


Abstract-Wireless Sensor Networks are essential for real-time

data collection in disaster response, military surveillance, and
environmental monitoring. Each sensor detects environmental
parameters and sends data to a base station (BS) or sink. Using
multiple mobile sinks (MSs) based on clustering algorithms is
more efficient than static sink-based methods, especially in
scenarios where the number of sensor nodes (SNs) is large. This
scheme can improve path planning. This paper presents a
Multi-mobile Sink Path planning algorithm with Dual
Clustering (MSPDC) to improve rescue efficiency in
earthquake scenarios. The algorithm combines the K-means
algorithm, improved Density Peak Clustering (DPC), and an
improved Arithmetic Optimization Algorithm (AOA). First, we
use the K-means algorithm to pinpoint the cluster centers,
which serve as rendezvous points (RPs), and adjust them for
better coverage. Secondly, we apply an improved DPC
algorithm to cluster these RPs, further increasing coverage.
Finally, we use an improved AOA for 3D path planning. By
calculating the average Euclidean distance between each cluster
center and its RPs, we pick the center with the smallest distance
as the best starting spot for our robots. As the algorithm
searches for paths, it cleverly adapts its step size based on the
density of obstacles in the environment, dynamically adjusting
arithmetic operators and setting a safe distance to avoid
obstacles. Algorithm simulation analysis shows that the
improved AOA, compared with the traditional AOA, the Bat
Algorithm, the Improved Grey Wolf Optimization Algorithm,
the Genetic Algorithm, and the Whale Optimization Algorithm,
can search for the shortest path more quickly. It significantly
shortens the total path traversal time, reduces the number of
turns, and improves the success rate of obstacle avoidance in
complex environments. The MSPDC proposed in this paper
demonstrates stronger applicability and reliability in complex
scenarios such as earthquake rescue.

Index Terms-Wireless sensor networks, multi-mobile sink,

path planning, arithmetic optimization algorithm

Manuscript received April 18, 2025; revised July 9, 2025.
This work was supported by the National Natural Science Foundation of

China, under grant numbers 71571091 and 71771112.
Jia Ding is a postgraduate student of the School of Electronic and

Information Engineering, University of Science and Technology Liaoning,
Anshan 114051, China (e-mail: dingjia_0107@163.com).

Jian He is a professor of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan
114051, China (e-mail: lnashj@126.com).

Meijuan Li is a professor of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan
114051, China (e-mail: 454675273@qq.com).

Xuebo Chen is a professor of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan
114051, China (corresponding author, phone: +8613614128208; e-mail:
xuebochen@126.com).

I. INTRODUCTION
he Internet of Things (IoT) exemplifies a sophisticated
and comprehensive application of contemporary

information technology. Its significance in fostering
industrialization, advocating for ecological sustainability,
and facilitating intelligent networking is paramount in
shaping a sustainable economy and modern society. Wireless
Sensor Networks (WSNs), as a critical subset of IoT
technology, provide an essential infrastructure for the
exponential growth and advancement of IoT [1]. WSNs
consist of intricate networks of distributed, autonomous
devices designed to sense and monitor diverse environmental
parameters cooperatively. These networks find extensive
applications in areas such as habitat surveillance, prediction
and detection of natural disasters, and medical monitoring,
among others [2]. The primary components of WSNs
encompass sensing units designed for environmental
perception, processing units tasked with the manipulation of
raw data, transceiver units responsible for data transmission,
and power units that ensure a consistent power supply [3]. In
WSNs, sensor nodes (SNs) operate on battery power and
utilize wireless communication technology. Their compact
size allows for easy deployment in various locations with
minimal environmental impact. This versatility significantly
reduces deployment and maintenance costs, positioning
WSNs as a more cost-effective and efficient alternative to
wired sensor networks for sensor data collection [4].
Numerous sensor nodes join together to form WSNs, which
are well-suited for gathering data from carefully managed
environments. These nodes communicate through wireless
connections, sending all the data they pick up to special nodes
called sink nodes [5]. The sink node is crucial in data
collection, gathering data from sensor nodes, and sending it
to a central server or data center. With a continuous power
supply, large storage capacity, and strong communication
capabilities, it can work statically or dynamically to ensure
efficient data transmission and management.

In WSNs, data transfer methodologies predominantly
encompass single-hop and multi-hop transmissions.
Single-hop transmission involves direct communication
between the sensor nodes and the base station (BS), whereas
multi-hop transmission relies on intermediary relay nodes for
data relay. However, a major challenge is the rapid energy
depletion of nodes near the BS, causing uneven network
energy distribution. This imbalance creates "energy
holes"—areas with severely low energy levels—that harm
overall network efficiency and lifespan [6]. The main task of
SNs is to collect relevant data from the environment and send
the collected data to the BS or sink through multi-hop

A Study of Wireless Sensing Multi-Mobile Sink
Path Planning Based on Improved AOA

Jia DING, Jian HE, Meijuan LI and Xuebo CHEN*

T

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

communication, a method that helps extend the life of the
network. Static sink (SS) and mobile sink (MS) are two
common data acquisition methods. In scenarios where a
single SS is employed, it collects data from all SNs and sends
it to the BS. However, this can create an energy hole, mainly
because nodes near the SS consume excessive energy.
Additionally, there is a significant energy consumption gap:
nodes closer to the SS use more energy than those farther
away. This discrepancy can readily lead to the formation of
energy holes. Furthermore, for the purpose of load balancing,
the SS is typically positioned at the centroid of the WSNs.
Moreover, if there is an excessive concentration of nodes in
the vicinity of the SS, there is a risk of these nodes depleting
their energy reserves and failing, thereby disconnecting the
SS from the remaining WSNs [7]. To address this challenge,
employing multiple SSs for data acquisition is a strategic
approach, as it mitigates the energy hole issue and enhances
transmission efficiency. However, the fixed nature and
security vulnerabilities of SS positions pose challenges in
determining optimal locations. To circumvent these
limitations, the use of an MS for data collection is advisable.
The mobility of the MS allows for extensive traversal within
the network, facilitating comprehensive data acquisition from
various SNs. In scenarios where SNs establish contact with
the MS, they promptly transmit their sensor data to the MS.
When direct communication is not feasible, SNs retain the
data until they can reconnect with the MS. Alternatively, they
relay the data to the MS via intermediate SNs through
multi-hop communication. This method facilitates load
balancing and equitable energy distribution across the
network, thereby optimizing the network's lifespan [8]. The
constantly shifting location of the MS makes it difficult for
attackers to pinpoint it and enhances security. However, if
only one MS is in use and there are many SNs, the MS must
visit each SN to gather data, causing delays. The
communication between SNs and MS can also cap the
network's throughput and lifespan. To boost WSNs'
performance, one tactic is to introduce multiple mobile sinks
(MSs) [9]. Having several MSs enhances the WSNs' ability to
manage faults, balance the load, and ensure data reliability. It
also expands the network's reach, making it adaptable to
different applications.

The extensive utilization of WSNs in intelligent and
environmental monitoring has elevated the significance of
MS path planning. With the application of mobile robots,
researchers and scholars have extensively studied path
planning technology [10]. The goal of 3D path planning is to
find a path that avoids obstacles, minimizes path length or
time, and considers physical limitations and motion
constraints in 3D space [11]. In the context of mobile robotics,
path planning involves employing sophisticated algorithms
to determine the shortest or quickest routes for robots, drones,
or autonomous vehicles while ensuring collision-free
navigation. The strategic selection of path planning
algorithms is crucial for guaranteeing secure and efficient
point-to-point travel [12]. In the realm of autonomous vehicle
navigation, path planning algorithms play a pivotal role in
facilitating obstacle avoidance and coordination with other
mobile robots [13]. The field of path planning is divided into
two main categories: global and local strategies. Global
strategies are limited due to terrain uncertainties and

robustness issues. In contrast, local strategies demonstrate
greater adaptability in partially known or unknown scenarios,
optimizing route efficiency [14]. Path planning technology is
an essential driver of efficiency and safety in diverse
applications, including warehouse automation, rescue
robotics, and military reconnaissance. It represents a
cornerstone of 21st-century technological advancement [15].
For effective data collection and energy conservation,
designing path planning algorithms is crucial. Current
approaches include overall path planning, ideal for
small-scale but complex tasks, and cluster-based path
planning, better for large-scale environments. These
approaches enhance computational speed and system
scalability.

