22 2.5881E-03

2FBBDF(4) 2.6830E-04
FE 1.7410E-04

FDE12 5.1648E-05

0.8 FEAM3 1.5097E-05
FAM22 2.0109E-03

2FBBDF(4) 2.2627E-04
FE 1.5970E-04

FDE12 5.8577E-05

1.0 FEAM3 1.8343E-05
FAM22 1.6317E-03

2FBBDF(4) 1.9629E-04
FE 1.4565E-04

FDE12 5.0431E-05

 

 

Fig. 10. Plots of the exact and approximate solutions for Problem 3 with
h = 0.01

to the unique properties of the system being modelled.
The gap between theoretical advancements and practical
implementation could be bridged by conducting additional
case studies that illustrate the practicality of these methods
in real-world scenarios. Not only that, the findings indicate
that practitioners ought to favour non-block approaches such
as FEAM3 for high-accuracy issues that require small step
sizes, but block methods like 2FBBDF(4) may be more
suitable for parallel computing contexts. Future research
should include adaptive step-size implementations and hybrid
models customised for specific applications.
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