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Pricing of Digital Exchange Option under Mixed
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Abstract—In this paper, the digital exchange option pricing
under mixed fractional jump diffusion enviroment is discussed.
Under risk neutral measure, a closed form solution for the price
of digital exchange option is established by quasi conditional
expectation.

Index Terms—Mixed fraction Brownian motion; Quasi
conditional expectation; Exchange option; Jump diffusion
process.

I. INTRODUCTION

LACK and Scholes [1] are the first to solve the

European option pricing model based on the hypothesis
that underlying asset price is governed by Brownian motion
(BM). Thereafter the theories of option pricing under
Brownian motion have been greatly developed. Garman [2]
proposed the assumptions of the foreign currency option,
and gave a pricing model for standard European currency
options. Garman [2] presented a pricing model specifically
for standard European currency options. Subsequently, Carr
[3] derived an alternative representation of McKee’s equation
and effectively demonstrated the consistency of the results
by decomposing the value of an American put option
into the corresponding European put price and an early
exercise premium. Bakshi [4] further expanded the scope
by introducing an alternative option and conducting a
comprehensive study of alternative models from multiple
angles, particularly when interest rates, volatility, and jumps
were permitted to be stochastic. Andreasen [5] contributed
significantly by providing pricing models for both Asian
options and lookback options.

However, a substantial body of empirical research has
revealed that the stock market price does not adhere to the
traditional geometric Brownian motion. Instead, it exhibits
several distinct characteristics, such as non-independence,
non-normality, long range dependence, and self-similarity.
Fama [6] highlighted that the underlying asset price process
deviates from geometric Brownian motion and displays a
characteristic of sharp peaks and heavy tails. Duan [7] further
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pointed out that the Black-Scholes (BS) model, which is
based on geometric Brownian motion, fails to adequately
explain two key phenomena in the stock market: asymmetric
peak characteristics and the volatility smile. Given these
observations, fractional Brownian motion (FBM), which
possesses the properties of self-similarity and long range
dependence, emerged as a suitable tool in mathematical
finance. FBM was first introduced by Kolmogorov [8] to
describe the fluctuation of asset prices. Under the risk neutral
measure, Necul [9] utilized the Fourier transform and the
Girsanov measure transform to derive the European option
pricing formula under FBM. Kalantari [10] subsequently
employed the finite difference method to investigate the
pricing model of American put options under the fractional
Brownian motion model.

It is important to note that fractional Brownian motion
has been proposed as a model for logarithmic stock
price motion, which allows for long range dependence
between returns. This implies the potential for arbitrage
opportunities. Rogers [11] indirectly proved the existence of
such arbitrage by constructing an example. Rostek [12] also
emphasized that while the favorable time series properties of
fractional Brownian motion, such as long range dependence,
are advantageous, they are accompanied by a seemingly
insurmountable disadvantage: the presence of arbitrage. In
fact, FBM is not a semimartingale, which poses a significant
obstacle to its application in finance. To address this
issue, the mixed fractional Brownian motion (MFBM) was
introduced. MFBM, which is a semimartingale, represents
a linear combination of Brownian motion and fractional
Brownian motion. This ensures market completeness and
eliminates arbitrage opportunities. Cheridito [13] was the
first to establish and prove this. Consequently, MFBM is
more suitable for capturing the fluctuations in financial
markets. In this context, Ghasemalipour [14] conducted
research on financial forecasting models in a mixed fractional
Brownian motion environment and estimated European call
options. Shokrollahi [15] provided the pricing formula
for geometric mean Asian options under the MFBM
environment. Additionally, Sun [16] established a currency
option pricing model in the MFBM environment.

The classic BS formula hinges on the key assumption
that the price of the underlying asset can be described by
a continuous stochastic process. However, this assumption
has been widely challenged. Merton [17] pointed out that
continuous trading is impractical in reality and that no
empirical time series exhibits a truly continuous sample
path. These observations suggest that the classic BS formula
is inadequate for capturing drastic price changes caused
by events such as natural disasters, wars, and other
special circumstances that can lead to discontinuous or
even violent fluctuations in the price of the underlying
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asset [18]. To address these limitations, researchers have
explored alternative models that incorporate jumps. Eraker
[19] investigated the performance of the dynamic jump
diffusion model of stock prices using joint option and stock
market data and found that complex jump models offer
superior performance in fitting both options and return data
simultaneously. Lee [20] proposed that models for individual
stocks and all market indices should incorporate Lévy jumps
to better capture the empirical characteristics of asset prices.
Amin [21] constructed a simple discrete time model of the
underlying asset price following a jump diffusion process
to value options and provided early exercise boundaries for
American call and put options. In 2002, Kou [22] proposed a
double exponential jump diffusion model and derived option
pricing formulas under this framework. Recently, scholars
have further extended these models to incorporate fractional
jump diffusion. For example, [23], [24] have explored option
pricing under fractional jump diffusion models, aiming to
provide more accurate and robust pricing mechanisms that
account for both the continuous diffusion and discontinuous
jump components of asset price movements.