Domestic and international studies have evolved from
focusing solely on individual path planning to addressing the
collaborative optimization of multiple MSs. This approach
efficiently orchestrates the routes of MSs, thereby mitigating
issues of uneven load distribution. In large-scale networks, a
single MS can consume a significant amount of energy. To
address this, a clustering strategy is implemented, alongside
multiple MSs, to significantly boost data collection
efficiency. The network's nodes are divided into various
clusters, each with its own MS. Generally, SNs forward their
collected data to specific rendezvous points (RPs), and each
MS needs only to visit the RPs within its cluster. This
approach reduces the number of positions an MS must visit,
shortens its travel path, boosts information collection
efficiency, and cuts energy consumption. Additionally, this
method bypasses the need to send data to the BS, thereby
reducing in-network communication distances, alleviating
congestion, and further reducing WSN energy consumption
[16]. In practical applications, due to environmental obstacles,
considerations such as sensor information and perception
capabilities, obstacle representation and map updating,
dynamic path planning and re-planning strategies, and
security issues must be carefully addressed.

Earthquakes, hurricanes, volcanic eruptions, and tsunamis
are common but highly destructive natural disasters. The first
72 hours after a disaster are often called the "golden rescue
time". How to implement rescue tasks more efficiently after
an earthquake is a problem that we need to study [17].
Because BS is often damaged after a disaster, the traditional
rescue means are ineffective. The WSN technology can
monitor environmental changes in real time, provide key data
for rescue, help rapid decision-making, and improve
efficiency and success rate. By pre-deploying SNs, after an
earthquake, WSNs collect information about the location and
ruins of survivors in the collapsed building from the installed
sensor equipment and transmit it to the emergency center,
where the rescue robot can obtain information in advance. If
there are SNs within a few meters of the survivors, robots can
detect the location of the survivors in the rubble [18].

In disaster-stricken areas, where multiple SNs are
pre-positioned, clustering technology is being used, along
with several MSs, to gather vital information from these SNs,
thereby enhancing the rescue efforts for those affected by
earthquakes. Data collection efficiency can be improved
through rational path planning for each MS. This paper
proposes a Multi-mobile Sink Path planning algorithm with
Dual Clustering (MSPDC), which combines the K-means

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

algorithm, Density Peak Clustering (DPC) algorithm, and
Arithmetic Optimization Algorithm (AOA). First, the
K-means and DPC algorithms are combined and optimized to
improve node coverage in clusters. Secondly, in the path
planning phase, we use an improved AOA to determine the
optimal initial deployment positions for each robot, laying
the foundation for efficient path planning. Finally, in
simulating a complex environment for an earthquake rescue
scenario, random obstacles are set during the path planning
process. This is combined with obstacle detection technology
and optimized obstacle avoidance strategies. It enables robots
to quickly perceive environmental changes and flexibly plan
the optimal obstacle avoidance path, greatly enhancing
rescue efficiency. By leveraging the dual benefits of
optimized initial deployment points and intelligent obstacle
avoidance strategies, the time required for finding the optimal
path and traversal can be significantly reduced. Additionally,
it effectively shortens the total path length and minimizes
time loss due to frequent turning. At the same time, it can
significantly improve the robots' obstacle avoidance success
rate in complex and variable environments. This thereby
reduces the overall energy loss of WSNs and practically
enhances the adaptability and reliability of the system in
actual earthquake rescue scenarios.

II. SYSTEM MODEL

A. Network Model
In our analysis, we adapt a system model that represents a

single WSN, which includes n SNs and m MSs. SNs are
scattered randomly across a 3D space, each occupying a
distinct location and gathering unique data. We define a set N
as the set  iN n 1 i n   of SNs, where ni symbolizes the

i-th node. We define a set M as the set  iM m 1 i m   of

MSs, where mi symbolizes the i-th MS. In sensor data
collection, ensuring complete area coverage is key. Each MS
follows a set path to gather data from SNs in its range. This
ensures that every spot in the sensing area is monitored by at
least s SNs ()s 1 and s N  .

When dealing with numerous SNs, identifying RPs
becomes essential. These RPs gather data from nearby SNs.
Assuming that K RPs are generated within the network and
these K RPs constitute the RPs set  kQ Q 1 k K  

,

where Qk represents the k-th RP. We then group these RPs
into m clusters, with each cluster having a dedicated MS. The
path of each MS is planned so that it can collect data from the
RPs in its area, under the assumption that each MS has
sufficient energy to traverse its route and complete data
collection.

By applying the K-means algorithm, we create eight RPs
among the effective nodes—that is, K=8. We use the
improved DPC algorithm to divide these RPs into two
clusters, m=2. Create two irregularly shaped obstacles in a
3D space. For each obstacle, we randomly generate eight
vertices and six faces. We also specify the size of both
obstacles. Within each cluster, we use an improved AOA to
plot the paths for the MSs, ensuring they navigate around
these obstacles efficiently. Fig. 1 shows a schematic of the
network model in a 3D environment.

B. Path Length Model

During path planning, SNs transmit their data packets to
the nearest RPs through multi-hop transmission. The MS
traverses each RP in each cluster, and the starting and ending
points of the MS path are called the starting point and the
target point, respectively. We define "shortest distance" as
minimizing the path length between the starting point and the
target point. In any iteration, if the distance between the point

()jwp t and the destination point ()wp N is the shortest, then
this point is selected as the optimal point. The "shortest
distance" between the two points can be represented as [19]:

1 , ,) ((), ())jF x y z d wp t wp N（ (1)

Where td is the Euclidean distance in 3D space:
2 2

wp wp wp wp

2
wp wp

((1)- ()) ((1)- ())
((1)- ())

j j j j

j j

t
x t x t y t y t

d
z t z t


  

 
 (2)

The Shortest Path Length (SPL) is calculated by adding up
the distances between the starting point (1)wp and the
destination point ()wp N through all intermediate points
((2)... (1))j jwp wp N  generated by the path planning
algorithm, that is:

1 1

t 1 1
((), (1))

N N

j j t
t

SPL d wp t wp t d
 

 

    (3)

Where x, y, and z are the coordinate values of the 3D point, t
is the number of iterations, j is the index for the best solution
found by our group optimization path planning algorithm,
and N is the number of points visited along the MS's path.

C. Time Model
The total time t for MS path planning includes three parts:
(1) The time taken to find the optimal path using the

improved AOA is 1t .
(2) The time taken for the MS to traverse all RPs within its

cluster is 2t .
(3) The MS stops at each RP for one minute. Assuming the

number of RPs traversed within each cluster is p ()p Q , the
total stopping time is 3t .

(4) Every time an MS makes a turn, it takes 0.5 minutes.

Fig. 1. 3D environmental network model

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

Assuming the number of turns an MS makes while searching
for the optimal path is q, then the total time spent on turning is

4t .
3 4 1 2 31 , 0.5t p t q t t t t       , (4)

Assuming MS moves at a constant speed v , the shortest
path length is:

2SPL t v  (5)
Where 2t is the time required for each MS to traverse all
paths from the starting point to the end point within each
cluster, an MS starts moving from a node ()jwp t and reaches
its destination through time 2t [20], 0.83 /v m s .

III. ALGORITHM
In this article, we introduce a cluster-based approach to

path planning named MSPDC. It consists of three core
algorithms:

(1) Look for the optimal location of RPs. In this stage, we
employ the K-means algorithm to determine the number of
RPs, excluding any invalid ones, in the 3D scene and pinpoint
their best locations. This algorithm is simple to understand
and implement, with low computational complexity and great
scalability.

