
 

 
 

 
Abstract-Wireless Sensor Networks are essential for real-time 

data collection in disaster response, military surveillance, and 
environmental monitoring. Each sensor detects environmental 
parameters and sends data to a base station (BS) or sink. Using 
multiple mobile sinks (MSs) based on clustering algorithms is 
more efficient than static sink-based methods, especially in 
scenarios where the number of sensor nodes (SNs) is large. This 
scheme can improve path planning. This paper presents a 
Multi-mobile Sink Path planning algorithm with Dual 
Clustering (MSPDC) to improve rescue efficiency in 
earthquake scenarios. The algorithm combines the K-means 
algorithm, improved Density Peak Clustering (DPC), and an 
improved Arithmetic Optimization Algorithm (AOA). First, we 
use the K-means algorithm to pinpoint the cluster centers, 
which serve as rendezvous points (RPs), and adjust them for 
better coverage. Secondly, we apply an improved DPC 
algorithm to cluster these RPs, further increasing coverage. 
Finally, we use an improved AOA for 3D path planning. By 
calculating the average Euclidean distance between each cluster 
center and its RPs, we pick the center with the smallest distance 
as the best starting spot for our robots. As the algorithm 
searches for paths, it cleverly adapts its step size based on the 
density of obstacles in the environment, dynamically adjusting 
arithmetic operators and setting a safe distance to avoid 
obstacles. Algorithm simulation analysis shows that the 
improved AOA, compared with the traditional AOA, the Bat 
Algorithm, the Improved Grey Wolf Optimization Algorithm, 
the Genetic Algorithm, and the Whale Optimization Algorithm, 
can search for the shortest path more quickly. It significantly 
shortens the total path traversal time, reduces the number of 
turns, and improves the success rate of obstacle avoidance in 
complex environments. The MSPDC proposed in this paper 
demonstrates stronger applicability and reliability in complex 
scenarios such as earthquake rescue. 
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I. INTRODUCTION 
he Internet of Things (IoT) exemplifies a sophisticated 
and comprehensive application of contemporary 

information technology. Its significance in fostering 
industrialization, advocating for ecological sustainability, 
and facilitating intelligent networking is paramount in 
shaping a sustainable economy and modern society. Wireless 
Sensor Networks (WSNs), as a critical subset of IoT 
technology, provide an essential infrastructure for the 
exponential growth and advancement of IoT [1]. WSNs 
consist of intricate networks of distributed, autonomous 
devices designed to sense and monitor diverse environmental 
parameters cooperatively. These networks find extensive 
applications in areas such as habitat surveillance, prediction 
and detection of natural disasters, and medical monitoring, 
among others [2]. The primary components of WSNs 
encompass sensing units designed for environmental 
perception, processing units tasked with the manipulation of 
raw data, transceiver units responsible for data transmission, 
and power units that ensure a consistent power supply [3]. In 
WSNs, sensor nodes (SNs) operate on battery power and 
utilize wireless communication technology. Their compact 
size allows for easy deployment in various locations with 
minimal environmental impact. This versatility significantly 
reduces deployment and maintenance costs, positioning 
WSNs as a more cost-effective and efficient alternative to 
wired sensor networks for sensor data collection [4]. 
Numerous sensor nodes join together to form WSNs, which 
are well-suited for gathering data from carefully managed 
environments. These nodes communicate through wireless 
connections, sending all the data they pick up to special nodes 
called sink nodes [5]. The sink node is crucial in data 
collection, gathering data from sensor nodes, and sending it 
to a central server or data center. With a continuous power 
supply, large storage capacity, and strong communication 
capabilities, it can work statically or dynamically to ensure 
efficient data transmission and management. 

In WSNs, data transfer methodologies predominantly 
encompass single-hop and multi-hop transmissions. 
Single-hop transmission involves direct communication 
between the sensor nodes and the base station (BS), whereas 
multi-hop transmission relies on intermediary relay nodes for 
data relay. However, a major challenge is the rapid energy 
depletion of nodes near the BS, causing uneven network 
energy distribution. This imbalance creates "energy 
holes"—areas with severely low energy levels—that harm 
overall network efficiency and lifespan [6]. The main task of 
SNs is to collect relevant data from the environment and send 
the collected data to the BS or sink through multi-hop 
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communication, a method that helps extend the life of the 
network. Static sink (SS) and mobile sink (MS) are two 
common data acquisition methods. In scenarios where a 
single SS is employed, it collects data from all SNs and sends 
it to the BS. However, this can create an energy hole, mainly 
because nodes near the SS consume excessive energy. 
Additionally, there is a significant energy consumption gap: 
nodes closer to the SS use more energy than those farther 
away. This discrepancy can readily lead to the formation of 
energy holes. Furthermore, for the purpose of load balancing, 
the SS is typically positioned at the centroid of the WSNs. 
Moreover, if there is an excessive concentration of nodes in 
the vicinity of the SS, there is a risk of these nodes depleting 
their energy reserves and failing, thereby disconnecting the 
SS from the remaining WSNs [7]. To address this challenge, 
employing multiple SSs for data acquisition is a strategic 
approach, as it mitigates the energy hole issue and enhances 
transmission efficiency. However, the fixed nature and 
security vulnerabilities of SS positions pose challenges in 
determining optimal locations. To circumvent these 
limitations, the use of an MS for data collection is advisable. 
The mobility of the MS allows for extensive traversal within 
the network, facilitating comprehensive data acquisition from 
various SNs. In scenarios where SNs establish contact with 
the MS, they promptly transmit their sensor data to the MS. 
When direct communication is not feasible, SNs retain the 
data until they can reconnect with the MS. Alternatively, they 
relay the data to the MS via intermediate SNs through 
multi-hop communication. This method facilitates load 
balancing and equitable energy distribution across the 
network, thereby optimizing the network's lifespan [8]. The 
constantly shifting location of the MS makes it difficult for 
attackers to pinpoint it and enhances security. However, if 
only one MS is in use and there are many SNs, the MS must 
visit each SN to gather data, causing delays. The 
communication between SNs and MS can also cap the 
network's throughput and lifespan. To boost WSNs' 
performance, one tactic is to introduce multiple mobile sinks 
(MSs) [9]. Having several MSs enhances the WSNs' ability to 
manage faults, balance the load, and ensure data reliability. It 
also expands the network's reach, making it adaptable to 
different applications. 