The exchange option is a unique type of exotic option
that grants the option holder the right to exchange two risky
assets at the maturity date. Margrabe [25] was the pioneer
in this field, proposing a closed form solution for exchange
options and thereby laying the foundation for their pricing.
Building on this work, Blenman [26] subsequently addressed
the pricing of European power exchange options under the
risk neutral measure. Kim [27] further extended the research
by studying the pricing of exchange options with default
risk, utilizing the Klein model to incorporate credit risk and
deriving a closed form pricing formula that accounts for this
additional risk. In this paper, we introduce a novel type of
exchange option known as the digital power exchange option.
This innovative option incorporates an indicator function
based on the ratio of the prices of the two underlying assets
[28]. We begin by establishing the relevant pricing models
and definitions for the digital exchange option under the
risk neutral probability measure. Subsequently, we derive the
pricing formulas for the digital exchange option, leveraging
the necessary pricing knowledge and methodologies.

II. PRELIMINARIES

Let (Q, F, P) be a complete filtered probability space,
where P is a probability measure. By (t) is an FBM with
Hurst parameter H € (3,1), B(t) is a BM, and N;(t) =
1,2,---, N is a Poisson process with respect to P.

The riskless asset P(t) and the two risky assets 5;(t)(i =

1,2) are governed by the following equations:

dP(t) = r(t)P(t)dt, PO) = 1,0< t <T, (1)

where P(t) is the price of the riskless asset at time ¢ and
r(t) is the riskless interest rate.

dSl(t) :Si(t)[(u(ﬁ) — )\/L.]i(t)dt + Ei(t)dBH(t)
+o3(t)dB(t) + (e — 1)dN;(t)],i = 1,2
where Bpy(t) is a FBM, which Hurst parameter satisfies
H € (2,1) and B(t) is a standard BM, pu(t), &(t), o;(t)

are deterministic functions. N;(t) are Poisson process with
same rate A representing the number of jumps between [0, ¢],

2

Ji(t) are the jump size at the time ¢ which are sequence
of independent identically distributed random variables with
(€7 = 1) ~ N(us,1),075,)- In addition, B(t), Br(t)
and N, (t) are assumed to be independent each other.

The risk neutral probability measure is a fundamental
concept in arbitrage pricing theory. In this measure, the
current price of each security in the economy is determined
by discounting the expected value of its future payoffs using
a risk-free interest rate. The basic theorem of asset pricing
shows that the risk neutral probability measure is guaranteed
to exist under certain conditions no arbitrage assumption.

Let

B(t) = B(t) + /t Md&

o1(5) Bu(t)

a risk nuetral measure P is defined as

5= [ eene) -5 [ P

) =r(t)
o (t)

where (1) = ,i=1,2. The B(t)+ Bg(t) is a new
MFBM. .
Under the risk neutral measure P, the equation (2) can be

discribed as:

d81(t) =SiO[(r(t) = A, @yt + e (¢ t)d B (t)
+o1(t)dB(t) + (" — 1N (1)), 3)

dSa(t) =S2()[(r(t) — Ay oy dt + e2(t)dBr (1)
+02()dB(t) + (™) — 1)dNy(t)].

The exchange option is a contract in which the holder
of an option has the right at maturity but does not have to
exchange one asset for another, so exchange option is one
option of multiple risky assets. The payoff of the exchange
option at maturity 7 is

max{ﬂlSl(T) — S(T),O},

where (3; > 0 are constants for i = 1, 2.

Digital exchange option is an option by adding an indicator
function about the ratio range of the two underlying assets
on the basis of ordinary exchange option [28].

Definition 1. Let 3; > 0 and K; > 0 are constants for
1 =1, 2. If the payoff of an option satisfies at maturity 7'

C(T) = max{ﬁlsl (T) — 6252(T), O}I{Kligégi SKz}’

where 3; > 0, Iy is an indicator function and [K7, K]
is the execution price interval, this option is named digital
exchange option.