(2) During the clustering phase, we utilize the improved
DPC algorithm to group all RPs, maximizing node coverage.
It is adept at identifying clusters of any form and dealing with
data that is spread out differently.

(3) During the path planning phase, an MS is allocated
within each cluster. The improved AOA is employed to
determine the optimal initial positions of each MS,
facilitating quick identification of the shortest path.
Additionally, we introduce random 3D obstacles to simulate
realistic earthquake rescue environments, enabling robots to
navigate around obstacles effectively. This approach
significantly enhances rescue efficiency and possesses
considerable practical value.

A. K-means Algorithm for Finding RPs
The K-means algorithm [21], [22] is a deterministic global

optimization method that does not depend on any initial
parameter values and requires the number of clusters to be
determined in advance. The K-means algorithm clustering
problem aims to divide the RPs into C mutually exclusive
clusters (C1, ..., CM), with the center of each cluster being the
RPs. The algorithm consists of two phases:

(1) Randomly select r cluster centers.
(2) Place each node with its closest cluster center, with r

set in advance. Measure the distance between the cluster
center and the node using the Euclidean distance method.
Define the vector coordinates of the current cluster center as

, ,A)a a ax y z（ , and the vector coordinates of the current node
as , ,B b b bx y z（ ）. The Euclidean distance in 3D space can be
calculated as:

2 2 2 1/2

1, 1
d [() () ()]

n

AB a b a b a b
a b

x x y y z z
 

      (6)

The number of RPs is r, define a set  iR R 1 i r   as

the set of RPs, where Ri represents the i-th RP. Input the

specified number of cluster centers r and the database N
consistin g of (1-6%) n SNs, where  iN n 1 i n   , output

r cluster centers. In the end, use the K-means algorithm to
generate eight RPs, through multiple iterations, the optimal
positions of the eight RPs can be found.

B. DPC Algorithm for Clustering RPs
Using the located RPs, we employ the DPC algorithm [23],

[24] for clustering. This approach focuses on the local density
of SNs and their relative distances, without predefining the
number of clusters. The DPC algorithm is versatile, capable
of identifying clusters of any shape and handling
density-varying data. The core idea is that a cluster center
should have a higher density than its neighboring points and
be relatively far from other points with similar or higher
density. Such points are typically regarded as ideal cluster
centers. The process involves calculating the density of all
RPs, pinpointing the centers of dense areas, and ensuring
these centers have a higher density than the surrounding RPs.
The algorithm works as follows:
1) Calculate the local density i for each RP

The local density can be estimated using a simple
statistical method. Generally, the i of a data point reflects
the number of points around it. There are two methods to
calculate the i for each point i. One method involves using
a Truncated kernel, focusing solely on the count of data
points within the cluster's vicinity, which is defined as:

()i ij c
j

d d   (7)

Where () 1ij cd d   . ijd is the distance from point i, which
is the cluster center, to the nearby point j, and cd is the
threshold value set by the user. An alternative approach
involves calculating the Gaussian kernel, in which the density
of each RP signifies its "crowding degree" within the spatial
context. The formula is as follows:

2xp[()]ij
i

cj

de
d

   (8)

2) Calculate the relative distance ∆i of each RPs
For each RPs, calculate the distance ∆i to the point with

higher density, which is:

:
min

j i
i ij

j
d

 
  (9)

Here, j represents the density of data point j, and ijd is the
distance between point i and point j. The relative distance
indicates how far data point i is from the closest data point
that has a higher density.
3) Select cluster centers

Define a "clustering goodness" indicator as:
i i i   (10)

Based on the i and Δi , the i of each RP can be
calculated. If a point's i is higher than the density of all its
neighboring points and the distance to points with higher
density Δi is also far, then this point may be a cluster center.
Choose RPs with higher i values as cluster centers.
Typically, these RPs are in high-density areas and are distant
from other such areas.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

4) Assign RPs to the nearest cluster center
After determining the clustering centers, the remaining

RPs are assigned to the nearest clustering center, which
means assigning the remaining RPs to the nearest clustering
center with a density greater than themselves.
5) Output the clustering results

Through the above steps, the RPs can eventually be
divided into multiple clusters, each cluster containing a set of
RPs close to the cluster center. The traditional DPC algorithm
uses a Truncated kernel to calculate density, which is easily
affected by data distribution and parameters. After
improvement, it adopts a Gaussian kernel, assigning different
weights according to the distance between data points, which
can finely present the density distribution. The output results
are continuous, allowing for a more precise determination of
density peak points. By leveraging the smoothing
characteristics of the Gaussian function, there is no need to
precisely set the neighborhood radius, mitigating the impact
of parameter settings. Additionally, optimizing the
bandwidth parameter enhances the adaptability to data
distribution. When detecting invalid nodes overlapping with
cluster centers, using the traditional algorithm for clustering
and randomly removing invalid nodes may lead to the
destruction of the cluster structure. Through iterative
optimization, center point allocation can be timely adjusted,
enhancing robustness.

C. Improved AOA path planning
AOA [25]-[27] is a metaheuristic optimization algorithm

that achieves global optimization based on the distribution
characteristics of arithmetic operators. Drawing inspiration
from how arithmetic operators are used in math problems,
AOA employs basic arithmetic operations like addition,
subtraction, multiplication, and uses them to identify the
optimal solution from a set of candidate solutions. AOA is
divided into two phases: exploration and exploitation. In the
exploration phase, the algorithm employs multiplication and
division to conduct a comprehensive global search. This
approach not only broadens the distribution of solutions but
also significantly boosts the algorithm's capability to uncover
a multitude of promising solutions within an extensive search
landscape. In the exploitation phase, the algorithm utilizes
addition and subtraction strategies to narrow down the focus.
This helps consolidate the solutions within a specific area,
allowing for a more detailed search and enhancing the speed
at which the optimal solution is identified and reached within
a set of promising solutions.

In AOA, the optimization process starts with a set of
randomly generated candidate solutions, as shown in matrix
(11), where the best candidate solution in each iteration is the
optimal or near-optimal solution obtained so far.

1 1 1 1 1 1

2 1 2 2

1 1 1 1

1 1

, , j ,n ,n

, , j ,n

N , N , j N ,n

N, N, j N,n N,n

x x x x
x x x

x

x x x
x x x x



  



 
 
 
 

  
 
 
 
  

 
  

     
     

  
 

 (11)

First, AOA uses coefficients calculated by equation (12) to
select the search phase through the Math Optimizer
Accelerated (MOA), with the formula as follows:

Another coefficient defined by equation (13) is the Math
Optimizer Probability (MOP), which is used to control the
range of candidate solutions during the exploration or
exploitation phase, namely:

1

MOP() 1 ()tt
T

  (13)

In which MOP (t) and MOA (t) are the values at the t-th
iteration, t and T represent the current iteration and the
maximum number of iterations, respectively. Max and Min
are the highest and lowest values of MOA, and α is a key
parameter that defines the local exploitation precision in the
iteration process. Define r1 as a random number between 0
and 1. When r1 > MOA, AOA performs global exploration;
when r1 < MOA, AOA enters the local development phase.

During the exploration phase, the division operator and the
multiplication operator have a high degree of discreteness,
which may lead to divergence and make it difficult to
approach the target. However, after several iterations,
communication between operators is increased to support the
search during the exploration phase, adopting the simplest
rules to simulate the behavior of arithmetic operators. The
position update during the exploration phase is defined as:







j

j

() () ()

0.5,
(1)

() ()

2

j j j

j
i, j

j j

best x MOP UB LB

LB r
x t

best x MOP UB LB

LB otherwise







    


  
  

  
  

，

，

 (14)

Among them, r2∈ [0,1], xi，j (t) represents the j-th position of
the i-th solution in the current iteration. Best (xj) is the best
solution obtained so far at the j-th position, and ε is a very
small value. UBj and LBj represent the upper and lower
bounds at the j-th position, respectively, and μ is the control
parameter to adjust the search process, with a value of 0.499.
When r2 < 0.5, the division search strategy is executed, and
when r2 > 0.5, the multiplication search strategy is executed.

