
 

  

Abstract— The transportation problem (TP) is a classical 

optimization problem in operations research and logistics. The 

transportation problem is a particular type of Linear 

Programming Problem (LPP). In the present time scenario, the 

decision maker handles several objectives simultaneously. This 

paper presents an approach based on the arithmetic mean 

technique that solves the Fuzzy Multi-Objective 

Transportation Problem (FMOTP) in which all the 

transportation objectives are imprecise and represented by 

triangular fuzzy numbers. This approach first formulates the 

given FMOTP into mathematical form and then decomposes it 

into three levels (lower, middle, and upper) Crisp Multi-

Objective Transportation Problems (CMOTPs). Then we 

converted these CMOTPs into Single Objective Transportation 

Problems (SOTPs) using the Fuzzy Arithmetic Mean (FAM) 

technique. The combined fuzzy optimal solution is obtained by 

solving these three SOTPs. TORA software is used to solve 

these SOTPs. The incentre point is used to defuzzify the fuzzy 

optimal value to get a crisp optimal value. The proposed 

approach is elaborated using two numerical examples, and the 

results are compared with those obtained by other methods. 
 

Index Terms— Transportation problem, fuzzy multi-objective 

transportation problem, arithmetic mean, triangular fuzzy 

number 
 

I. INTRODUCTION 

The Transportation Problem (TP) is defined as a specific 

kind of Linear Programming Problem (LPP). It involves 

determining the most cost-effective way to distribute a 

product from various providers to various consumers to 

satisfy requirements and availabilities. The goal of TP is to 

reduce the overall cost of transportation. Traditional 

methods, including the Vogel approximation method, the 

Matrix minima approach, and the Northwest Corner method, 

are used to solve the TP. In real-world scenarios, decision 

makers can now handle multiple objectives simultaneously, 

but are unsure about the accurate values of requirements, 

transportation costs, and availability. In the Multi-Objective 

Transportation Problem (MOTP), several objectives have 

different parameters, and equality constraints must be 
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satisfied. Fuzzy concepts often deal with such types of 

uncertainty and vagueness in the exact cost of 

transportation, availabilities, and requirements. The Concept 

of Fuzzy Transportation Problems (FTPs) was developed to 

solve the TP’s unpredictable parameters, such as fuel prices, 

weather conditions, product supply, demands, etc. 

Triangular fuzzy numbers are useful when modeling 

uncertain parameters in transportation problems, such as 

requirements and availabilities quantities or transportation 

costs, which are not precisely known but have a range of 

potential values. F.L. Hitchcock [1] first formulated the 

transportation problems as LPP in 1941. An LPP form was 

used to represent the TP, which can be solved by the 

simplex algorithm. The Stepping Stone approach offers an 

alternative approach for obtaining the information from the 

simplex method developed by Charnes and Cooper [2]. Lotfi 

A. Zadeh [3] was given the concept of fuzziness in 1965. 

Zimmermann H.J. [4] was the first to use an appropriate 

membership function to solve an LP problem with multiple 

objectives. Ringuest et al. [5] provide two interactive 

algorithms to tackle MOTP. Bit et al. [6] solved TP 

problems with several criteria by using fuzzy programming. 

SJ Chen and SM Chen [7] proposed an algorithm to solve 

multicriteria fuzzy decision problems using the Ordered 

Weight Averaging Operator (IOWA). SM Chen and SJ 

Chen [8] proposed a novel method to solve fuzzy risk 

analysis problems by using ranking functions for 

generalized trapezoidal fuzzy numbers. M. et al. [9] 

presented the DEA approach to solving FMOTP. Karthy, T., 

& Ganesan, K. [10] presented a new approach to solving 

FMOTP using a genetic approach. SK Bharti and SR Singh  

[11] proposed a novel method to solve fuzzy MOTP using 

trapezoidal fuzzy numbers based on a new distance function. 

Srikanth Gupta et. al. [12] investigated the MOTP with 

capacitated restrictions in which some objective functions 

are linear and some are fractional. G. Krishnaveni and K. 

Ganeshan [13] developed a fuzzy DEA-based approach for 

solving FMOTP. M.A. Sayed et.al. [14] developed a novel 

approach to solve intuitionistic fuzzy fractional MOTP. 

Ahmed J.S. [15] et al. modified the Centre of Gravity 

(COG) approach using a Multi-Objective Linear 

Programming (MOLP) model to provide a novel technique 

for defuzzifying fuzzy integers. This method used triangular 

fuzzy numbers to describe the observed data, with crisp 

values inside each fuzzy number's range. Kamal, M. et.al. 

[16] proposed a method for solving MOTP under Type-2 

Trapezoidal Fuzzy Numbers (T2TpFN) is presented. 

T2TpFN is first converted into a crisp form using the two-

phase defuzzification method. Next, multi-choice and 

probabilistic random variables are converted into equivalent 
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values using the binary variable and the Stochastic 

Programming (SP) approach. The Fuzzy Goal Programming 

(FGP) approach is applied for the best decision-making 

process. Hamiden Abd El-Waheed Khalifa et.al. [17] 

proposed a fuzzy geometric programming approach to 

obtain an optimal compromise solution for two-stage 

MOTP. Y Kacher and P Singh [18] proposed a method 

based on the Fuzzy Harmonic Mean (FHM) to solve 

FFMOTP. They used FHM as a tool to convert CMOTP to 

CSOTP. Sharma M.K. et al. [19] proposed a novel approach 

to solve MOTP using the Fermatian fuzzy technique. 

Akram, M. et.al. [20] presented a method using data 

envelope analysis, for decision-making units with multiple 

inputs and outputs ranked according to their relative 

efficiency P. Indira and M. Jayalakshmi [21] proposed an 

approach to find the minimum transportation cost of 

triangular TP using the alpha cut, and row-column minima 

method. Kokila A. and Deepa G.[22] proposed a new 

method based on the harmonic mean to solve fuzzy multi-

objective transportation problems.  

This paper presents a novel approach to solving the Fuzzy 

Multi-Objective Transportation Problem (FMOTP). 