III. SOME LEMMAS OF THE QUASI-CONDITIONAL
EXPECTATION

In this section, some assumptions and lemmas are
introduced on quasi-conditional expectations that are
required for the rest of the paper. These lemmas can be
found in the fundamental papers concerning the fractional
Itd integral [16] and [24].

Assumption 1. Let 7' > 0, supposing £(t) € (0 <t <T)
be a continuous function and L(t) be a function that

£(t) = /RL(u)(b(uJ)dmO <t<T,
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where ¢(u,t) = H(2H — 1)|u — t|?H~2. where
Lemma 1. The price at every ¢ € [0,7] of a bounded T n
FH -measureable claim F € L? is given by ®; =£151(t) exp[/ (r(s) = Mgy ) )ds + Z Ji(T,
t i=1
T
F(t)=e o "% (FIEH), x [N(dy) — N(ds)),

where Es[-] denotes the quasi-conditional expectation with By =B255(t) exp] / g (r(5) = Mgy )ds + Z Jo(T)]

respect to the risk-neutral measure. t o1
Lemma 2. LetA AssumEtion 1 holds, let f be a function % [N(ds) — N(dy)).

such that E5[f(By(T), B(T))] < oo. Then, for every 0 <

t < T and deterministic functions £(t), o(t), we have
I it + J M) = Masa)ds — B

dr = Sa(t)
T R T R 1= \/B )
Eolf([ eo)iButs) + [ o(s)dBls)
0 0
:/ L In Sl(t) + j;& AMJl(t) - AMJz(t))dS -D
216 dy = —20 :
8 [ e(s)dBn(s) — [ ? Vb
x - H
e .
. . 0 In gy —In(32) — f; (M) — Ag)ds + B
where 67 = [, [ e(u)e(v)p(u,v)dudv + [ o2 (s)ds. 3= NG '
We consider the process
s T
ZF = B*(t) + By (1) Lo S —n(2) = [ (M, 1) — Miso)ds + D
A t b b
= B(t +BH /0 ds—/f )ds,0 <t <T, " Vb
’ B = 21 [ (T3) = Jo(T3)] + g5
£(s) = / £ () (s, 5)du. i
t D= ; [J1(T3) = J2(T3)] — 55

Define a probability measure P* by

dpP* r - T - b= ’ o1(s) — a(s)]*ds
5= =Xr = exp[/ i(s)dBp(s) + / i(s)dB(s) /t ’

_%/t ds_,/ / 4 () (0)(u, 0)dudv]. // le1(u) — e2(w)][e1(v) — £2(v)]é(u, v)dudv.

(iii) when % < Kj,

Then Z; is a new MFBM under probability measure P*.

Lemma 3. Let f be a function such that B fT r(s)ds
E[f(Bu(T), B(T))] < oo . Then for every ¢ <T, C(t,T) = Eple J« " C(T)|F]
T T = T r(s)ds - An(T — t)n —\(T-t)
Bplf([ ee)dBiy(s) + [ a(sdB" (o) =< 2 e el
0 0 n=

~ g el Bt + [ o(aBe)x (D).

where

X( g -
by =455 (¢ - d J1(T;
We denote Ep-[-] the quasi-conditional expectation with 3 =P )exp[/t (r(s) Mjl(t)) S+; ()
respect to P*. X [N(dy) — N(dr)],

IV. PRICING FOR DIGITAL EXCHANGE OPTION T
In this section, the pricing formula of exchange option are Dy =f25(t) eXP[/t (r(s) = Ay ())ds + Z J2(T5)]
given in JMFBM. i=1
Theorem 1. The pricing formula at every ¢ € [0,7] of
digital exchange option with maturity 7" and execution price

x [N(d2) — N(ds)],

S1(%)

interval [K7, K>] is given as follows: 2o _ Ty N ds + B
(i) when % > Ky, C(t,T) = 0. dr = N = ft ( MJiZ;) MJz(t)) s+ ’
(ii) when K7 < 22 < Ko,

_ —fT r(s)ds S10) T
Ct,T) = Eple o C(T)| ] LR ) Quae ~ Auge)ds + D
T n _ 1\ 8 — .
_ e—ﬁ r(s)ds Z &ef)\(Tft) [(I)l _ (1)2]’ ﬁ
n!
n=0 Proof.
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Letting N (T — t) = n, we have

T
(1) = S0 [ r(6) — s ods + 3 AT

k=1

.+1T@@MBH@y+ATQ@mB@>—;lToﬂﬁw

2 e

By Lemma 1, we have

u,v)dudv],i =1,2.