During the development phase, the subtraction operator or
addition operator has lower discreteness, which helps them
approach the optimal solution. The position update formula is
as follows:





() ()

0.5,
(1)

() () ,
3

j j j j

i, j
j j j j

best x MOP UB LB LB

r
x t

best x MOP UB LB LB

otherwise





     
 
     




，

(15)

Among which, r3 is a random number between 0 and 1.
In AOA, getting the best starting point is crucial for

balancing exploration and exploitation. Picking a good initial
point can speed up the algorithm's convergence and improve
the quality of the final solution. The paper introduces a
function to find the optimal starting point for robot path
planning. It does this by calculating the average distance
between each potential center point and all the data points,

MOA() ()Max Mint Min t
T


   (12)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

and then choosing the center point with the shortest average
distance. First, initialize the average distance array by
creating a zero vector of length a, where a is the number of
RPs in each cluster. For each centroid i, calculate the norm
with other node vectors—that is, calculate the Euclidean
distance in three dimensions for each centroid. After
calculating the distance between the current center point and
all data points, find the average of these distances. Store the
average distance of each center point to all RPs in the cluster
in the average distance array. This array represents the
average distance between each center point and all RPs in the
cluster. Finally, locate the minimum value in the average
distance array and select the corresponding center point as the
initial point, thereby identifying the optimal starting point.

In real-world rescue missions, unexpected obstacles are
common, and predicting their locations is impossible. This
study simulates this scenario by placing two irregularly
shaped obstacles and creating a special function to detect
collisions with these obstacles. Each obstacle is defined by its
eight corners, which are like the points on a polygon. To see
if our robot is in danger of hitting these obstacles, we use
something called an Axis-Aligned Bounding Box (AABB) to
check if the robot's current spot is inside the obstacle's space.
First, compute the minimum and maximum coordinates of
the bounding box to find the six edges of the AABB in 3D
space: the top and bottom of the x-axis, the left and right of
the y-axis, and the front and back of the z-axis. Then, check if
the point's coordinates are inside this box. If all the point's
coordinates fit within the box's limits, it means the point is
inside the obstacle's space. If a collision is detected, the
obstacle avoidance function is activated. The goal of the
obstacle avoidance function is to tweak the path points so that
the robot does not crash into any obstacles. The strategy is to
find the direction that is furthest from where we are trying to
go and avoid obstacles in that way. If we get too close to an
obstacle, we figure out a new spot to steer the robot, making
sure it avoids the obstacle while still heading toward the
target. We start by calculating the direction vector from our
current location to our destination. Next, we use the cross
product to find a direction that is perpendicular to our target
direction, which we use to dodge the obstacle. Usually, we do
this by swerving around the z-axis, but if that does not work
(if the cross-product is zero, it means we are parallel to the
z-axis), we switch to swerving around the y-axis instead.

The core of AOA in obstacle avoidance lies in its flexible
use of basic arithmetic operations to achieve environmental
adaptation, multi-objective coordination, and efficient
computation. The arithmetic operations for two-dimensional
path planning cannot be straightforwardly applied to 3D
space. In a 3D environment, AOA extends the search space
through multi-dimensional arithmetic operations, with path
points represented as (, ,)P x y z . Candidate paths are
generated through addition and subtraction:

where  represents the dynamic step size and (, ,)x y zv v v v
represents the direction vector. We utilize the vector dot
product to assess the alignment between the path direction
and the target direction and the cross product to avoid the
normal vectors of obstacle surfaces, thereby enhancing path
safety.

AOA dynamically modulates the step size in response to
obstacle density, thereby facilitating adaptive environmental
responsiveness through the strategic manipulation of
arithmetic operators. In regions with high obstacle
concentration, division operations are implemented to
decrement the step size, thereby enhancing path safety.
Conversely, in less obstructed areas, multiplication
operations are utilized to expedite global search processes,
thereby augmenting operational efficiency. By dynamically
selecting arithmetic operators and density-related parameters,
flexible scaling of the step size is realized. Define the
obstacle density d as the proportion of the local area around
the current path point occupied by obstacles:

obs

total

Nd
N

 (17)

Where obsN is the area occupied by the obstacle in the
localized area and totalN is the total area of the localized area.

The step size s is adaptively adjusted according to the
obstacle density d, combining multiplication (open area) and
division (dense area) operations:

1 (1)
1base

ds s
d




 
 


 (18)

Where bases is the base step size,  is the open region
amplification factor (0  , which controls the intensity of
the penalization operation), and  is the dense region
reduction factor (0  , which controls the intensity of the

division operation).
1 (1)

1
d

d



 


as a dynamic adjustment

factor. When 0d  , the adjustment factor converges to
1  , the step size is enlarged by (1) times to accelerate
the global search; when 1d  , the adjustment factor
converges to 1/ (1) , the step size is reduced to

/ (1)baseS  to improve the safety of obstacle avoidance.
In 3D space, the step direction needs to be corrected in

conjunction with the obstacle distribution. Define the
modulus of the direction vector as v s , direction is
determined by a combination of target point and obstacle
repulsion:

target (1)new repelv v d v d     (19)
where targetv is the unit vector pointing to the target, repelv is
the unit vector in the direction of obstacle repulsion, weights
(1)d , d realize the balance between target orientation and
obstacle avoidance.

A safety distance penalty term is introduced to ensure that
paths are kept away from obstacles:

2
1

cos
()

N
repel

safe
ii

kt
d 


 (20)

where id is the normalized distance to the i-th obstacle,  is
a very small constant, and repelk is the repulsion coefficient.
In comparison to conventional algorithms, AOA exhibits the
benefits of streamlined operation and minimal
parameterization, effectively harmonizing security and
efficiency.

(, ,)new current x y zv v vP P    (16)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

The algorithm flowchart of MSPDC is shown in Fig. 2.
First, use the K-means algorithm to find eight RPs. Randomly
select valid nodes as initial points, that is, cluster centroids,
calculate the distance between SNs and these initial points,
and assign each SN to different clusters based on the distance.
After the assignment, recalculate the cluster centroids and
repeat the above steps until the centroids no longer change,
thus finding the RPs. Later, the DPC algorithm is refined by
calculating the sum of i and Δi for each RP. The "cluster
goodness" index i was calculated, and the cluster center
was selected, the RPs were initially divided into two clusters.
The allocation was optimized iteratively to improve the
cluster stability. Finally, place one MS in each cluster and use
the improved AOA for path planning. Select the optimal
initial position for each MS through the optimal initial point
function. Choose the nearest initial point for each MS, then
move towards the target point. During this process, MSs use
the obstacle avoidance function to navigate around obstacles
until all RPs have been traversed. Visualize the path of each
MS and calculate the total time taken to find the optimal path
and traverse all RPs, the time consumed for turning, the
length of the traversed path, and the obstacle avoidance
success rate.

IV. PERFORMANCE COMPARISON
In a MATLAB-based simulation of a wireless sensor

network spanning 400 m × 400 m × 30 m, we randomly
placed 200 SNs, (200)n  , each with its own , , z)i i ix y（ ,
1 200i （ ） coordinates and a communication radius of

nine meters. The data for these nodes is organized into a 3D
array.

To mimic real-world network failures, we designated 6% of
these nodes as non-functional. The K-means algorithm excels
in rapidly processing extensive datasets, promptly yielding a
limited number of cluster centroids, which substantially
diminishes the volume of data for subsequent analysis. The
improved DPC algorithm further leverages this efficiency by
directly utilizing the sparse set of RPs generated by the
K-means algorithm, thereby significantly reducing
computational complexity. This enhancement renders the
algorithm particularly adept in big data contexts, greatly
amplifying its processing capabilities. In real-world
applications, where node distributions often assume complex,
irregular forms, the refined DPC algorithm demonstrates its
versatility. It adeptly partitions these RPs based on density
reachability, thereby not only identifying clusters of arbitrary
geometries but also ensuring the robustness of cluster
centroids. An iterative optimization process allows for
continual refinement of these partitions, enhancing accuracy.
By merging the K-means algorithm's quick generation of
approximate solutions with the refined adjustments of the
improved DPC algorithm, we achieve a notable improvement
in clustering accuracy. This approach also maintains
processing efficiency, offering an effective and precise
solution for node clustering in complex scenarios. Initially,
we used the K-means algorithm to find the best locations for
eight RPs, followed by the DPC algorithm for network
clustering.