Initially, the FMOTP is transformed into a Crisp Single 

Objective Transportation Problem (CSOTP) using the fuzzy 

arithmetic mean technique. The resulting CSOTP is then 

solved using the TORA optimization software to obtain a 

compromised optimal solution to the original fuzzy 

problem. 

II. PRELIMINARIES  

A. Membership Function (MF) 

Let X be a universal set. The Membership Function (MF) of 

a fuzzy set  in X is denoted by ; i.e. 

: [0,1]
A

X →  

                 : X  [0, 1] 

For each x  X, (x) represents the membership grade of 

element x in the fuzzy set . 

B. Fuzzy Number GF 

A fuzzy set , with a membership function  : [0,1] 
defined on the set of real numbers is called a fuzzy number 

if it satisfies the following properties: 

(i)  1 2 1 2( (1 ) ) min{ ( ), ( )}A x x A x A x  

(ii)  a x  such that (x) = 1. 

(iii)  is piece-wise continuous.  

C. Triangular fuzzy number (TFN)  

A fuzzy set  = ( , , )A f g h  such that f g h  is said to be 

TFN with the centre g , left width 0g f , and right 

width 0h g , If its MF is as follows: 

          (y) = 

( )
(1 )        

( )

( )
(1 )       g

( )

1                          

0                        

g y
f y g

g f

g y
y h

g f

y g

otherwise

         [1]                                                         

The triangular fuzzy number  = ( , , )A f g h  such that 

f g h  . It is said to be a non-negative TFN if 0f . 

D. Fuzzy arithmetic operations for Triangular Fuzzy 

Numbers (TFNs) 

Let 1 1 1 = ( , , )A f g h  and 2 2 2 = ( , , )B f g h  be any two TFNs. 

Then arithmetic operations on triangular fuzzy numbers are 

defined as follows: 

❖ Addition:          1 2 1 2 1 2 ( , , )A B f f g g h h  

❖ Subtraction:      1 2 1 2 1 2 ( , , )A B f h g g h f  

❖ Multiplication: Let 1 1 1 = ( , , )A f g h be any arbitrary TFN 

and 2 2 2 = ( , , )B f g h  any non-negative TFN. 

Then, 

1 2 1 2 1 2 1

1 2 1 2 1 2 1 1

1 2 1 2 1 2 1

( , , )         0

.   ( , , )         0, 0

( , , )         0

f f g g h h if f

B f h g g h h if f h

f h g g h f if h

 

If  is any real number, then 

            
1 1 1 1

1 1 1 1

( , , )      0
.   

( , , )      0

kf kg kh if k
k A

kh kg kf if k
 

❖ Division: Let 1 1 1 = ( , , )A f g h be any arbitrary TFN and 

2 2 2 = ( , , )B f g h any non-zero TFN. Then 

               1 2 1 2 1 2/   ( / , / , / )A B f h g g h f  

E. Ranking of generalized triangular fuzzy numbers by 

the incentre point method  

 

The fuzzy numbers are compared using the ranking method. 

The ranking function, denoted as , maps each 

fuzzy number to a real number where the natural order is 

present, ,  is the set of fuzzy numbers defined on the 

set of real numbers.  A fuzzy ranking function changes these 

optimal solutions into crisp values. 

If 1 1 1 = ( , , )A f g h is any TFN. Let ABD be a triangle 

formed by a triangular fuzzy number  

( , )x yI I I is the incentre point of triangle ABD as shown 

in Fig.1.   is given as: 

Figure 1. The triangular fuzzy number with incentre point 
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1 1 1  ,      x y

f g h w
I I  

Here , , and  is the length of the sides of the triangle 

ABC. , , and  is given as: 

 
2 2

1 1  ( )h g w ,        1 1  h f ,  and   

2 2

1 1  ( )g f w  

Here ranking of  = ( , , )  is given by only the X-

coordinate of the incentre point I. 

(  ) = 1 1 1  x

f g h
I   

F. Fuzzy Arithmetic Mean (FAM) 

The fuzzy arithmetic mean is a concept in fuzzy logic, a 

branch of logic that deals with uncertainty and imprecision. 

The fuzzy arithmetic mean can be used to determine the 

average of a set of fuzzy values or sets. 

If
01 2, ,......, ny y y are the 0n  quantities. Then the arithmetic 

means of these 0n  quantities are defined as: 

A.M. 0

0

1 2

1 2

0

......
( , ,......, )

n

n

y y y
y y y

n
 

If  0
0 0 0

( , , )l m u
j j j jA f f f   for 0 01, 2,......,j n are 0n  

triangular fuzzy numbers, then the fuzzy arithmetic mean of  

, , ……,   is defined as: 

0 0

0 0 0 0

0 0

0

0 0 0

0 0 0

0 0 0

1 1

1 2

0 0

1 1 1

0 0 0

( , , )

( , ,......, )    

                         ( , , )

n n

l m u

j j j j

j j

n

n n n

l m u

j j j

j j j

A f f f

FAM A A A
n n

f f f

n n n

               

                                                                                           [2]                                         

III. THE MATHEMATICAL FORMULATION OF FUZZY MULTI-

OBJECTIVE TRANSPORTATION PROBLEM (FMOTP) 

The fuzzy MOTP in mathematical form can be formulated 

as: 

0 0

0 0 0 0

0 0

( )

1 1

 Z ( ) =
m n

k

u i j i j

i j

Min y y                                       [3]                                                                                   

Subject to 

 

0

0 0 0

0 1

m

i j j

i

y d : for fixed  such that 0 01,2,....,j n  [4]                                                                                 

0

0 0 0

0 1

n

i j i

j

y s : for fixed  such that 0 01,2,....,i m   [5]                                                    

0 0
0i jy                                                                             [6] 

                                                     

here,  

0m  = total no. of origins 

0n  = total no. of destinations 

0 0
0i jy  = Transportable fuzzy quantity of goods 

transported from -th origins to -th destinations 

0i
s  = The fuzzy availabilities of goods at  -th origins 

0j
d  = Fuzzy requirements of goods at -th destinations. 