The extensive utilization of WSNs in intelligent and 
environmental monitoring has elevated the significance of 
MS path planning. With the application of mobile robots, 
researchers and scholars have extensively studied path 
planning technology [10]. The goal of 3D path planning is to 
find a path that avoids obstacles, minimizes path length or 
time, and considers physical limitations and motion 
constraints in 3D space [11]. In the context of mobile robotics, 
path planning involves employing sophisticated algorithms 
to determine the shortest or quickest routes for robots, drones, 
or autonomous vehicles while ensuring collision-free 
navigation. The strategic selection of path planning 
algorithms is crucial for guaranteeing secure and efficient 
point-to-point travel [12]. In the realm of autonomous vehicle 
navigation, path planning algorithms play a pivotal role in 
facilitating obstacle avoidance and coordination with other 
mobile robots [13]. The field of path planning is divided into 
two main categories: global and local strategies. Global 
strategies are limited due to terrain uncertainties and 

robustness issues. In contrast, local strategies demonstrate 
greater adaptability in partially known or unknown scenarios, 
optimizing route efficiency [14]. Path planning technology is 
an essential driver of efficiency and safety in diverse 
applications, including warehouse automation, rescue 
robotics, and military reconnaissance. It represents a 
cornerstone of 21st-century technological advancement [15]. 
For effective data collection and energy conservation, 
designing path planning algorithms is crucial. Current 
approaches include overall path planning, ideal for 
small-scale but complex tasks, and cluster-based path 
planning, better for large-scale environments. These 
approaches enhance computational speed and system 
scalability. 

Domestic and international studies have evolved from 
focusing solely on individual path planning to addressing the 
collaborative optimization of multiple MSs. This approach 
efficiently orchestrates the routes of MSs, thereby mitigating 
issues of uneven load distribution. In large-scale networks, a 
single MS can consume a significant amount of energy. To 
address this, a clustering strategy is implemented, alongside 
multiple MSs, to significantly boost data collection 
efficiency. The network's nodes are divided into various 
clusters, each with its own MS. Generally, SNs forward their 
collected data to specific rendezvous points (RPs), and each 
MS needs only to visit the RPs within its cluster. This 
approach reduces the number of positions an MS must visit, 
shortens its travel path, boosts information collection 
efficiency, and cuts energy consumption. Additionally, this 
method bypasses the need to send data to the BS, thereby 
reducing in-network communication distances, alleviating 
congestion, and further reducing WSN energy consumption 
[16]. In practical applications, due to environmental obstacles, 
considerations such as sensor information and perception 
capabilities, obstacle representation and map updating, 
dynamic path planning and re-planning strategies, and 
security issues must be carefully addressed. 

Earthquakes, hurricanes, volcanic eruptions, and tsunamis 
are common but highly destructive natural disasters. The first 
72 hours after a disaster are often called the "golden rescue 
time". How to implement rescue tasks more efficiently after 
an earthquake is a problem that we need to study [17]. 
Because BS is often damaged after a disaster, the traditional 
rescue means are ineffective. The WSN technology can 
monitor environmental changes in real time, provide key data 
for rescue, help rapid decision-making, and improve 
efficiency and success rate. By pre-deploying SNs, after an 
earthquake, WSNs collect information about the location and 
ruins of survivors in the collapsed building from the installed 
sensor equipment and transmit it to the emergency center, 
where the rescue robot can obtain information in advance. If 
there are SNs within a few meters of the survivors, robots can 
detect the location of the survivors in the rubble [18]. 

In disaster-stricken areas, where multiple SNs are 
pre-positioned, clustering technology is being used, along 
with several MSs, to gather vital information from these SNs, 
thereby enhancing the rescue efforts for those affected by 
earthquakes. Data collection efficiency can be improved 
through rational path planning for each MS. This paper 
proposes a Multi-mobile Sink Path planning algorithm with 
Dual Clustering (MSPDC), which combines the K-means 
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algorithm, Density Peak Clustering (DPC) algorithm, and 
Arithmetic Optimization Algorithm (AOA). First, the 
K-means and DPC algorithms are combined and optimized to 
improve node coverage in clusters. Secondly, in the path 
planning phase, we use an improved AOA to determine the 
optimal initial deployment positions for each robot, laying 
the foundation for efficient path planning. Finally, in 
simulating a complex environment for an earthquake rescue 
scenario, random obstacles are set during the path planning 
process. This is combined with obstacle detection technology 
and optimized obstacle avoidance strategies. It enables robots 
to quickly perceive environmental changes and flexibly plan 
the optimal obstacle avoidance path, greatly enhancing 
rescue efficiency. By leveraging the dual benefits of 
optimized initial deployment points and intelligent obstacle 
avoidance strategies, the time required for finding the optimal 
path and traversal can be significantly reduced. Additionally, 
it effectively shortens the total path length and minimizes 
time loss due to frequent turning. At the same time, it can 
significantly improve the robots' obstacle avoidance success 
rate in complex and variable environments. This thereby 
reduces the overall energy loss of WSNs and practically 
enhances the adaptability and reliability of the system in 
actual earthquake rescue scenarios. 

II. SYSTEM MODEL 

A. Network Model 
In our analysis, we adapt a system model that represents a 

single WSN, which includes n SNs and m MSs. SNs are 
scattered randomly across a 3D space, each occupying a 
distinct location and gathering unique data. We define a set N 
as the set  iN n 1 i n    of SNs, where ni symbolizes the 

i-th node. We define a set M as the set  iM m 1 i m    of 

MSs, where mi symbolizes the i-th MS. In sensor data 
collection, ensuring complete area coverage is key. Each MS 
follows a set path to gather data from SNs in its range. This 
ensures that every spot in the sensing area is monitored by at 
least s SNs ( )s 1 and s N  . 