To assess the performance of our improved algorithm, we
compared it with traditional methods. The traditional
approach, which initializes the DPC algorithm with the
K-means algorithm, achieved cluster coverages of 94.23%
for Cluster 1 and 93.75% for Cluster 2. Our improved
algorithm, which ensures that cluster centers are always

Fig. 2. Comprehensive path planning algorithm flowchart

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

functional nodes and uses a Gaussian kernel for local density
calculation with optimized bandwidth parameters, slightly
outperformed the traditional method, increasing coverages to
94.29% for Cluster 1 and 93.85% for Cluster 2. This
represents a 0.07% and 0.1% improvement, respectively. A
visual comparison of the clustering results in a 3D space is
shown in Fig. 3, with (a) showing the traditional method's
clustering and (b) showing the improved algorithm's superior
precision and coverage in complex 3D environments.

To address the limitations of most path planning methods

being confined to two-dimensional spaces using MS for data
collection and path planning, this study develops a 3D model
for post-earthquake rescue operations and introduces
MSPDC. In this 3D setting, we first applied a DPC algorithm,
initialized with the K-means algorithm, to categorize
effective nodes into two clusters. Each cluster has a dedicated
mobile robot for navigating through its RPs. For path
planning, we utilize an improved AOA approach to create the
most efficient routes. These routes link path points via line
segments, with the total MS travel distance being the
combined length of these segments. The time used for MS
path planning includes the time for path optimization, the
time spent stopping at RPs, the time consumed for turning,
and the time taken to traverse the path. MS stays at each RP
for one minute to collect node data within the coverage of the
RPs. The improved AOA efficiently maps out the shortest

path from the starting node to the destination. A visual
comparison of the simulation outcomes is shown in Fig. 4. In
this figure, (a) shows the result of using traditional AOA to
find the optimal path, (b) presents the result of using
improved AOA to find the optimal path, and (c) provides a
top view of the path planned by the improved algorithm.
These visual representations provide a clear validation of the
improved algorithm's proficiency in optimizing paths within
intricate 3D settings.

(a) Multi-obstacle path planning based on traditional AOA

(c) Top view of multi-obstacle path planning based on improved AOA

Fig. 4. Comparison of path planning results between traditional AOA and
improved AOA

(a) DPC algorithm clustering with original K-means initialization

(b) DPC algorithm clustering with improved K-means initialization

Fig. 3. Comparison of the clustering results in the 3 D environment

(b) Multi-obstacle path planning based on improved AOA

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

In path planning, the choice of the initial point
significantly affects the quality of the solution, easily leading
to the solution space getting stuck in local optima. Traditional
AOA is usually applied in simple or ideal two-dimensional
environments. Using this method for path planning takes
approximately 47.2 min, with a path length of 1560 m. This
paper uses the improved AOA to optimize the initial position
of the robot for complex 3D environments. It calculates the
average Euclidean distance between each RP and other RPs,
selecting the point with the smallest average distance as the
optimal initial point. Considering the presence of 3D
obstacles in space, we employ the AABB detection method to
ascertain the location of obstacles and introduce an obstacle
avoidance mechanism. By adjusting the step size through
adaptive arithmetic operations, we achieve obstacle
avoidance, target coordination, and efficient computation,
balancing safety with efficiency. Upon detecting an
impending collision, the algorithm automatically selects a
direction to evade the obstacle and promptly adjusts the
position of the MS to shift until avoiding collision with static
obstacles. It can also swiftly and accurately locate the most
optimal solution currently available. Experiments show that
the improved AOA reduces the path planning time to about
29.6 min and the path length to 930 m, saving about 17.6 min
and 630 m compared to traditional methods. This
significantly improves convergence speed and obstacle
avoidance effectiveness. It also rapidly generates initial
solutions in complex scenarios like earthquake rescue.
Additionally, it optimizes the shortest paths, effectively
enhancing the efficiency of actual rescue operations.

By iterating 100 times, the improved AOA is compared
with other MS path planning algorithms to find the optimal
solution. The algorithms compared include the Bat
Algorithm (BAT) [28], the Improved Grey Wolf
Optimization Algorithm (CGWO) [29], the Genetic
Algorithm (GA) [30], and the Whale Optimization Algorithm
(WOA) [31]. The simulation route results of each algorithm
are shown in Fig. 5-Fig. 8.

Fig. 5 shows the simulation outcomes of the BAT's path
planning capabilities. This algorithm employs an
echolocation-inspired approach to optimize paths,
capitalizing on its robust global search proficiency to identify
relatively optimal solutions. Nevertheless, in
three-dimensional environments, it exhibits vulnerability to
local optima, particularly during obstacle avoidance phases
where the algorithm does not fully account for path
optimality. This can result in repeated traversal of RPs and an
escalation in path traversal time. Comparative performance
analysis reveals that BAT exhibits the longest execution time,
approximately 49.19 min, which exceeds the improved AOA
by approximately 19.59 min. Furthermore, its path traversal
length is approximately 1709.65 m, representing an
increment of approximately 779.65 m relative to the
improved AOA.

Fig. 6 shows the path planning simulation results of the
CGWO, an improved version of the Grey Wolf Optimizer
(GWO). CGWO incorporates chaotic mapping to enhance its
global search capabilities and significantly improves search
efficiency through the integration of multiple strategies.
However, this also increases the number of computational
steps, thereby extending the overall computation time. Even

with its advanced global search capabilities, AOA faces
inefficiencies during traversal in intricate 3D settings with a
high density of SNs. This inefficiency can lead to suboptimal
path optimization and a challenge in striking the right balance
between optimizing path length and meeting other objectives.
During traversal, CGWO takes approximately 49.51 min,
with a path length of about 1675.72 m, which is around 19.91
min longer than the improved AOA and an increase of about
745.72 m in path length.

Fig. 7 shows the path planning simulation results of GA.

GA optimizes paths by simulating the process of natural
selection and explores global optimal solutions through
population evolution mechanisms. In 3D path planning
problems, the population size and number of iterations
directly affect computation time, leading to longer
computational times. During obstacle avoidance, this
algorithm selects to evade obstacles in a vertical manner,
which considerably raises the count of paths traversed and is
not apt for real-life earthquake rescue situations. In terms of
performance, GA's performance resembles that of the basic
AOA, with a longer duration dedicated to finding the optimal
path. Its traversal time is approximately 45.86 min, and the
path length is about 1643.05 m. Compared to the improved
AOA, GA reduces time by about 16.26 min but increases the
path length by approximately 713.05 m.

Fig. 5. Multi-obstacle path planning based on BAT

Fig. 6. Multi-obstacle path planning based on CGWO

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

Fig. 8 shows the simulation results of the WOA for path
planning. WOA effectively avoids local optima by
mimicking the behavior of whales encircling prey and
attacking with bubble nets, rendering it suitable for path
optimization in complex obstacle-filled environments. It
prioritizes finding the nearest point to the current position
during path search. However, simulating whale behavior
escalates computational complexity and imposes real-time
constraints, potentially causing repeated traversals of RPs
during path optimization. Consequently, utilizing WOA for
optimal path search expends more time, approximately 40.13
min, and explores longer paths, with a traversal length of
about 1356.53 m. Compared to the improved AOA, WOA
extends path planning time by about 10.53 min and adds
approximately 426.53 m to the path length.