0 0

( )k

i j  = The fuzzy cost for transporting one unit of the given 

good from the i-th origin to the j-th destination. 

The above LPP (3-6) can be written as: 

11 12 1 ( )  min( ( ), ( ),......, ( ))u p
y

Min Z y F y F y F y              [7]                              

Subject to the constraints [4]-[6]                                     [8]                                                                      

 

Here, 

0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0

(1)

11

1

(2)

12

1

( )

1

1

( )  

( )  

                :

                :

( )

m n

i j i j

i j

m n

i j i j

i j

m n

p

p i j i j

i j

F y y

F y y

F y y

                                       [9] 

                                                                                             

If   
0 0

0 0

0 01 1

m n

i j

i j

s d so, then it is called balanced FMOTP. 

Here, we assume that FMOTP is balanced without losing 

generality. 

Remark 1: In the real world, transportation parameters such 

as requirements, availabilities, and transportation costs of 

the products are non-negative quantities. So, we assume that 

the triangular fuzzy numbers ( , , )l m uA a a a are non-

negative quantities in the above FMOTP. 

Regarding remark 1, uZ , ( )uvF y , 
0i

s , 
0j

d , 
0 0

( )k

i j  and 
0 0i jy do 

triangular fuzzy numbers represent all as 

= ( , , )l m u

u k k kZ , ( ) = ( , , )l m u

uv rk rk rkF y
0 0 0 0

= ( , , )l m l

i i i is s s s ,

0 0 0 0
 ( , , )l m u

j j j jd d d d
0 0 0 0 0 0 0 0

( )  = ( , , )k kl km ku

i j i j i j i j ,

0 0 0 0 0 0 0 0
 ( , , )l m u

i j i j i j i jy y y y  respectively. 

 

Thus (7)-(9) can be restated by using fuzzy arithmetic as: 

11 11 11 12 12 12

1 1 1

min( , , ) min[( , , ), ( , , ),......,

( , , )]                                                                       [10]

l m u l m u l m u

k k k
y

l m u

p p p

 

                                                                                                                                                                

subject to 
0

0 0 0 0 0 0 0 0 0

0 1

( , , ) = ( , , )
n

l m u l m l

i j i j i j i i i

j

y y y s s s                                     [11]                                                                                                                      

0

0 0 0 0 0 0 0 0 0

0 1

( , , ) = ( , , )
m

l m u l m u

i j i j i j j j j

i

y y y d d d                                  [12]                                                                        

0 0 0 0 0 0 0 0 0

0

( , , ) 0.  (  = 1,2,......,m ,  j  = 1,2,

......,n )

l m u

i j i j i jy y y i
                                       

                                                                                         [13] 

here, 
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0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

1 1 1

11

1 1

2 2 2

12

1 1

1

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

                          :

                          :

(

m n

l m u l m u

i j i j i j i j i j i j

i j

m n

l m u l m u

i j i j i j i j i j i j

i j

p

F y y y y

F y y y y

F y
0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 01 1

      [14]

) ( , , ) ( , , )
m n

pl pm pu l m u

i j i j i j i j i j i j

i j

y y y

                                                                                       

Now, using fuzzy arithmetic mean above MOTP can be 

reformulated as 

 
0 0

0 0 0 0 0 0 0 0

0 0 1

0 0 0 0

1

min( , , ) min ( , ,

)

m n

l m u kl l km m

k k k i j i j i j i j
y

i j

ku u

i j i j

y y

y

      

                                                                                        [15] 

1, 2,......,k p  

Subject to 

 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

l l

i j i

j

y s i m                                  [16]                                                     

0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

m m

i j i

j

y s i m                                  [17]                                                  

0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

u u

i j i

j

y s i m                                  [18]                                                  

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

l l

i j j

i

y d n                                  [19]                                                   

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

m m

i j j

i

y d n                                  [20]                                                   

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

u u

i j j

i

y d n                                  [21]                                                 

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n               [22]                                                        

0 0 0 0 0 0 0 00 ( 1,2,......, ,  j 1, 2,......, )m l

i j i jy y i m n  

                                                                                        [23]                                                 

0 0 0 0 0 0 0 00 ( 1,2,......, ,  j 1, 2,......, )u m

i j i jy y i m n                                                 

                                                                                        [24] 

Remark 2: Formulation (3)-(6) is equivalent to (15)-(24). 

IV. PROPOSED METHOD TO SOLVE FUZZY MULTI-

OBJECTIVE TRANSPORTATION PROBLEM (FMOTP) 

Step I: In this step, we write all objectives in the 

minimization form and reduce them into the problem in (7)-

(9). 

 

Step II: In this step, we write the problem (7)– (9) in the 

form of equations (10)– (14), replacing the fuzzy parameter 

values with the non-negative triangular fuzzy number. 

 

Step III:  This step divides the entire problem (9)-(13) into 

three levels of crisp MOTP. 

 

 

Lower-level Multi-objective Transportation Problem (L-

MOTP):  
0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1

11 12 1

1 1

2

1 1 1 1

min( , ,......, ) min( ,

        ,......, )

m n

l l l l l

p i j i j
y y

i j

m n m n

l l pl l

i j i j i j i j

i j i j

y

y y

    

                                                                                       [25]                                                                                        

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

l l

i j i

j

y s i m                                  [26]                                                                

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

l l

i j j

i

y d n                                  [27]                                                     

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n               [28]                                                      

                                                   

Here, equations (25)-(28) represent a crisp MOTP of a lower 

level with p-objectives. These equations can be solved by 

TORA. 

 

Middle-level Multi-Objective Transportation Problem (M-

MOTP):  

 
0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1

11 12 1

1 1

2

1 1 1 1

min( , ,......, ) min( ,

        ,......, )

m n

m m m m m

p i j i j
y y

i j

m n m n

m m pm m

i j i j i j i j

i j i j

y

y y

  

                                                                                       [29] 

                                                                                        

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

m m

i j i

j

y s i m                                  [30]                                             

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

m m

i j j

i

y d n                                  [31]                                          

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n               [32]                                               

                                              

Here, equations (29)-(32) represent a crisp MOTP of middle 

level with p-objectives. These equations can be solved by 

TORA. 