When dealing with numerous SNs, identifying RPs 
becomes essential. These RPs gather data from nearby SNs. 
Assuming that K RPs are generated within the network and 
these K RPs constitute the RPs set  kQ Q 1 k K  

 
, 

where Qk represents the k-th RP. We then group these RPs 
into m clusters, with each cluster having a dedicated MS. The 
path of each MS is planned so that it can collect data from the 
RPs in its area, under the assumption that each MS has 
sufficient energy to traverse its route and complete data 
collection. 

By applying the K-means algorithm, we create eight RPs 
among the effective nodes—that is, K=8. We use the 
improved DPC algorithm to divide these RPs into two 
clusters, m=2. Create two irregularly shaped obstacles in a 
3D space. For each obstacle, we randomly generate eight 
vertices and six faces. We also specify the size of both 
obstacles. Within each cluster, we use an improved AOA to 
plot the paths for the MSs, ensuring they navigate around 
these obstacles efficiently. Fig. 1 shows a schematic of the 
network model in a 3D environment. 

 
B. Path Length Model 

During path planning, SNs transmit their data packets to 
the nearest RPs through multi-hop transmission. The MS 
traverses each RP in each cluster, and the starting and ending 
points of the MS path are called the starting point and the 
target point, respectively. We define "shortest distance" as 
minimizing the path length between the starting point and the 
target point. In any iteration, if the distance between the point

( )jwp t  and the destination point ( )wp N  is the shortest, then 
this point is selected as the optimal point. The "shortest 
distance" between the two points can be represented as [19]: 

1 , , ) ( ( ), ( ))jF x y z d wp t wp N（  (1) 

Where td is the Euclidean distance in 3D space: 
2 2

wp wp wp wp

2
wp wp

( ( 1)- ( )) ( ( 1)- ( ))
( ( 1)- ( ))

j j j j

j j

t
x t x t y t y t

d
z t z t


  

 
 (2) 

The Shortest Path Length (SPL) is calculated by adding up 
the distances between the starting point (1)wp and the 
destination point ( )wp N through all intermediate points 
( (2)... ( 1))j jwp wp N   generated by the path planning 
algorithm, that is: 

1 1

t 1 1
( ( ), ( 1))

N N

j j t
t

SPL d wp t wp t d
 

 

     (3) 

Where x, y, and z are the coordinate values of the 3D point, t 
is the number of iterations, j is the index for the best solution 
found by our group optimization path planning algorithm, 
and N is the number of points visited along the MS's path. 
 

C. Time Model 
The total time t for MS path planning includes three parts: 
(1) The time taken to find the optimal path using the 

improved AOA is 1t . 
(2) The time taken for the MS to traverse all RPs within its 

cluster is 2t . 
(3) The MS stops at each RP for one minute. Assuming the 

number of RPs traversed within each cluster is p ( )p Q , the 
total stopping time is 3t . 

(4) Every time an MS makes a turn, it takes 0.5 minutes. 

 
Fig. 1.  3D environmental network model 
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Assuming the number of turns an MS makes while searching 
for the optimal path is q, then the total time spent on turning is 

4t . 
3 4 1 2 31 , 0.5t p t q t t t t       ,  (4) 

Assuming MS moves at a constant speed v  , the shortest 
path length is: 

2SPL t v   (5) 
Where 2t  is the time required for each MS to traverse all 
paths from the starting point to the end point within each 
cluster, an MS starts moving from a node ( )jwp t  and reaches 
its destination through time 2t  [20], 0.83 /v m s . 
 

III. ALGORITHM 
In this article, we introduce a cluster-based approach to 

path planning named MSPDC. It consists of three core 
algorithms:  

(1) Look for the optimal location of RPs. In this stage, we 
employ the K-means algorithm to determine the number of 
RPs, excluding any invalid ones, in the 3D scene and pinpoint 
their best locations. This algorithm is simple to understand 
and implement, with low computational complexity and great 
scalability.  

(2) During the clustering phase, we utilize the improved 
DPC algorithm to group all RPs, maximizing node coverage. 
It is adept at identifying clusters of any form and dealing with 
data that is spread out differently. 

(3) During the path planning phase, an MS is allocated 
within each cluster. The improved AOA is employed to 
determine the optimal initial positions of each MS, 
facilitating quick identification of the shortest path. 
Additionally, we introduce random 3D obstacles to simulate 
realistic earthquake rescue environments, enabling robots to 
navigate around obstacles effectively. This approach 
significantly enhances rescue efficiency and possesses 
considerable practical value. 

 

A. K-means Algorithm for Finding RPs 
The K-means algorithm [21], [22] is a deterministic global 

optimization method that does not depend on any initial 
parameter values and requires the number of clusters to be 
determined in advance. The K-means algorithm clustering 
problem aims to divide the RPs into C mutually exclusive 
clusters (C1, ..., CM), with the center of each cluster being the 
RPs. The algorithm consists of two phases: 

(1) Randomly select r cluster centers. 
(2) Place each node with its closest cluster center, with r 

set in advance. Measure the distance between the cluster 
center and the node using the Euclidean distance method. 
Define the vector coordinates of the current cluster center as 

, ,A )a a ax y z（ , and the vector coordinates of the current node 
as , ,B b b bx y z（ ）. The Euclidean distance in 3D space can be 
calculated as: 

2 2 2 1/2

1, 1
d [ ( ) ( ) ( ) ]

n

AB a b a b a b
a b

x x y y z z
 

       (6) 

The number of RPs is r, define a set  iR R 1 i r    as 

the set of RPs, where Ri represents the i-th RP. Input the 

specified number of cluster centers r and the database N 
consistin g of (1-6%) n SNs, where  iN n 1 i n   , output 

r cluster centers. In the end, use the K-means algorithm to 
generate eight RPs, through multiple iterations, the optimal 
positions of the eight RPs can be found. 