To comprehensively evaluate the performance advantages
of the improved AOA, a comparative experiment was
designed under unified conditions. Analyzing five key
dimensions with the control variable of 100 iterations, the
experiment recorded the performance of each algorithm in
terms of optimization time, path length, traversal time,
number of turns, and success rate of obstacle avoidance in
complex environments. In the comparative experiments, five
sets of standardized tables clearly present the performance
differences between the improved AOA and traditional AOA,

BAT, CGWO, GA, and WOA. Table I shows the shortest
path optimization time. The improved AOA has an extremely
short pathfinding time. R1, R2, and total pathfinding times
are only 0.00094 s, 0.00214 s, and 0.00308 s, respectively.
This significantly outperforms other algorithms. It strongly
demonstrates its efficient path search capability. Table II
shows the shortest path lengths. The R1, R2, and total paths
of the improved AOA planning are about 276 m, 654 m, and
930 m, respectively. These are the shortest among all
algorithms. This confirms its precise ability to plan concise
paths. Table III highlights the total time taken to traverse the
path. The improved AOA traverses the total distance in 29.6
min. This is significantly shorter than the 47.2 min for AOA
and 49.19 min for BAT. It clearly shows how effective time
optimization really is. Table IV reveals the number of turns in
the travel path. The improved AOA needs just 6 turns to get
from start to finish. On the other hand, the traditional AOA
and CGWO require 16 turns to cover the entire route.
Reducing turns helps lower robot energy consumption and
control complexity. Table V shows the success rate of
obstacle avoidance in complex environments. The improved
AOA shows a prominent advantage in R1 and R2 obstacle
avoidance success rates. These rates are 100% and 84%,
respectively. In contrast, AOA, BAT, etc. perform poorly.
For example, the BAT's R2 obstacle avoidance success rate is
only 38%. This reflects its stronger adaptation and avoidance
capabilities in complex environments. Overall, the
experimental results intuitively reveal the comprehensive
advantages of the improved AOA in multi-objective
optimization, surpassing traditional algorithms in pathfinding
efficiency, path simplification, time control, motion
complexity, and environmental adaptability, demonstrating
the core advantages of optimized path planning, and laying a
solid foundation for the application of this algorithm in actual
earthquake rescue scenarios.

A. Path -finding Time
Fig. 9 shows the fitness function curves for path

optimization of two robots, where (a) and (b) record the time
variation trends for R1 and R2 in finding the optimal path,
respectively. From the characteristics of the curve, it is
evident that the traditional AOA has significant drawbacks:
R1 requires approximately 50 iterations to converge, with a
slow convergence speed, a lengthy path optimization process,
and a high susceptibility to getting trapped in local optima.
To address these issues, the introduction of an adaptive step
size mechanism effectively improves the algorithm's
insufficient exploration in the initial stages of iteration.
Simultaneously, by incorporating an optimal initial point
selection function, the path exploration time is significantly
reduced. The improved AOA exhibits exceptional
performance with the fastest convergence speed, completing
the optimization in approximately 0.003 s, significantly
reducing path optimization time, and substantially enhancing
global search capabilities. Other comparative algorithms also
exhibit different performance characteristics: BAT takes a
reasonable amount of time to search paths but lacks global
search ability, taking more than 30 iterations to find the best
solution, fitting only for quick responses in certain situations.
CGWO is a bit slower in convergence than the improved
AOA, with its fitness curve showing big swings initially and

Fig. 7. Multi-obstacle path planning based on GA

Fig. 8. Multi-obstacle path planning based on WOA

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

(a) Time fitness curve of R1 optimization (b) Time fitness curve of R2 optimization

Fig. 9. The fitness function curves for path optimization

a higher optimization time in the end. The traditional GA is
inefficient, requiring over 80 iterations to converge, leading
to a significant increase in optimization time for both robots
within their respective clusters. WOA may have a shorter
path optimization time, but R1 requires almost 80 iterations
to reach the optimal value, indicating poor convergence
efficiency.

Overall, the improved AOA really shines with its minimal
iterations needed for full convergence and virtually zero
optimization time. It outperforms other algorithms, cuts
down on computational resources, and demonstrates
significant practicality and advantage.

B. Path Length
Fig. 10 shows the fitness function curves for the path

lengths of two robots, with (a) and (b) recording the variation
process of the path lengths traversed by R1 and R2,
respectively. By observing the trend of the curve, it is evident
that the traditional AOA has significant shortcomings in
optimizing path length. It takes approximately 20 iterations to
converge to the optimal value, with a moderate convergence
speed. However, the final obtained path length is relatively
long, revealing the limitations of its global search capability.
The improved AOA excels in path length optimization

TABLE I
PATH FINDING MINIMUM TIME COMPARISON

Algorithm Improved AOA AOA BAT CGWO GA WOA
R1 path-finding time (s) 0.00094 0.07797 0.01603 0.01953 0.14980 0.00529
R2 path-finding time (s) 0.00214 0.21483 0.01972 0.01642 0.16035 0.00648

Total path-finding time (s) 0.00308 0.29280 0.03575 0.03596 0.31015 0.01177

TABLE II
SHORTEST PATH LENGTH COMPARISON

Algorithm Improved AOA AOA BAT CGWO GA WOA
R1 path length (m) 276.1608 501.0122 526.7394 642.2150 454.4200 433.6760
R2 path length (m) 653.9160 1059.0000 1182.9134 1033.5001 1188.6281 922.8580

Total path length (m) 930.0768 1560.0122 1709.6528 1675.7151 1643.0481 1356.5340

TABLE III
SHORTEST TRAVERSAL TIME COMPARISON

Algorithm Improved AOA AOA BAT CGWO GA WOA
R1 traversal time (min) 9.0232 16.0200 16.0348 19.3443 13.5884 13.6735
R2 traversal time (min) 20.5783 31.1800 33.1583 30.1700 32.2726 26.4572

Total traversal time (min) 29.6015 47.2000 49.1931 49.5143 45.8610 40.1307

TABLE IV
COMPARISON OF THE MINIMUM NUMBER OF TURNS

Algorithm Improved AOA AOA BAT CGWO GA WOA
R1 number of turns 1 6 5 7 3 4
R2 number of turns 5 10 9 9 7 6

Total number of turns 6 16 14 16 10 10

TABLE V
COMPARISON OF OBSTACLE AVOIDANCE SUCCESS RATES

Algorithm Improved AOA AOA BAT CGWO GA WOA
R1's obstacle avoidance success rate 100% 59% 34% 67% 33% 66%
R2's obstacle avoidance success rate 84% 61% 38% 40% 40% 57%

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

through innovative mechanisms. It not only converges fastest
but also achieves the optimal final solution, skillfully
balancing the relationship between global exploration and
local exploitation. It effectively avoids premature
convergence, achieving the shortest path length of
approximately 32 m. Other comparative algorithms also
exhibit different performance characteristics: BAT shows a
relatively fast convergence speed in the initial stages of
iteration, but it easily falls into local optima in the later stages.
R2 requires nearly 80 iterations to find the shortest path,
indicating low efficiency. CGWO demonstrates stability in
global search with a moderate convergence speed, but its
ability to refine local paths is weak, leading to a longer
overall traversal path. GA, highly dependent on population
diversity, converges slowly in the early iterations and is more
prone to stagnation in the later stages, making it difficult to
find the optimal path solution. The overall path length is
relatively large. WOA performs well in exploration and
converges quickly but fails to find optimal paths effectively.

Overall, the improved AOA achieves the best balance
between convergence speed and solution quality, accurately
identifying the shortest path. In practical application
scenarios, especially in fields like earthquake rescue where
path planning requires high timeliness and accuracy, the
improved AOA showcases unparalleled technical advantages
and potential applications.