 

U upper-level multi-objective transportation problem (U-

MOTP):  
0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1

11 12 1

1 1

2

1 1 1 1

min( , ,......, ) min( ,

        ,......, )

m n

u u u u u

p i j i j
y y

i j

m n m n

u u pu u

i j i j i j i j

i j i j

y

y y

                                                                                         

                                                                                       [33] 

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

u u

i j i

j

y s i m                                  [34]                                         

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

u u

i j j

i

y d n                                 [35]                                        

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n              [36]                                                 
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Here, equations (33)-(36) represent a crisp MOTP of the 

upper level with p-objectives. TORA can solve these 

equations. 

 

Step IV: Find each objective function's optimal solution, 

denoted as s

rk  (for 1, 1, 2,......, , , ,r k p s l m u ), that is 

involved in three levels receptively, denoted as  (for 

1, 1, 2,......, , , ,r k p s l m u ). 

 

Step V: In this step, we calculate the fuzzy arithmetic mean 

(FAM) for each optimal solution for these three levels. The 

FAM can be calculated as: 

1 1 1 1( ) ( , , )s l m u

rkFAM AM AM AM                       

                     
1 1 1

1 1 1( , , )

p p p
l m u

k k k

k k k

p p p
                         [37]                                                  

Here 

1

1

1

p
l

k

l kAM
p

 = Arithmetic Mean (AM) lower level’s 

optimal solutions 

1

1

1

p
m

k

m kAM
p

= AM of middle level’s optimal solutions 

1

1

1

p
u

k

u kAM
p

 = AM of the upper level’s optimal solutions 

 

Step VI: Three-level crisp MOTP is changed into three-level 

crisp Single Objective Transportation Problems (SOTP) in 

this step. 

 

L- Lower level SOTP 

 

11 12 13 1

1

1

min min min ...... min
min

l l l l

pl

uy AM
  [38]               

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

l l

i j i

j

y s i m                                  [39]                                                  

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

l l

i j j

i

y d n                                 [40]                                                  

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n              [41]                                                        

We solve equations (38)-(41) by TORA. We get the optimal 

solution 
0 0

*

1( )l

i j mny  for lower levels of the problem. 

M- Middle level SOTP: 

11 12 13 1

1

1

min min min ...... min
min

m m m m

pm

my AM
  [42]                                                                

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

m m

i j i

j

y s i m                                   [43]                                                    

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

m m

i j j

i

y d n                                   [44]                                                    

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n                [45]                                                            

 

We solve equations (42)-(45) by TORA. We get the optimal 

solution 
0 0

*

1( )m

i j mny  for the middle level of the problem. 

 

U- Upper level SOTP: 

 

11 12 13 1

1

1

min min min ...... min
min

u u u u

pu

ly AM
  [46]                                                                    

Subject to 
0

0 0 0

0

0 0

1

    ( 1,2,......, )
n

u u

i j i

j

y s i m                                   [47]                                                        

0

0 0 0

0

0 0

1

    (j 1,2,......, )
m

u u

i j j

i

y d n                                   [48]                                                       

0 0 0 0 0 00    ( 1,2,......, ,  j 1,2,......, )i jy i m n                [49]                                                           

We solve equations (46)-(49) by TORA. We get the optimal 

solution 
0 0

*

1( )u

i j mny  for the upper level of the problem. 

 

Step VII: To solve these three different levels of crisp 

SOTPs, we will get the values of 
0 0i jy , 

0 0 0 0 0 0 0 0

* * *( , , )l m u

i j i j i j i jy y y y   FMOTP (2)-(5) will be the 

fuzzy optimal values. 

 

Step VIII: In this step, by using the proposed ranking 

function, defuzzify the fuzzy optimal value obtained in step 

VII. By defuzzification, we get the crisp value of the 

problem (2)-(5). This crisp value helps us compare the 

results obtained by our proposed method (FAM technique) 

and some other existing methods. 

 

To elaborate on our proposed method, two examples are 

considered  

Example 1: A multi-objective fuzzy transportation problem 

is considered, involving triangular fuzzy numbers to 

represent the fuzzy cost, time, and supply and demand 

parameters, as presented in Tables 1(i) and 1(ii). This 

problem has previously been solved by Y. Kacher and P. 

Singh [18], as well as A. Kokila and G. Deepa [22].

Table 1(i) First objective function (Cost) 

 
Source→ 

Destination↓ 
    Supply 

 
(1,1.5,2) 

 

(1,2,3) 

 

(5,7,9) 

 

(4,6,8) 

 

(7,8,9) 

 
(1,1.5,2) 

 

(7,8.5,10) 

 

(2,4,6) 

 

(3,4,5) 

 

(17,19,21) 

 
(7,8,9) 

 

(7,9,11) 

 

(3,4,5) 

 

(5,6,7) 

 

(16,17,18) 

Demand (10,11,12) (2,3,4) (13,14,15) (15,16,17)  
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Table 1(ii) Second objective function (Time) 
Source→ 

Destination↓ 
    Supply 

 
(3,4,5) (2,4,6) (2,3,4) (1,3,5) (7,8,9) 

 
(4,5,6) (7,8,9) (7,8.5,10) (9,10,11) (17,19,21) 

 
(4,6,8) (1,2,3) (3,4.5,6) (1,1.5,2) (16,17,18) 

Demand (10,11,12) (2,3,4) (13,14,15) (15,16,17)  

  