 

B. DPC Algorithm for Clustering RPs 
Using the located RPs, we employ the DPC algorithm [23], 

[24] for clustering. This approach focuses on the local density 
of SNs and their relative distances, without predefining the 
number of clusters. The DPC algorithm is versatile, capable 
of identifying clusters of any shape and handling 
density-varying data. The core idea is that a cluster center 
should have a higher density than its neighboring points and 
be relatively far from other points with similar or higher 
density. Such points are typically regarded as ideal cluster 
centers. The process involves calculating the density of all 
RPs, pinpointing the centers of dense areas, and ensuring 
these centers have a higher density than the surrounding RPs. 
The algorithm works as follows: 
1) Calculate the local density i  for each RP 

The local density can be estimated using a simple 
statistical method. Generally, the i  of a data point reflects 
the number of points around it. There are two methods to 
calculate the i  for each point i. One method involves using 
a Truncated kernel, focusing solely on the count of data 
points within the cluster's vicinity, which is defined as: 

( )i ij c
j

d d    (7) 

Where ( ) 1ij cd d   . ijd  is the distance from point i, which 
is the cluster center, to the nearby point j, and cd  is the 
threshold value set by the user. An alternative approach 
involves calculating the Gaussian kernel, in which the density 
of each RP signifies its "crowding degree" within the spatial 
context. The formula is as follows: 

2xp[ ( ) ]ij
i

cj

de
d

    (8) 

2) Calculate the relative distance ∆i of each RPs 
For each RPs, calculate the distance ∆i to the point with 

higher density, which is: 

:
min

j i
i ij

j
d

 
   (9) 

Here, j  represents the density of data point j, and ijd  is the 
distance between point i and point j. The relative distance 
indicates how far data point i is from the closest data point 
that has a higher density. 
3) Select cluster centers 

Define a "clustering goodness" indicator as: 
i i i    (10) 

Based on the i  and Δi  , the i  of each RP can be 
calculated. If a point's i  is higher than the density of all its 
neighboring points and the distance to points with higher 
density Δi  is also far, then this point may be a cluster center. 
Choose RPs with higher i  values as cluster centers. 
Typically, these RPs are in high-density areas and are distant 
from other such areas. 
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4) Assign RPs to the nearest cluster center 
After determining the clustering centers, the remaining 

RPs are assigned to the nearest clustering center, which 
means assigning the remaining RPs to the nearest clustering 
center with a density greater than themselves. 
5) Output the clustering results 

Through the above steps, the RPs can eventually be 
divided into multiple clusters, each cluster containing a set of 
RPs close to the cluster center. The traditional DPC algorithm 
uses a Truncated kernel to calculate density, which is easily 
affected by data distribution and parameters. After 
improvement, it adopts a Gaussian kernel, assigning different 
weights according to the distance between data points, which 
can finely present the density distribution. The output results 
are continuous, allowing for a more precise determination of 
density peak points. By leveraging the smoothing 
characteristics of the Gaussian function, there is no need to 
precisely set the neighborhood radius, mitigating the impact 
of parameter settings. Additionally, optimizing the 
bandwidth parameter enhances the adaptability to data 
distribution. When detecting invalid nodes overlapping with 
cluster centers, using the traditional algorithm for clustering 
and randomly removing invalid nodes may lead to the 
destruction of the cluster structure. Through iterative 
optimization, center point allocation can be timely adjusted, 
enhancing robustness. 

 

C. Improved AOA path planning 
AOA [25]-[27] is a metaheuristic optimization algorithm 

that achieves global optimization based on the distribution 
characteristics of arithmetic operators. Drawing inspiration 
from how arithmetic operators are used in math problems, 
AOA employs basic arithmetic operations like addition, 
subtraction, multiplication, and uses them to identify the 
optimal solution from a set of candidate solutions. AOA is 
divided into two phases: exploration and exploitation. In the 
exploration phase, the algorithm employs multiplication and 
division to conduct a comprehensive global search. This 
approach not only broadens the distribution of solutions but 
also significantly boosts the algorithm's capability to uncover 
a multitude of promising solutions within an extensive search 
landscape. In the exploitation phase, the algorithm utilizes 
addition and subtraction strategies to narrow down the focus. 
This helps consolidate the solutions within a specific area, 
allowing for a more detailed search and enhancing the speed 
at which the optimal solution is identified and reached within 
a set of promising solutions.  

In AOA, the optimization process starts with a set of 
randomly generated candidate solutions, as shown in matrix 
(11), where the best candidate solution in each iteration is the 
optimal or near-optimal solution obtained so far. 

 
1 1 1 1 1 1

2 1 2 2

1 1 1 1

1 1

, , j ,n ,n

, , j ,n

N , N , j N ,n

N, N, j N,n N,n

x x x x
x x x

x

x x x
x x x x



  



 
 
 
 

  
 
 
 
  

 
  

     
     

  
 

 (11) 

First, AOA uses coefficients calculated by equation (12) to 
select the search phase through the Math Optimizer 
Accelerated (MOA), with the formula as follows: 

Another coefficient defined by equation (13) is the Math 
Optimizer Probability (MOP), which is used to control the 
range of candidate solutions during the exploration or 
exploitation phase, namely: 

1

MOP( ) 1 ( )tt
T

   (13) 

In which MOP (t) and MOA (t) are the values at the t-th 
iteration, t and T represent the current iteration and the 
maximum number of iterations, respectively. Max and Min 
are the highest and lowest values of MOA, and α is a key 
parameter that defines the local exploitation precision in the 
iteration process. Define r1 as a random number between 0 
and 1. When r1 > MOA, AOA performs global exploration; 
when r1 < MOA, AOA enters the local development phase. 

During the exploration phase, the division operator and the 
multiplication operator have a high degree of discreteness, 
which may lead to divergence and make it difficult to 
approach the target. However, after several iterations, 
communication between operators is increased to support the 
search during the exploration phase, adopting the simplest 
rules to simulate the behavior of arithmetic operators. The 
position update during the exploration phase is defined as: 







j

j

( ) ( ) ( )

0.5,
( 1)

( ) ( )

2

j j j

j
i, j

j j

best x MOP UB LB

LB r
x t

best x MOP UB LB

LB otherwise







    


  
  

  
  

，

，

 (14) 

Among them, r2∈ [0,1], xi，j (t) represents the j-th position of 
the i-th solution in the current iteration. Best (xj) is the best 
solution obtained so far at the j-th position, and ε is a very 
small value. UBj and LBj represent the upper and lower 
bounds at the j-th position, respectively, and μ is the control 
parameter to adjust the search process, with a value of 0.499. 
When r2 < 0.5, the division search strategy is executed, and 
when r2 > 0.5, the multiplication search strategy is executed. 