C. Total Traversal Time
The total time for the robot to traverse includes the time

spent on path optimization, the time taken to traverse the path
length, the time consumed for turning, and the duration of
stay at each RP. In the total time iteration curves for the two
robots shown in Fig. 11, (a) and (b) record the total time
changes for R1 and R2, respectively. During the actual path
traversal, the traditional AOA tends to produce subpar
solutions because it repeatedly visits RPs. This not only
slows down the convergence but also affects the stability of
the algorithm during iterations. The improved AOA records
traversed RPs in real time by creating a path set. Whenever
the algorithm discovers new RPs, it adds them to the set.
When planning the next node, it carefully selects from nodes
outside the set, completely avoiding the issue of revisiting.
Other comparative algorithms also exhibit different
performance characteristics: BAT converges slowly, and in
complex settings, R2 needs approximately 80 iterations to
identify the optimal solution, which tends to be high in value
but less effective. CGWO shows relatively better
convergence, yet the solution quality is mediocre, with R1's
optimal solution taking roughly 16 min, and it underperforms
in simple environment optimizations. GA's convergence
speed is limited, exhibiting a gradual decline in the time
curve during iterations, necessitating numerous iterations for
optimization, leading to prolonged application time and low
efficiency. While WOA can locate better optimal solutions, it
converges too slowly and easily gets trapped in local optima.

Overall, the improved AOA shines in cutting down the
total time, clocking in at just around 29.6 min. It nails the
shortest time and fastest convergence, and it seriously ramps
up computational efficiency.

D. Number of turns
In the process of robots traversing paths, a turn is counted

when the turning angle is greater than 10 degrees. Fig. 12
shows the fitness function curves of the number of turns
made by two robots, where (a) and (b) record the changes in
the number of turns during the traversal of R1 and R2,
respectively. The traversal path of R1 is relatively simple,
while that of R2 is more complex. The traditional AOA has
poor global search capability and inefficient exploration in
the early stages. It takes approximately 60 iterations to find
the minimum number of turns. The traditional AOA is only
suitable for simple obstacle environments, and the paths this
algorithm generates often contain redundant inflection points.
The improved AOA adaptively adjusts step sizes according
to obstacle density and achieves obstacle avoidance via
dynamic arithmetic operations. This improvement
significantly enhances path quality, effectively avoids invalid
inflection points, and greatly reduces the number of turns.
The two robots require only six turns to complete the
traversal. Other comparative algorithms also exhibit different
performance characteristics: BAT has poor optimization
efficiency, leading to frequent turns during path traversal and
slow convergence. It is only suitable for scenarios with low
real-time requirements. CGWO can demonstrate efficient
optimization capabilities in the early stages of iteration, but it
often requires multiple turns to traverse complex paths,
resulting in low practicality. GA demonstrates strong initial
optimization performance but easily converges with
suboptimal solutions, requiring multiple iterations to
minimize the number of turns. WOA suits long-term iterative
tasks and gradually approaches the optimal solution, but its
initial solution quality is suboptimal, and it tends to get
trapped in local optima.

Overall, the improved AOA has significant advantages in
path planning performance, requiring only about 20 iterations
to achieve the minimum number of turns, greatly improving
the efficiency of path planning, and making it more suitable
for applications in earthquake rescue scenarios.

E. Success rate of obstacle avoidance
Obstacle avoidance success rate is an important indicator

of robot performance in complex environments, which is
defined as the ratio of the number of successful obstacle
avoidance attempts to the total number of obstacle avoidance
attempts by the robot during traversal. The success rates of
the traditional AOA are 59% and 61%, indicating that it has
basic obstacle avoidance capability, but it is limited by the
lack of global search efficiency and is prone to fail in
complex obstacle scenarios due to path redundancy. By
systematically optimizing the strategy, the improved AOA
shows excellent performance in the obstacle avoidance task:
the success rate of R1 reaches 100%, and R2 increases to
84%. Other comparative algorithms also exhibit different
performance characteristics: BAT has the lowest success
rates of 34% and 38% in obstacle avoidance. It relies on the
acoustic pulse simulation mechanism, which has weak
anti-jamming ability in complex obstacle environments.
Consequently, it fails to effectively handle the demands of
complex path planning. CGWO has success rates of 67% and

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

(a) The number of turns of the fitness curve for R1 (b) The number of turns of the fitness curve for R2

Fig. 12. The fitness function curves of the number of turns

(a) The path length fitness curve of R1 (b) The path length fitness curve of R2

Fig. 10. The fitness function curves for path length

(a) Total time fitness curve for R1 (b) Total time fitness curve for R2

Fig. 11. The fitness function curve of the total traversal time

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

40%, which are adapted to simpler obstacle environments.
And the success rates of 33% and 40% for GA reflect that the
genetic operation is not able to effectively balance the
exploration and optimization of path optimization. Path
optimization fails to effectively balance exploration and
exploitation. The success rates of WOA are 66% and 57%,
and its simulated whale spiral search mechanism shows
stability in most scenarios, but the algorithm relies on
long-term iterations to gradually approach the optimal
solution, and the overall efficiency is low.

Overall, the improved AOA performs excellently in
obstacle avoidance efficiency, with remarkable optimization
results, and can meet the task requirements in various
complex environments.

From a multi-dimensional experimental perspective, the
improved AOA demonstrates significant advantages in path
planning performance. Firstly, in the 3D environment
simulation experiments, visually comparing the planned
paths of various algorithms reveals that the improved AOA
generates more concise and fluent paths. It accurately avoids
various obstacles, demonstrating strong environmental
adaptability. Secondly, a quantitative comparative analysis of
core indicators is conducted. These indicators include the
shortest optimization time, shortest path length, shortest
traversal time, minimum number of turns, and obstacle
avoidance success rate. The analysis reveals that the
improved AOA outperforms other algorithms in all key
metrics. This fully validates its superior comprehensive
performance. Lastly, a detailed observation of the fitness
function curves of each indicator further highlights the
performance advantages of the improved AOA. It not only
converges faster and has higher solving efficiency but also
demonstrates outstanding stability and reliability in complex
environments. These characteristics make the improved
AOA highly practical and promising for complex scenarios
such as earthquake rescue, effectively meeting the stringent
requirements of high-risk, high-complexity tasks for path
planning.

V. CONCLUSION
In WSNs, numerous SNs are spread across the 3D space.

The current research focus is on using MSs to gather data
from these SNs. The challenge lies in optimizing the paths for
multiple MSs, ensuring a balance between the time taken for
algorithm optimization, total traversal time, path length,
number of turns, and the success rate of obstacle avoidance.
To enhance rescue efficiency in earthquake-stricken areas,
this paper introduces the MSPDC. It comprises three steps:
pre-deploying several SNs in the disaster zone, utilizing the
K-means algorithm for its efficiency in handling large data
sets to identify the cluster centers of intact nodes, and then
using these as RPs to establish the best possible locations.
Subsequently, an improved DPC algorithm is employed to
segment all RPs into distinct clusters. This algorithm excels
in automatically identifying cluster centroids based on local
density and relative distance. It iteratively refines the
allocation of boundary points to enhance node coverage and
clustering stability, thereby maximizing the reception of
information from the disaster area. Finally, path planning is
performed using an improved AOA, which is simple and easy

to implement with its global search capability. Each cluster is
assigned a robot equipped with an MS responsible for
collecting data from the nodes within its cluster and
transmitting it to the emergency command center. This
coordinated approach ensures that multiple MSs operate
efficiently, avoiding the redundancy of collecting data from
the same RPs. The algorithm has been further enhanced to
determine optimal initial positions for robots within each
cluster in a 3D space. Additionally, to navigate potential
unknown obstacles in actual rescue operations, an AABB
collision detection mechanism is implemented to ascertain
the robot's position relative to obstacle boundaries. The step
size is adjusted adaptively according to the density of
obstacles, and flexible obstacle avoidance is achieved by
dynamically adjusting arithmetic operators. The algorithm
undergoes further optimization for effective evasion of
randomly appearing obstacles in earthquake rescue scenarios.
It strikes a balance between computational efficiency and
real-time performance. Additionally, it avoids excessive
computational complexity to ensure it does not hinder
real-time response and network performance. In a 3D
environment, the improved AOA is compared with
traditional AOA, BAT, CGWO, GA, and WOA. The
improved algorithm shows significant advantages in finding
the optimal path, reducing the total path length and time,
decreasing the number of turns, and increasing the success
rate of obstacle avoidance. These features make it suitable for
practical scenarios like earthquake rescue operations.