Here,  
0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

1 1 1

11

1 1

( ) ( , , ) ( , , )
m n

l m u l m u

i j i j i j i j i j i j

i j

F y y y y          

11 12 13 14 21 22 23

24 31 32 33 34 11 12

13 14 21 22 23 24

31 32 33 34 11 12 13 14

21 22 23 24

( 5 4 7 2

3 7 7 3 5 ,1.5 2

7 6 1.5 8.5 4 4

8 9 4 6 ,2 3 9 8

2 10 6 5 9

l l l l l l l

l l l l l m m

m m m m m m

m m m m u u u u

u u u u

y y y y y y y

y y y y y y y

y y y y y y

y y y y y y y y

y y y y y31 32 33 3411 5 7 )u u u uy y y

                                                       

                                                                                         [50] 
0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

2 2 2

12

1 1

( ) ( , , ) ( , , )
m n

l m u l m u

i j i j i j i j i j i j

i j

F y y y y  

            

11 12 13 14 21 22 23 24

31 32 33 34 11 12 13 14 21

22 23 24 31 32 33 34

11 12 13 14 21 22 23 24

(3 2 2 4 7 7 9

4 3 ,4 4 3 3 5

8 8.5 10 6 2 4.5 1.5 ,

5 6 4 5 6 9 10 11

l l l l l l l l

l l l l m m m m m

m m m m m m m

u u u u u u u u

y y y y y y y y

y y y y y y y y y

y y y y y y y

y y y y y y y y

31 32 33 348 3 6 2 )u u u uy y y y

  

                                                                                       [51] 

Now the whole problem is divided into three levels crisp 

multi-objective transportation problems. 

 

L- Lower level 

11 12 13min( ) min( , , )l l l l

y y
u u u  

11 12 13 14 21 22 23 24 31

32 33 34 11 12 13 14 21 22

23 24 31 32 33 34

( 5 4 7 2 3 7

7 3 5 ,3 2 2 4 7

7 9 4 3 )

l l l l l l l l l

l l l l l l l l l

l l l l l l

y y y y y y y y y

y y y y y y y y y

y y y y y y

    

                                                                                        [52] 

Subject to 

        

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

7

17

16

10
                          

2

13

15

0 ,

l l l l

l l l l

l l l l

l l l

l l l

l l l

l l l

l

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                  [53]  

                                                                                     

 

 

 

 

M-Middle level: 

 

11 12 13min( ) min( , , )m m m m

y y
u u u  

11 12 13 14 21 22 23 24

31 32 33 34 11 12 13 14 21

22 23 24 31 32 33 34

(1.5 2 7 6 1.5 8.5 4 4

8 9 4 6 ,4 4 3 3 5

8 8.5 10 6 2 4.5 1.5 )

m m m m m m m m

m m m m m m m m m

m m m m m m m

y y y y y y y y

y y y y y y y y y

y y y y y y y

   

                                                                                   [54]     

Subject to 

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

8

19

17

11

3

14

16

0 ,

m m m m

m m m m

m m m m

m m m

m m m

m m m

m m m

m

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                                 [55] 

 

U -Upper level 

 

11 12 13min( ) min( , , )u u u u

y y
u u u  

11 12 13 14 21 22 23 24

31 32 33 34 11 12 13 14

21 22 23 24 31 32 33 34

(2 3 9 8 2 10 6 5

9 11 5 7 ,5 6 4 5

6 9 10 11 8 3 6 2 )

u u u u u u u u

u u u u u u u u

u u u u u u u u

y y y y y y y y

y y y y y y y y

y y y y y y y y

  

                                                                                     [56] 

 

Subject to  

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

8

19

17

11

3

14

16

0 ,

u u u u

u u u u

u u u u

u u u

u u u

u u u

u u u

u

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                                         [57]                                                                                                                                                                          

 

Solving the equations (52)-(57) by TORA software, Table 2 

is obtained. 
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Table 2 Optimal values for three levels 
Lower level Middle level Upper level 

11

ly  5 0 
11

my  5 0 
11

uy  5 0 

12

ly  2 0 
12

my  3 0 
12

uy  4 0 

13

ly  0 6 
13

my  0 8 
13

uy  0 9 

14

ly  0 1 
14

my  0 0 
14

uy  0 0 

21

ly  5 10 
21

my  6 11 
21

uy  7 12 

22

ly  0 0 
22

my  0 2 
22

uy  0 3 

23

ly  0 7 
23

my  0 6 
23

uy  0 6 

24

ly  12 0 
24

my  13 0 
24

uy  14 0 

31

ly  0 0 
31

my  0 0 
31

uy  0 0 

32

ly  0 2 
32

my  0 1 
32

uy  0 1 

33

ly  13 0 
33

my  14 0 
33

uy  15 0 

34

ly  3 14 
34

my  3 16 
34

uy  3 17 

 102 118  148.50 172  202 232 

 

Fuzzy Arithmetic Mean (FAM) 

1 1 1 1( , , )l m uFAM AM AM AM              

= (110, 160.25, 217) 
here, 

1

102 118

2

lAM  = 110 (AM lower level’s optimal 

solutions) 

1

148.50 172

2

mAM  = 160.25 (AM of middle level’s 

optimal solutions), 

1

202 232

2

uAM   = 217 (AM of upper level’s optimal 

solutions), 

The Three-Level Crisp Multi-Objective Linear 

Programming Problem (TL-CMOLPP) is converted into the 

Three-Level Crisp Single-Objective Linear Programming 

Problem (TL-CSOLPP) in the following manner: 

L-CSOLPP: 

11 12

1

min( ) min( )
min( )

l l

l

uy

u u

AM
 

11 12 13 14

21 22 23 24

31 32 33 34

(0.01843 0.01382 0.03226 0.02304

0.02304 0.06452 0.04147 0.05530

0.05069 0.03687 0.02765 0.02765 ) [58]

l l l l

l l l l

l l l l

y y y y

y y y y

y y y y

  

Subject to 

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

7

17

16

10

2

13

15

0 ,

l l l l

l l l l

l l l l

l l l

l l l

l l l

l l l

l

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                                          [59]                                                                                                                               

M-CSOLPP: 

11 12

1

min( ) min( )
min( )

m m

m

my

u u

AM
  

11 12 13 14

21 22 23 24

31 32 33 34

(0.03432 0.03744 0.06240 0.04056

0.04056 0.10296 0.07800 0.08736

0.08736 0.06864 0.05304 0.04680 ) [60]

m m m m

m m m m

m m m m

y y y y

y y y y

y y y y

  