During the development phase, the subtraction operator or 
addition operator has lower discreteness, which helps them 
approach the optimal solution. The position update formula is 
as follows: 





( ) ( )

0.5,
( 1)

( ) ( ) ,
3

j j j j

i, j
j j j j

best x MOP UB LB LB

r
x t

best x MOP UB LB LB

otherwise





     
 
     




，

 

(15) 

Among which, r3 is a random number between 0 and 1. 
In AOA, getting the best starting point is crucial for 

balancing exploration and exploitation. Picking a good initial 
point can speed up the algorithm's convergence and improve 
the quality of the final solution. The paper introduces a 
function to find the optimal starting point for robot path 
planning. It does this by calculating the average distance 
between each potential center point and all the data points, 

MOA( ) ( )Max Mint Min t
T


    (12) 
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and then choosing the center point with the shortest average 
distance. First, initialize the average distance array by 
creating a zero vector of length a, where a is the number of 
RPs in each cluster. For each centroid i, calculate the norm 
with other node vectors—that is, calculate the Euclidean 
distance in three dimensions for each centroid. After 
calculating the distance between the current center point and 
all data points, find the average of these distances. Store the 
average distance of each center point to all RPs in the cluster 
in the average distance array. This array represents the 
average distance between each center point and all RPs in the 
cluster. Finally, locate the minimum value in the average 
distance array and select the corresponding center point as the 
initial point, thereby identifying the optimal starting point. 

In real-world rescue missions, unexpected obstacles are 
common, and predicting their locations is impossible. This 
study simulates this scenario by placing two irregularly 
shaped obstacles and creating a special function to detect 
collisions with these obstacles. Each obstacle is defined by its 
eight corners, which are like the points on a polygon. To see 
if our robot is in danger of hitting these obstacles, we use 
something called an Axis-Aligned Bounding Box (AABB) to 
check if the robot's current spot is inside the obstacle's space. 
First, compute the minimum and maximum coordinates of 
the bounding box to find the six edges of the AABB in 3D 
space: the top and bottom of the x-axis, the left and right of 
the y-axis, and the front and back of the z-axis. Then, check if 
the point's coordinates are inside this box. If all the point's 
coordinates fit within the box's limits, it means the point is 
inside the obstacle's space. If a collision is detected, the 
obstacle avoidance function is activated. The goal of the 
obstacle avoidance function is to tweak the path points so that 
the robot does not crash into any obstacles. The strategy is to 
find the direction that is furthest from where we are trying to 
go and avoid obstacles in that way. If we get too close to an 
obstacle, we figure out a new spot to steer the robot, making 
sure it avoids the obstacle while still heading toward the 
target. We start by calculating the direction vector from our 
current location to our destination. Next, we use the cross 
product to find a direction that is perpendicular to our target 
direction, which we use to dodge the obstacle. Usually, we do 
this by swerving around the z-axis, but if that does not work 
(if the cross-product is zero, it means we are parallel to the 
z-axis), we switch to swerving around the y-axis instead. 

The core of AOA in obstacle avoidance lies in its flexible 
use of basic arithmetic operations to achieve environmental 
adaptation, multi-objective coordination, and efficient 
computation. The arithmetic operations for two-dimensional 
path planning cannot be straightforwardly applied to 3D 
space. In a 3D environment, AOA extends the search space 
through multi-dimensional arithmetic operations, with path 
points represented as ( , , )P x y z . Candidate paths are 
generated through addition and subtraction: 

where   represents the dynamic step size and ( , , )x y zv v v v  
represents the direction vector. We utilize the vector dot 
product to assess the alignment between the path direction 
and the target direction and the cross product to avoid the 
normal vectors of obstacle surfaces, thereby enhancing path 
safety. 

AOA dynamically modulates the step size in response to 
obstacle density, thereby facilitating adaptive environmental 
responsiveness through the strategic manipulation of 
arithmetic operators. In regions with high obstacle 
concentration, division operations are implemented to 
decrement the step size, thereby enhancing path safety. 
Conversely, in less obstructed areas, multiplication 
operations are utilized to expedite global search processes, 
thereby augmenting operational efficiency. By dynamically 
selecting arithmetic operators and density-related parameters, 
flexible scaling of the step size is realized. Define the 
obstacle density d as the proportion of the local area around 
the current path point occupied by obstacles: 

obs

total

Nd
N

  (17) 

Where obsN  is the area occupied by the obstacle in the 
localized area and totalN  is the total area of the localized area.  

The step size s is adaptively adjusted according to the 
obstacle density d, combining multiplication (open area) and 
division (dense area) operations: 

1 (1 )
1base

ds s
d


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Where bases  is the base step size,   is the open region 
amplification factor ( 0  , which controls the intensity of 
the penalization operation), and   is the dense region 
reduction factor ( 0  , which controls the intensity of the 

division operation). 
1 (1 )

1
d

d



 


as a dynamic adjustment 

factor. When 0d  , the adjustment factor converges to 
1  , the step size is enlarged by (1 )  times to accelerate 
the global search; when 1d  , the adjustment factor 
converges to 1/ (1 ) , the step size is reduced to 

/ (1 )baseS   to improve the safety of obstacle avoidance. 
In 3D space, the step direction needs to be corrected in 

conjunction with the obstacle distribution. Define the 
modulus of the direction vector as v s , direction is 
determined by a combination of target point and obstacle 
repulsion: 

target (1 )new repelv v d v d      (19) 
where targetv  is the unit vector pointing to the target, repelv  is 
the unit vector in the direction of obstacle repulsion, weights 
(1 )d , d  realize the balance between target orientation and 
obstacle avoidance. 