C(t,T)=Eple I r(s)dsC(T) | F3]

— ftT r(s)ds Z )\n(T - t) ~

n!

AT —1)

n=0
Sin(T

By Lemma 2 and Lemma 3, we have

Sin(T
Ep[Son(T) - (S;nETi - %V {K1 <542 <K}

x {B1

|F]

T n
= Ep[Sa(t) exp[/t (r(s) = Mtgy(ey)ds + > Ja(T.

X(T) (1) o -

X(0) Son(T) By i<
T n
= Sa(Oespl | (1(s) = M ds + - (T
=1
S, (T
X EP*[(S;LET; - %>+ [Klg%gKQHFt].

Then some outcomes can be given in follow:
(i) When % > Ko,

Sin(T) P2y

Son(T) E) K1 < i <Ko

(ii) When K; < % < Ko,

Ep-[(

|Ft] =0.

Sin(T)  Bo
EP*[(SQTL(T) - E)Jr [Klggéngﬂ‘Ft]
Sin(T
= Ep-[( S;nET; - %)+ [%S%SK2]|FA'
(iii) When % <K,
Sin(T
Ep [( - ET; %) IK1<h§K2]|Ft]
B
- B (G2 ~ 3 st cra P

Due to the proof of (iii) is similar to that of (ii), we only
give the proof of (ii).

Sln(T) 52 +
PG, @ "B s el
B Sin(T)  Bay
= EP*[(Sgn(T) - B*) I[%SKQHFJ
Sln(T) /82 +
Ep« — )" 1in ~ B2 F
PG @ ~ B ezl
=1I; — I,

Let
T
x:/o [61(8) _52<3>]dB;{(S)
T
n /O [01(s) — 02 (s)]dB*(s)],

c :/0 [e1(s) — ea(s)]dBy (s)
+/0 [01(s) — 02(s)]dB"(s)].

By Lemma 2, we have

Sln( ) BQ
SQn( ) /81
1 (1)

exp{— / (A, ()

T+ 2= b))

Il = Ep- [( =) |Fi]

[Sln <K

50 — Ay (t))ds

+ Z [J1(
_(z—0)?

1(

1 _ (@02 52/ 1 2b

X ——ex 2 dx — dzx
V 27Tb P [e’s) \/

S (t) /T
50 exp{ t (A, () Hgs(t))ds

+§}mm—bamwwn—%ww>

i=1

where

K T
Si(t) + / (A, (1) = Megy(ey)ds — D +c.
t

S g(t)
The same procedure may be easily adapted to obtain:

Sln( ) 62
Son(T) B

1 (t)
) exp{— / (Mg, )
+Z Ji(T,

Thus, we obtain the result of Theorem 1.

d*=1n

T = Ep-|( ) Lsr s oo |F]

Szn =51

)\/,LJQ(t))dS

>uNw@—§§wm>

V. CONCLUSIONS

In this paper, we introduced Poisson jumps to the mixed
fractional Brownian motion, under risk neutral measure, a
closed form solution for the price of digital exchange option
is established by means of quasi-conditional expectation.
As one of the financial derivative instruments, options have
certain functions of hedging and hedging risks. Our research
work on option pricing under mixed fractional Brownian
motion enriches the theory of option pricing and has certain
practical significance for risk management.

REFERENCES

[1] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637-654,
1973.

[2] M. B. Garman and S. W. Kohlhagen, “Foreign currency option values,”
Journal of International Money and Finance, vol. 2, no. 3, pp. 231-237,
1983.

Volume 55, Issue 9, September 2025, Pages 2788-2792



TAENG International Journal of Applied Mathematics

[3] P. Carr, R. Jarrow and R. Myneni, “Alternative characterizations of
American put options,” Mathematical Finance, vol. 2, no. 2, pp. 87-
106, 1992.

[4] G. Bakshi, C. Cao and Z. Chen, “Empirical performance of alternative
option pricing models,” The Journal of Finance, vol. 52, no. 5, pp.
2003-2049, 1997.

[5] J. Andreasen, “The pricing of discretely sampled Asian and lookback
options: a change of numeraire approach,” Journal of Computational
Finance, vol. 2, no. 1, pp. 5-30, 1998.