Subject to 

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

8

19

17

11

3

14

16

0 ,

m m m m

m m m m

m m m m

m m m

m m m

m m m

m m m

m

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                                             [61]                                                                                                                     

U-CSOLPP: 

11 12

1

min( ) min( )
min( )

u u

u

uy

u u

AM
 

11 12 13 14

21 22 23 24

31 32 33 34

(0.6364 0.08182 0.11818 0.11818

0.07273 0.17272 0.14545 0.14545

0.015454 0.12727 0.1 0.08182 )       [62]

u u u u

u u u u

u u u u

y y y y

y y y y

y y y y

                        

  Subject to 

11 12 13 14

21 22 23 24

31 32 33 34

11 21 31

12 22 32

11 21 31

11 21 31

8

19

17

11

3

14

16

0 ,

u u u u

u u u u

u u u u

u u u

u u u

u u u

u u u

u

ij

y y y y

y y y y

y y y y

y y y

y y y

y y y

y y y

y i j

                                           [63]                                                                                                                                                                                                   

The final optimal solution (Table 3) is obtained by solving 

equations (58)-(63) using the TORA software. 

Table 3. Final Solution for Example 1. 
Lower Level Middle Level Upper Level 

11

ly  0 
11

my  0 
11

uy  0 

12

ly  2 
12

my  3 
12

uy  4 

13

ly  0 
13

my  5 
13

uy  5 

14

ly  5 
14

my  0 
14

uy  0 

21

ly  10 
21

my  11 
21

uy  12 

22

ly  0 
22

my  0 
22

uy  0 

23

ly  7 
23

my  8 
23

uy  9 

24

ly  0 
24

my  0 
24

uy  0 

31

ly  0 
31

my  0 
31

uy  0 

32

ly  0 
32

my  0 
32

uy  0 

33

ly  6 
33

my  1 
33

uy  1 

34

ly  10 
34

my  16 
34

uy  17 

Example 2: An FMOTP with fuzzy objectives, delivery 

time, loss, and profit are considered, where all parameters 

are represented by triangular fuzzy numbers as given in 

Tables 4(i)–4(iii). The problem was previously solved by Y. 

Kacher & P. Singh [18] and A. Kokila & G. Deepa [22]
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Table 4(i) Objective values for the first objective function (Delivery time) 
         Supply ( ) 

 (7.5,8,9) 
 

(4.5,5,6) 
 

(5.5,6,7) 
 

(7,9,9.5) 
 

(8.5,10,11) 
 

(3.5,4,5) 
 

(7.6,8,9.5) 
 

(6.5,7,8) 
 

(105,120,140) 

 (6.8,7,7.5) 
 

(3.8,4,5) 
 

(9,10,10.5) 
 

(5,6,7.5) 
 

(7.8,8,8.5) 
 

(6,6,8) 
 

(4.5,5,7) 
 

(9,10,11.5) 
 

(72,85,108) 

 (9,10,11) 

 

(8,9,9.5) 

 

(8.5,9,9.5) 

 

(10.5,11,11.5) 

 

(10,11,12) 

 

(7,8,10) 

 
 

(8.6,9,10.5) 

 

(10.4,11,12) 

 

(73,75,83) 

Demand

) 

(26,30,33) (22,25,35) (32,35,40) (37,40,49) (50,55,60) (22,25,29) (24,34,40) (37,40,55)  

Table 4(ii)   Objective values for the second objective function (loss) 
         Supply ( ) 

 (2.5,3,3.5) 
 

(1,1,2) 
 

(1.5,2,2.5) (2,3,3.5) (1,2.5,3) 
 

(1,1.5,3) 
 

(2,2.6,3) 
 

(1,1.5,2) 
 

(105,120,140) 

 (1.5,2,2.8) 

 

(1,1.5,2.5) 

 

(0.5,1,1.25) 

 

(5,6,8) 

 

(2.5,3,3.5) 

 

(2,2.6,3.5) 

 

(1,1.7,3.5) 

 

(2.5,2.5,4) 

 

(72,85,108) 

 (3.5,4,5) 
 

(2.5,3.5,4.5) (2.5,3.5,4.5) (1,2,4) 
 

(4,4.2,6) 
 

(2.8,3,3.5) 
 

   (2,2.8,3) (2,2.8,3) 
(2,2.8,3) 

 

(3.5,4,5) 
 

(73,75,83) 

Demand

) 

(26,30,33) (22,25,35) (32,35,40) (37,40,49) (50,55,60) (22,25,29) (24,34,40) (37,40,55)  

Table 4(iii) Objective values for the third objective function (profit) 
         Supply ( ) 

 (115,125,130) (82,85,98) (71,75,83) (92,100,108) (60,65,69) 

 

(90,95,96) 

 

(40,45,60) (86,90,110) (105,120,140) 

 (60,65,72) (42,50,51) (135,145,150) (180,205,210) (50,59,63) (59,60,70) (62,65,75) (95,105,120) (72,85,108) 

 (132,135,150) (129,130,140) (129,130,140) (130,165,170) (79,80,83) (70,79,90) (80,82,85) 

 

(70,93,110) (73,75,83) 

Demand

) 

(26,30,33) (22,25,35) (32,35,40) (37,40,49) (50,55,60) (22,25,29) (24,34,40) (37,40,55)  

  

                                                                                                 

The final solution is obtained using the proposed approach, 

which is given in Table 5.  

 

Table 5. Final solution table for Example 2. 