A safety distance penalty term is introduced to ensure that 
paths are kept away from obstacles: 

2
1

cos
( )

N
repel

safe
ii

kt
d 


  (20) 

where id  is the normalized distance to the i-th obstacle,   is 
a very small constant, and repelk  is the repulsion coefficient. 
In comparison to conventional algorithms, AOA exhibits the 
benefits of streamlined operation and minimal 
parameterization, effectively harmonizing security and 
efficiency. 
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The algorithm flowchart of MSPDC is shown in Fig. 2. 
First, use the K-means algorithm to find eight RPs. Randomly 
select valid nodes as initial points, that is, cluster centroids, 
calculate the distance between SNs and these initial points, 
and assign each SN to different clusters based on the distance. 
After the assignment, recalculate the cluster centroids and 
repeat the above steps until the centroids no longer change, 
thus finding the RPs. Later, the DPC algorithm is refined by 
calculating the sum of i  and Δi  for each RP. The "cluster 
goodness" index i  was calculated, and the cluster center 
was selected, the RPs were initially divided into two clusters. 
The allocation was optimized iteratively to improve the 
cluster stability. Finally, place one MS in each cluster and use 
the improved AOA for path planning. Select the optimal 
initial position for each MS through the optimal initial point 
function. Choose the nearest initial point for each MS, then 
move towards the target point. During this process, MSs use 
the obstacle avoidance function to navigate around obstacles 
until all RPs have been traversed. Visualize the path of each 
MS and calculate the total time taken to find the optimal path 
and traverse all RPs, the time consumed for turning, the 
length of the traversed path, and the obstacle avoidance 
success rate. 
 

IV. PERFORMANCE COMPARISON 
In a MATLAB-based simulation of a wireless sensor 

network spanning 400 m × 400 m × 30 m, we randomly 
placed 200 SNs, ( 200)n  , each with its own , , z )i i ix y（ , 
1 200i （ ） coordinates and a communication radius of 

nine meters. The data for these nodes is organized into a 3D 
array.  

To mimic real-world network failures, we designated 6% of 
these nodes as non-functional. The K-means algorithm excels 
in rapidly processing extensive datasets, promptly yielding a 
limited number of cluster centroids, which substantially 
diminishes the volume of data for subsequent analysis. The 
improved DPC algorithm further leverages this efficiency by 
directly utilizing the sparse set of RPs generated by the 
K-means algorithm, thereby significantly reducing 
computational complexity. This enhancement renders the 
algorithm particularly adept in big data contexts, greatly 
amplifying its processing capabilities. In real-world 
applications, where node distributions often assume complex, 
irregular forms, the refined DPC algorithm demonstrates its 
versatility. It adeptly partitions these RPs based on density 
reachability, thereby not only identifying clusters of arbitrary 
geometries but also ensuring the robustness of cluster 
centroids. An iterative optimization process allows for 
continual refinement of these partitions, enhancing accuracy. 
By merging the K-means algorithm's quick generation of 
approximate solutions with the refined adjustments of the 
improved DPC algorithm, we achieve a notable improvement 
in clustering accuracy. This approach also maintains 
processing efficiency, offering an effective and precise 
solution for node clustering in complex scenarios. Initially, 
we used the K-means algorithm to find the best locations for 
eight RPs, followed by the DPC algorithm for network 
clustering.  

To assess the performance of our improved algorithm, we 
compared it with traditional methods. The traditional 
approach, which initializes the DPC algorithm with the 
K-means algorithm, achieved cluster coverages of 94.23% 
for Cluster 1 and 93.75% for Cluster 2. Our improved 
algorithm, which ensures that cluster centers are always 

 
Fig. 2.  Comprehensive path planning algorithm flowchart 
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functional nodes and uses a Gaussian kernel for local density 
calculation with optimized bandwidth parameters, slightly 
outperformed the traditional method, increasing coverages to 
94.29% for Cluster 1 and 93.85% for Cluster 2. This 
represents a 0.07% and 0.1% improvement, respectively. A 
visual comparison of the clustering results in a 3D space is 
shown in Fig. 3, with (a) showing the traditional method's 
clustering and (b) showing the improved algorithm's superior 
precision and coverage in complex 3D environments.  

 
To address the limitations of most path planning methods 

being confined to two-dimensional spaces using MS for data 
collection and path planning, this study develops a 3D model 
for post-earthquake rescue operations and introduces 
MSPDC. In this 3D setting, we first applied a DPC algorithm, 
initialized with the K-means algorithm, to categorize 
effective nodes into two clusters. Each cluster has a dedicated 
mobile robot for navigating through its RPs. For path 
planning, we utilize an improved AOA approach to create the 
most efficient routes. These routes link path points via line 
segments, with the total MS travel distance being the 
combined length of these segments. The time used for MS 
path planning includes the time for path optimization, the 
time spent stopping at RPs, the time consumed for turning, 
and the time taken to traverse the path. MS stays at each RP 
for one minute to collect node data within the coverage of the 
RPs. The improved AOA efficiently maps out the shortest 

path from the starting node to the destination. A visual 
comparison of the simulation outcomes is shown in Fig. 4. In 
this figure, (a) shows the result of using traditional AOA to 
find the optimal path, (b) presents the result of using 
improved AOA to find the optimal path, and (c) provides a 
top view of the path planned by the improved algorithm. 
These visual representations provide a clear validation of the 
improved algorithm's proficiency in optimizing paths within 
intricate 3D settings. 

 
(a) Multi-obstacle path planning based on traditional AOA 

 

(c) Top view of multi-obstacle path planning based on improved AOA 
 

Fig. 4.  Comparison of path planning results between traditional AOA and 
improved AOA 

(a) DPC algorithm clustering with original K-means initialization 

(b) DPC algorithm clustering with improved K-means initialization 
 

Fig. 3.  Comparison of the clustering results in the 3 D environment 
 

(b) Multi-obstacle path planning based on improved AOA 
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In path planning, the choice of the initial point 
significantly affects the quality of the solution, easily leading 
to the solution space getting stuck in local optima. Traditional 
AOA is usually applied in simple or ideal two-dimensional 
environments. Using this method for path planning takes 
approximately 47.2 min, with a path length of 1560 m. This 
paper uses the improved AOA to optimize the initial position 
of the robot for complex 3D environments. It calculates the 
average Euclidean distance between each RP and other RPs, 
selecting the point with the smallest average distance as the 
optimal initial point. Considering the presence of 3D 
obstacles in space, we employ the AABB detection method to 
ascertain the location of obstacles and introduce an obstacle 
avoidance mechanism. By adjusting the step size through 
adaptive arithmetic operations, we achieve obstacle 
avoidance, target coordination, and efficient computation, 
balancing safety with efficiency. Upon detecting an 
impending collision, the algorithm automatically selects a 
direction to evade the obstacle and promptly adjusts the 
position of the MS to shift until avoiding collision with static 
obstacles. It can also swiftly and accurately locate the most 
optimal solution currently available. Experiments show that 
the improved AOA reduces the path planning time to about 
29.6 min and the path length to 930 m, saving about 17.6 min 
and 630 m compared to traditional methods. This 
significantly improves convergence speed and obstacle 
avoidance effectiveness. It also rapidly generates initial 
solutions in complex scenarios like earthquake rescue. 
Additionally, it optimizes the shortest paths, effectively 
enhancing the efficiency of actual rescue operations. 