[6] E. F. Fama, “The behavior of stock-market prices,” The Journal of
Business, vol. 38, no. 1, pp. 34-105, 1965.

[7] J. C. Duan and J. Z. Wei, “Pricing foreign currency and cross-currency
options under GARCH,” The Journal of Derivatives, vol. 7, no. 1, pp.
51-63, 1999.

[8] A. N. Kolmogorov, “Wienersche spiralen und einige andere
interessante kurven in hilbertscen raum, C.R. (Doklady),” Academie
Sciences URSS (NS), vol. 26, pp. 115-118, 1940.

[9] C. Necula, “Option Pricing in a fractional Brownian motion
environment,” Advances in Economic and Financial Research, vol. 6,
no. 3, pp. 259-273, 2004.

[10] R. Kalantari and S. Shahmorad, “A stable and convergent finite
difference method for fractional Black-Scholes model of American
put option pricing,” Computational Economics, vol. 53, pp. 191-205,
2019.

[11] L. C. G. Rogers, “Arbitrage with fractional Brownian motion,”
Mathematical Finance, vol. 7, no. 1, pp. 95-105, 1997.

[12] S. Rostek and R. Schobel, “A note on the use of fractional Brownian
motion for financial modeling,” Economic Modelling, vol. 30, pp. 30-
35,2013 .

[13] P. Cheridito, “Mixed fractional Brownian motion,” Bernoulli, vol. 7,
no. 6, pp. 913-934, 2001.

[14] S. Ghasemalipour and B. Fathi-Vajargah, “Fuzzy simulation of
European option pricing using mixed fractional Brownian motion,”
Soft Computing, vol. 23, no. 24, pp. 13205-13213, 2019.

[15] F. Shokrollahi, “The evaluation of geometric Asian power options
under time changed mixed fractional Brownian motion,” Journal of
Computational and Applied Mathematics, vol. 344, pp. 716-724, 2018.

[16] L. Sun, “Pricing currency options in the mixed fractional Brownian
motion,” Physica A: Statistical Mechanics and its Applications, vol.
392, no. 16, pp. 3441-3458, 2013.

[17] R. C. Merton, “Option pricing when underlying stock returns are
discontinuous,” Journal of Financial Economics, vol. 3, no.1-2, pp.
125-144, 1976.

[18] H. Pham, “Optimal stopping, free boundary, and American option in
a jump-diffusion model,” Applied Mathematics and Optimization, vol.
35, pp. 145-164, 1997.

[19] B. Eraker, “Do stock prices and volatility jump? Reconciling evidence
from spot and option prices,” The Journal of Finance, vol. 59, no. 3,
pp. 1367-1403, 2004.

[20] S. S. Lee and J. Hannig, “Detecting jumps from Lévy jump diffusion
processes,” Journal of Financial Economics, vol. 96, no. 2, pp. 271-
290, 2010.

[21] K. I. Amin, “Jump diffusion option valuation in discrete time,” The
Journal of Finance, vol. 48, no. 5, pp. 1833-1863, 1993.

[22] S. G. Kou, “A jump-diffusion model for option pricing,” Management
Science, vol. 48, no. 8, pp. 1086-1101, 2002.

[23] B. Ji, X. Tao and Y. Ji, “Barrier option pricing in the sub-mixed
fractional Brownian motion with jump environment,” Fractal and
Fractional, vol. 6, no. 5, pp. 244, 2022.

[24] W. L. Xiao, W. G. Zhang, X. L. Zhang and Y. L. Wang, “Pricing
currency options in a fractional Brownian motion with jumps,”
Economic Modelling, vol. 27, no. 5, pp. 935-942, 2010.

[25] W. Margrabe, “The value of an option to exchange one asset for
another,” The Journal of Finance, vol. 33, no. 1, pp. 177-186, 1978.

[26] L. P. Blenman and S. P. Clark, “Power exchange options,” Finance
Research Letters, vol. 2, no. 2, pp. 97-106, 2005.

[27] G. Kim and E. Koo, “Closed-form pricing formula for exchange option
with credit risk,” Chaos, Solitons & Fractals, vol. 91, pp. 221-227,
2016.

[28] W. H. Li, Y. Zhong and G. W. Lv, “Digital power exchange option
pricing under jump-diffusion model,” Chinese Journal of Engineering
Mathematics, vol. 38, no. 2, pp. 257-270, 2021.

Volume 55, Issue 9, September 2025, Pages 2788-2792