This paper assumes that obstacles are randomly generated
and fixed, without considering the issue of moving obstacles.
In the actual earthquake rescue process, the real-time
movement of victims within the disaster area needs to be
considered. Although the MSPDC proposed in this paper
improves node coverage, quickly finds the shortest path in a
3D environment, reduces the number of turns, and enhances
the success rate of obstacle avoidance, it does not address the
issue of network energy consumption. Future research will
focus on parameter optimization of the MSPDC and explore
effective strategies to reduce network energy consumption.
This is not only a further improvement of the algorithm's
performance but also a key step in promoting its widespread
application in complex earthquake rescue environments.

REFERENCES
[1] J. Wang, J. Cao, R. S. Sherratt, and J. H. Park, "An Improved Ant

Colony Optimization-Based Approach with Mobile Sink for Wireless
Sensor Networks," The Journal of Supercomputing, vol. 74, no. 12,
pp6633–6645, 2018.

[2] R. V. Kulkarni, A. Förster, and G. K. Venayagamoorthy,
"Computational Intelligence in Wireless Sensor Networks: A Survey,"
IEEE Communications Surveys & Tutorials, vol. 13, no. 1, pp68-96,
2010.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
"Wireless Sensor Networks: A Survey," Computer Networks, vol. 38,
no. 4, pp393-422, 2002.

[4] F. Wang, and J. Liu, "Networked Wireless Sensor Data Collection:
Issues, Challenges, and Approaches," IEEE Communications Surveys
& Tutorials, vol. 13, no. 4, pp673-687, 2010.

[5] R. Xie, and X. Jia, "Transmission-Efficient Clustering Method for
Wireless Sensor Networks Using Compressive Sensing," IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp806-815, 2013.

[6] N. Sharmin, A. Karmaker, W. L. Lambert, M. S. Alam, and M. S. A.
Shawkat, "Minimizing the Energy Hole Problem in Wireless Sensor

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

Networks: A Wedge Merging Approach，" Sensors， vol. 20, no. 1,
pp277, 2020.

[7] M. I. Khan, W. N. Gansterer, and G. Haring, "Static vs. Mobile Sink:
The Influence of Basic Parameters on Energy Efficiency in Wireless
Sensor Networks ， "Computer Communications, vol. 36, no. 9,
pp965-978, 2013.

[8] S. Yang, U. Adeel, Y. Tahir, and J. A. McCann, "Practical
Opportunistic Data Collection in Wireless Sensor Networks with
Mobile Sinks," IEEE Transactions on Mobile Computing, vol. 16, no.
5, pp1420-1433, 2016.

[9] W. Liu, K. Lu, J. Wang, G. Xing, and L. Huang, "Performance
Analysis of Wireless Sensor Networks with Mobile Sinks," IEEE
Transactions on Vehicular Technology, vol. 61, no. 6, pp2777-2788,
2012.

[10] H. B. Zhang, and B. Huang, "Research on Mobile Robot Path Planning
Based on Multi-Strategy Improved Ant Colony Optimization
Algorithm," Engineering Letters, vol. 33, no. 3, pp688-703, 2025.

[11] Y. B. Wang, J. S. Wang, and X. F. Sui, " Improved Particle Swarm
Optimization Algorithm with Logistic Function and Trigonometric
Function for Three-dimensional Path Planning Problems," Engineering
Letters, vol. 33, no. 2, pp442-459, 2025.

[12] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, "A Survey of Path
Planning Algorithms for Mobile Robots," Vehicles, vol. 3, no. 3,
pp448-468, 2021.

[13] M. M. Costa, and M. F. Silva, "A Survey on Path Planning Algorithms
for Mobile Robots," 2019 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), IEEE,
pp1-7, 2019.

[14] M. N. Zafar, and J. C. Mohanta, "Methodology for Path Planning and
Optimization of Mobile Robots: A Review," Procedia Computer
Science, vol. 133, pp141-152, 2018.

[15] L. Liu, X. Wang, X. Yang, H. Liu, and J. Li, "Path Planning
Techniques for Mobile Robots: Review and Prospect," Expert Systems
with Applications, vol. 227, pp120254, 2023.

[16] A. Ben Yagouta, B. Ben Gouissem, S. Mnasri, M. Alghamdi, M.
Alrashidi, M. A. Alrowaily, I. Alkhazi, R. Gantassi, and S. Hasnaoui,
"Multiple Mobile Sinks for Quality of Service Improvement in
Large-Scale Wireless Sensor Networks," Sensors, vol. 23, no. 20,
pp8534, 2023.

[17] S. F. Ochoa, and R. Santos, "Human-Centric Wireless Sensor
Networks to Improve Information Availability During Urban Search
and Rescue Activities," Information Fusion, vol. 22, pp71-84, 2015.

[18] M. T. Lazarescu, "Design of A WSN Platform for Long-Term
Environmental Monitoring for Iot Applications," IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1,
pp45-54, 2013.

[19] F. H. Ajeil, I. K. Ibraheem, M. A. Sahib, and A. J. Humaidi,
"Multi-Objective Path Planning of An Autonomous Mobile Robot
Using Hybrid PSO-MFB Optimization Algorithm," Applied Soft
Computing, vol. 89, pp106076, 2020.

[20] H. Salarian, K. W. Chin, and F. Naghdy, "An Energy-Efficient
Mobile-Sink Path Selection Strategy for Wireless Sensor Networks,"
IEEE Transactions on Vehicular Technology, vol. 63, no. 5,
pp2407-2419, 2013.

[21] B. Altintas, and T. Serif, "Improving RSS-Based Indoor Positioning
Algorithm Via K-Means Clustering," 17th European Wireless
2011-Sustainable Wireless Technologies, VDE, pp1-5, 2011.

[22] S. Tiwari, and T. Solanki, "An Optimized Approach for K-Means
Clustering," International Journal of Computer Applications, vol. 975,
pp8887, 2013.

[23] Y. Wang, J. Qian, M. Hassan, X. Zhang, T. Zhang, C. Yang, and F. Jia,
"Density Peak Clustering Algorithms: A Review on The Decade 2014–
2023," Expert Systems with Applications, vol. 238, pp121860, 2024.

[24] H. Wang, B. Zhou, J. Zhang, and R. Cheng, "A Novel Density Peaks
Clustering Algorithm Based on Local Reachability Density,"
International Journal of Computational Intelligence Systems, vol. 13,
no. 1, pp690-697, 2020.

[25] R. B. Wang, W. F. Wang, L. Xu, J. S. Pan, and S. C. Chu, "An
Adaptive Parallel Arithmetic Optimization Algorithm for Robot Path
Planning," Journal of Advanced Transportation, vol. 2021, no. 1,
pp3606895, 2021.

[26] Z. Wang, H. Sun, H. Li, and T. Lai, "AOA Positioning and Path
Optimization of UAV Swarm Based on A-Optimality," IEEE Access,
vol. 10, pp14946-14958, 2022.

[27] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H.
Gandomi, "The Arithmetic Optimization Algorithm," Computer
Methods in Applied Mechanics and Engineering, vol. 376, pp113609,
2021.

[28] X. S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010),
Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 284, pp65-74,
2010.

[29] H. Yu, Y. Yu, Y. Liu, Y. Wang, and S. Gao, "Chaotic Grey Wolf
Optimization," 2016 International Conference on Progress in
Informatics and Computing (PIC), IEEE, pp103-113, 2016.

[30] S. Mirjalili, and A. Lewis, "The Whale Optimization Algorithm,"
Advances in Engineering Software, vol. 95, pp51-67, 2016.

[31] J. H. Holland, "Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology," Control, and
Artificial Intelligence, MIT Press, 1992.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

__