By iterating 100 times, the improved AOA is compared 
with other MS path planning algorithms to find the optimal 
solution. The algorithms compared include the Bat 
Algorithm (BAT) [28], the Improved Grey Wolf 
Optimization Algorithm (CGWO) [29], the Genetic 
Algorithm (GA) [30], and the Whale Optimization Algorithm 
(WOA) [31]. The simulation route results of each algorithm 
are shown in Fig. 5-Fig. 8. 

Fig. 5 shows the simulation outcomes of the BAT's path 
planning capabilities. This algorithm employs an 
echolocation-inspired approach to optimize paths, 
capitalizing on its robust global search proficiency to identify 
relatively optimal solutions. Nevertheless, in 
three-dimensional environments, it exhibits vulnerability to 
local optima, particularly during obstacle avoidance phases 
where the algorithm does not fully account for path 
optimality. This can result in repeated traversal of RPs and an 
escalation in path traversal time. Comparative performance 
analysis reveals that BAT exhibits the longest execution time, 
approximately 49.19 min, which exceeds the improved AOA 
by approximately 19.59 min. Furthermore, its path traversal 
length is approximately 1709.65 m, representing an 
increment of approximately 779.65 m relative to the 
improved AOA. 

Fig. 6 shows the path planning simulation results of the 
CGWO, an improved version of the Grey Wolf Optimizer 
(GWO). CGWO incorporates chaotic mapping to enhance its 
global search capabilities and significantly improves search 
efficiency through the integration of multiple strategies. 
However, this also increases the number of computational 
steps, thereby extending the overall computation time. Even 

with its advanced global search capabilities, AOA faces 
inefficiencies during traversal in intricate 3D settings with a 
high density of SNs. This inefficiency can lead to suboptimal 
path optimization and a challenge in striking the right balance 
between optimizing path length and meeting other objectives. 
During traversal, CGWO takes approximately 49.51 min, 
with a path length of about 1675.72 m, which is around 19.91 
min longer than the improved AOA and an increase of about 
745.72 m in path length. 

 

 

 
Fig. 7 shows the path planning simulation results of GA. 

GA optimizes paths by simulating the process of natural 
selection and explores global optimal solutions through 
population evolution mechanisms. In 3D path planning 
problems, the population size and number of iterations 
directly affect computation time, leading to longer 
computational times. During obstacle avoidance, this 
algorithm selects to evade obstacles in a vertical manner, 
which considerably raises the count of paths traversed and is 
not apt for real-life earthquake rescue situations. In terms of 
performance, GA's performance resembles that of the basic 
AOA, with a longer duration dedicated to finding the optimal 
path. Its traversal time is approximately 45.86 min, and the 
path length is about 1643.05 m. Compared to the improved 
AOA, GA reduces time by about 16.26 min but increases the 
path length by approximately 713.05 m. 

Fig. 5.  Multi-obstacle path planning based on BAT 

Fig. 6.  Multi-obstacle path planning based on CGWO 
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Fig. 8 shows the simulation results of the WOA for path 
planning. WOA effectively avoids local optima by 
mimicking the behavior of whales encircling prey and 
attacking with bubble nets, rendering it suitable for path 
optimization in complex obstacle-filled environments. It 
prioritizes finding the nearest point to the current position 
during path search. However, simulating whale behavior 
escalates computational complexity and imposes real-time 
constraints, potentially causing repeated traversals of RPs 
during path optimization. Consequently, utilizing WOA for 
optimal path search expends more time, approximately 40.13 
min, and explores longer paths, with a traversal length of 
about 1356.53 m. Compared to the improved AOA, WOA 
extends path planning time by about 10.53 min and adds 
approximately 426.53 m to the path length. 

 

 
 

 
 

To comprehensively evaluate the performance advantages 
of the improved AOA, a comparative experiment was 
designed under unified conditions. Analyzing five key 
dimensions with the control variable of 100 iterations, the 
experiment recorded the performance of each algorithm in 
terms of optimization time, path length, traversal time, 
number of turns, and success rate of obstacle avoidance in 
complex environments. In the comparative experiments, five 
sets of standardized tables clearly present the performance 
differences between the improved AOA and traditional AOA, 

BAT, CGWO, GA, and WOA. Table I shows the shortest 
path optimization time. The improved AOA has an extremely 
short pathfinding time. R1, R2, and total pathfinding times 
are only 0.00094 s, 0.00214 s, and 0.00308 s, respectively. 
This significantly outperforms other algorithms. It strongly 
demonstrates its efficient path search capability. Table II 
shows the shortest path lengths. The R1, R2, and total paths 
of the improved AOA planning are about 276 m, 654 m, and 
930 m, respectively. These are the shortest among all 
algorithms. This confirms its precise ability to plan concise 
paths. Table III highlights the total time taken to traverse the 
path. The improved AOA traverses the total distance in 29.6 
min. This is significantly shorter than the 47.2 min for AOA 
and 49.19 min for BAT. It clearly shows how effective time 
optimization really is. Table IV reveals the number of turns in 
the travel path. The improved AOA needs just 6 turns to get 
from start to finish. On the other hand, the traditional AOA 
and CGWO require 16 turns to cover the entire route. 
Reducing turns helps lower robot energy consumption and 
control complexity. Table V shows the success rate of 
obstacle avoidance in complex environments. The improved 
AOA shows a prominent advantage in R1 and R2 obstacle 
avoidance success rates. These rates are 100% and 84%, 
respectively. In contrast, AOA, BAT, etc. perform poorly. 
For example, the BAT's R2 obstacle avoidance success rate is 
only 38%. This reflects its stronger adaptation and avoidance 
capabilities in complex environments. Overall, the 
experimental results intuitively reveal the comprehensive 
advantages of the improved AOA in multi-objective 
optimization, surpassing traditional algorithms in pathfinding 
efficiency, path simplification, time control, motion 
complexity, and environmental adaptability, demonstrating 
the core advantages of optimized path planning, and laying a 
solid foundation for the application of this algorithm in actual 
earthquake rescue scenarios. 