 
Lower level Middle level Upper level 

11

ly = 0 11

my  = 30 11

uy  = 33 

12

ly = 22 12

my  = 25 12

uy  = 35 

13

ly = 0 13

my  = 0 13

uy  = 0 

14

ly = 0 14

my  = 0 14

uy  = 0 

15

ly  = 27 15

my  = 10 15

uy  = 17 

16

ly = 22 16

my  = 25 16

uy  = 29 

17

ly = 0 17

my  = 0 17

uy  = 0 

18

ly  = 34 18

my  = 30 18

uy  = 26 

21

ly  = 0 21

my  = 0 21

uy  = 0 

22

ly  = 0 22

my  = 0 22

uy  = 0 

23

ly  = 32 23

my  = 35 23

uy  = 40 

24

ly  = 37 24

my  = 40 24

uy  = 49 

25

ly  = 0 25

my  = 0 25

uy  = 0 

26

ly  = 0 26

my  = 0 26

uy  = 0 

27

ly  = 0 27

my  = 0 27

uy  = 0 

28

ly  = 3 28

my = 10 28

uy  = 19 

31

ly  = 26 31

my  = 0 31

uy  = 0 

32

ly  = 0 32

my  = 0 32

uy  = 0 

33

ly  = 0 33

my  = 0 33

uy  = 0 

34

ly  = 0 34

my  = 0 34

uy  = 0 

35

ly  = 23 35

my  = 45 35

uy  = 43 

36

ly  = 0 36

my  = 0 36

uy  = 0 

37

ly  = 24 37

my  = 30 37

uy  = 40 

38

ly  = 0 38

my  = 0 38

uy  = 0 

 

Example 3: An FMOTP with time and cost objectives is 

considered, where availability, demand, and all parameters 

are represented by triangular fuzzy numbers, as given in 

Table 6. This problem was previously solved by Admasu et. 

al.[23].
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Table 6: The Input data for Example 3

Source  

Destination  

    Availability 

(  

 Cost 

Time 

(15,25,35) 

(4,6,8) 

(55,65,85) 

(6,8,10) 

(85,95,105) 

(7,9,11) 

(75,95,125) 

 Cost 

Time 

(65,75,85) 

(3,5,7) 

(80,90,110) 

(5,7,9) 

(30,40,50) 

(11,13,15) 

(45,65,95) 

Requirement 

( ) 

 (35,45,65) (25,35,45) (60,80,110)  

 

Now, we solve Example 3 using the proposed method and 

TORA software. The Final Optimal Solution is given in 

Table 7. 

Table 7: The optimal solution for Example 3. 

 
Lower level Middle level Upper level 

11

ly =35 11

my =45 11

uy =65 

12

ly =25 12

my =35 12

uy =45 

13

ly =15 13

my =15 13

uy =15 

21

ly =0 21

my =0 21

uy =0 

22

ly =0 22

my =0 22

uy =0 

23

ly =45 23

my =65 23

uy =95 

V. RESULTS AND DISCUSSION 

 In this part, we analyzed the results of both solved 

examples and compared the results with the existing 

methods. The fuzzy compromised solutions for the time and 

cost objectives of Example 1 in the graphical form are  

 

displayed in Fig 2(i), and Fig 2(ii) respectively. The 

defuzzification technique described in Section 2.3 is used to 

obtain crisp compromised solutions for both objectives. The 

results of this process, along with a comparison of fuzzy and 

crisp results for Example 1 with the existing methods, are 

presented in Table 8. In comparison to Y. Kacher and P. 

Singh [18], there is a 6.761% increase in cost and a 9.16% 

decrease in time. Compared to the results reported by A. 

Kokila and G. Deepa [22], the proposed method results in a 

12.578% increase in cost and a 30.588% reduction in time. 

As illustrated in Figure 3(i), the fuzzy cost membership 

function exhibits a broader spread, indicating a higher 

degree of uncertainty in cost estimation. Conversely, the 

fuzzy time membership function depicted in Figure 3(ii) 

displays a narrower triangular profile, suggesting a lower 

level of uncertainty in time prediction. This comparative 

analysis highlights that although the cost objective 

demonstrates a marginal increase, attributable to the trade-

offs inherent in multi-objective optimization, the time 

objective achieves a substantial improvement, offering more 

efficient performance relative to existing 

methods.

   Fig. 2(i) Optimal fuzzy cost value for Example 1     Fig. 2(ii) Optimal fuzzy time value for Example 1 

 

Table 8 Comparison of results of Example 1 
 

Methods 

 

Fuzzy compromised solution Crisp compromised solution 

Cost Time Cost Time 

Y. Kacher and P. 

Singh [18] 

(114,174.5,244) (126,193.5,271) 177.5 196.5 

A. Kokila and G. 

Deepa [22] 

(107,168,230) (154,268.5,349) 168.33 257.16 

Proposed approach (114,189.5,259) (126,178.5,246) 189.5 178.5 
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Fig.  3(i) Fuzzy cost values across different approaches for 

Example 1. 

 

 
Fig.  3(ii) Fuzzy time values across different approaches for 

Example 1. 

 

Similarly, for Example 2, Fig. 4(i), Fig. 4(ii), and Fig. 4(iii) 

represent the fuzzy compromised solution for the delivery 

time, loss, and profit objective values, respectively. 

Compared to the method in [18], the proposed approach 

exhibits the same spread in delivery time, a narrower spread 

in the loss objective, crucial for reducing uncertainty, and a 

slightly narrower spread in the profit objective, indicating a 

marginal increase in uncertainty when estimating profit, as 

shown in Fig. 5(i),5(ii), and 5(iii). 

Compared to [22], the proposed method shows a narrower 

spread in both delivery time and loss, which contributes to 

reduced uncertainty. However, the spread of the profit 

objective is broader, which is beneficial for accurately 

estimating and optimizing profit. 

Compared to [24], the proposed method has a slightly 

broader spread in delivery time, suggesting increased 

uncertainty in delivery time estimation. However, for the 

profit objective, the spread is broader, while for the loss 

objective, it is narrower, which is essential for reducing 

uncertainty in both objectives. 

 
Fig. 4(i) Optimal fuzzy delivery time value for Example 2. 

 

 
  Fig. 4(ii) Optimal fuzzy loss value for Example 2. 

 

 
  Fig. 4(iii) Optimal fuzzy profit value for Example 2. 
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  Table 9. Comparison of fuzzy optimal values for Example 2. 
  

Methods Delivery time Loss Profit 

M. Bagheri, and A. Ebarhimnejad [24] 

 

(1793.7,2233,2893) (595,792,1285.4) 

 

(26715,31741,39256) 

 

Y. Kacher and P. Singh [18] (1796.9,2255,2967) (544.5,775.7,1294.5) (26762,31787,40184) 

A. Kokila and G. Deepa [22] (1945.2,2265,3048.5) (322,842,967.4) (21908,29195,34151) 

Malihe Niksirat [25] (1877.32,2377.9,2655.28) (543.16,798.1,987.07) (16402.4,21449.12,23998.56) 

Proposed approach (1796.9,2255,2967) (647.5,795.5,1127.5) (26762,31985,40076) 

 

 

Fig.  5(i) Fuzzy delivery time values across different 

approaches for Example 2. 

 

  Fig.  5(ii) Fuzzy loss values across different approaches for 

Example 2. 

Compared to [25], the proposed method shows a slightly 

wider spread in both delivery time and loss, reflecting 

greater uncertainty in these objectives. In contrast, the profit 

objective demonstrates a broader spread, indicating 

improved consistency and reduced uncertainty in profit 

estimation. 

Fig.5(iii) Fuzzy profit values across different approaches for 

Example 2. 

Tables 9 and 10 present a comparison of fuzzy and crisp 

composite solutions, respectively, using the fuzzy arithmetic 

mean technique (proposed approach) by Y. Kacher and P. 

Singh [18], and A. Kokila and G. Deepa [22]. Compared to 

M. Bagheri, and A. Ebarhimnejad [25], delivery time 

decreased by 2.235787%, loss decreased by 10.69824%, and 

profit decreased by 2.33787%. Compared to Y. Kacher and 

P. Singh [18], the delivery time decreased by 3.6616%, the 

loss decreased by 8.7276%, and the profit decreased by 

2.81364%.  

 

Table 10. Comparison of crisp optimal values for Example 

2. 

 
Methods Delivery 

time 

Loss Profit 

M. Bagheri, and 

A.Ebarhimnejad[24] 

     2306.57 

 

890.8 

 

    32750.67 

 

Y. Kacher and P. 

Singh [18] 

2339.6 871.567 32911 

A. Kokila and G. 

Deepa [22] 

2419.5 710.46 28418 

Malihe Niksirat [25] 2303.5 776.11    20616.69 

Proposed approach 2255 795.5 31985 
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Table 11 Comparison of optimal results of Example 3 

 

 

 

 
  Fig. 6(i) Optimal fuzzy cost value for Example 3. 

 

 
  Fig. 6(ii) Optimal fuzzy delivery time value for Example 3. 

 

In comparison to A. Kokila and G. Deepa [22], the delivery 

time decreases by 6.7988%, the profit increases by 

12.5519%, and the loss increases by 11.9697% due to the 

conflict of multiple objectives. In comparison to Malihe 

Niksirat [25], the delivery time decreases by 2.1036%, the 

profit increases by 55.1413%, and the loss increases by 

2.4983% due to the conflict of multiple objectives.  Here, 

two objectives are more optimized out of the three. Based on 

the comparison, it is clear that the fuzzy arithmetic mean 

technique (Proposed approach) yields a more optimized and 

better optimal solution than the existing methods. The 

Graphical representation of the comparison for crisp 

compromised values is given in Fig. 8.  

 

 

 

 

 

 

 

 

 

Similarly, for Example 3, Fig. 6(i) and Fig. 6(ii) represent 

the fuzzy compromised solution for the cost and time 

objective values, respectively. The fuzzy time graph in Fig 

7(i) demonstrates that the proposed approach maintains a 

narrower triangular shape, reflecting reduced uncertainty in 

time predictions. However, the fuzzy cost graph is shown in  

Figure 7(ii) indicates that the proposed method exhibits a 

slightly broader spread, suggesting higher uncertainty in 

cost estimation. 

 

 
Fig.  7(i) Fuzzy cost values across different approaches for 

Example 3. 

 

 
Fig.  7(ii) Fuzzy time values across different approaches for 

Example 3. 

 

 

Methods 

 

Fuzzy compromised solution Crisp compromised solution 

Cost Time Cost Time 

Admassu Tadesse 

[23] 

 

(6875.31,10341.77,16075) 

 

 

(748.32,1355.13,2335) 

 

 

10341.77 

 

 

1355.13 

Proposed approach (4525,7425,12425) (890,1530,2560) 7425 1530 
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Figure 8. The Crisp Objective values comparison for 

Example 1.  

 

 
 

Figure 9. The Crisp Objective values comparison for 

Example 2 

 

 
 

Figure 10. The Crisp Objective values comparison for 

Example 3 

 

For Example, 3, Table 11 shows that the proposed approach 

reduces cost by 28.2%, but time increases by 12.9% due to 

conflicting objectives compared to Admasu Tadesse et al 

[23]. This is a significant improvement in cost minimization. 

The graphical presentation of the comparison of crisp 

objective values for Example 2 is given in Fig.9. 

 The graphical representation of the comparison for 

Example 3 is given in Fig. 10. These findings highlight the 

effectiveness of the proposed approach in achieving a 

balanced trade-off between conflicting objectives. 

VI. CONCLUSION  

This research paper presented a new approach to solving 

fuzzy MOTP with triangular fuzzy numbers by using a 

fuzzy arithmetic mean approach. This approach first 

decomposed the FMOTP into three-level crisp MOTP using 

fuzzy arithmetic operations. Each of the three crisp single-

objective transportation problems is solved independently 

by using TORA software to get the optimum values, by 

which we calculate the fuzzy arithmetic mean. The FAM 

proposed approach is validated by solving three numerical 

examples. The fuzzy compromise solution provided by our 

method is better than the optimal solution provided by some 

other methods in each instance. The proposed approach is 

useful for solving transportation problems in which the 

decision-makers are unsure about the exact value of the 

transportation objectives in real-life applications. 
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