 

A. Path -finding Time 
Fig. 9 shows the fitness function curves for path 

optimization of two robots, where (a) and (b) record the time 
variation trends for R1 and R2 in finding the optimal path, 
respectively. From the characteristics of the curve, it is 
evident that the traditional AOA has significant drawbacks: 
R1 requires approximately 50 iterations to converge, with a 
slow convergence speed, a lengthy path optimization process, 
and a high susceptibility to getting trapped in local optima. 
To address these issues, the introduction of an adaptive step 
size mechanism effectively improves the algorithm's 
insufficient exploration in the initial stages of iteration. 
Simultaneously, by incorporating an optimal initial point 
selection function, the path exploration time is significantly 
reduced. The improved AOA exhibits exceptional 
performance with the fastest convergence speed, completing 
the optimization in approximately 0.003 s, significantly 
reducing path optimization time, and substantially enhancing 
global search capabilities. Other comparative algorithms also 
exhibit different performance characteristics: BAT takes a 
reasonable amount of time to search paths but lacks global 
search ability, taking more than 30 iterations to find the best 
solution, fitting only for quick responses in certain situations. 
CGWO is a bit slower in convergence than the improved 
AOA, with its fitness curve showing big swings initially and  

Fig. 7.  Multi-obstacle path planning based on GA 
 

Fig. 8.  Multi-obstacle path planning based on WOA 
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(a) Time fitness curve of R1 optimization                                              (b) Time fitness curve of R2 optimization                                        

 
Fig. 9.  The fitness function curves for path optimization 

 
a higher optimization time in the end. The traditional GA is 
inefficient, requiring over 80 iterations to converge, leading 
to a significant increase in optimization time for both robots 
within their respective clusters. WOA may have a shorter 
path optimization time, but R1 requires almost 80 iterations 
to reach the optimal value, indicating poor convergence 
efficiency. 

Overall, the improved AOA really shines with its minimal 
iterations needed for full convergence and virtually zero 
optimization time. It outperforms other algorithms, cuts 
down on computational resources, and demonstrates 
significant practicality and advantage. 

B. Path Length 
Fig. 10 shows the fitness function curves for the path 

lengths of two robots, with (a) and (b) recording the variation 
process of the path lengths traversed by R1 and R2, 
respectively. By observing the trend of the curve, it is evident 
that the traditional AOA has significant shortcomings in 
optimizing path length. It takes approximately 20 iterations to 
converge to the optimal value, with a moderate convergence 
speed. However, the final obtained path length is relatively 
long, revealing the limitations of its global search capability. 
The improved AOA excels in path length optimization 

TABLE I 
PATH FINDING MINIMUM TIME COMPARISON 

Algorithm Improved AOA AOA BAT CGWO GA WOA 
R1 path-finding time (s) 0.00094 0.07797 0.01603 0.01953 0.14980 0.00529 
R2 path-finding time (s) 0.00214 0.21483 0.01972 0.01642 0.16035 0.00648 

Total path-finding time (s) 0.00308 0.29280 0.03575 0.03596 0.31015 0.01177 
 

TABLE II 
SHORTEST PATH LENGTH COMPARISON 

Algorithm Improved AOA AOA BAT CGWO GA WOA 
R1 path length (m) 276.1608 501.0122 526.7394 642.2150 454.4200 433.6760 
R2 path length (m) 653.9160 1059.0000 1182.9134 1033.5001 1188.6281 922.8580 

Total path length (m) 930.0768 1560.0122 1709.6528 1675.7151 1643.0481 1356.5340 
 

TABLE III 
SHORTEST TRAVERSAL TIME COMPARISON 

Algorithm Improved AOA AOA BAT CGWO GA WOA 
R1 traversal time (min) 9.0232 16.0200 16.0348 19.3443 13.5884 13.6735 
R2 traversal time (min) 20.5783 31.1800 33.1583 30.1700 32.2726 26.4572 

Total traversal time (min) 29.6015 47.2000 49.1931 49.5143 45.8610 40.1307 
 

TABLE IV 
COMPARISON OF THE MINIMUM NUMBER OF TURNS 

Algorithm Improved AOA AOA BAT CGWO GA WOA 
R1 number of turns 1 6 5 7 3 4 
R2 number of turns 5 10 9 9 7 6 

Total number of turns  6 16 14 16 10 10 
 

TABLE V 
COMPARISON OF OBSTACLE AVOIDANCE SUCCESS RATES 

Algorithm Improved AOA AOA BAT CGWO GA WOA 
R1's obstacle avoidance success rate 100% 59% 34% 67% 33% 66% 
R2's obstacle avoidance success rate 84% 61% 38% 40% 40% 57% 
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through innovative mechanisms. It not only converges fastest 
but also achieves the optimal final solution, skillfully 
balancing the relationship between global exploration and 
local exploitation. It effectively avoids premature 
convergence, achieving the shortest path length of 
approximately 32 m. Other comparative algorithms also 
exhibit different performance characteristics: BAT shows a 
relatively fast convergence speed in the initial stages of 
iteration, but it easily falls into local optima in the later stages. 
R2 requires nearly 80 iterations to find the shortest path, 
indicating low efficiency. CGWO demonstrates stability in 
global search with a moderate convergence speed, but its 
ability to refine local paths is weak, leading to a longer 
overall traversal path. GA, highly dependent on population 
diversity, converges slowly in the early iterations and is more 
prone to stagnation in the later stages, making it difficult to 
find the optimal path solution. The overall path length is 
relatively large. WOA performs well in exploration and 
converges quickly but fails to find optimal paths effectively.  

Overall, the improved AOA achieves the best balance 
between convergence speed and solution quality, accurately 
identifying the shortest path. In practical application 
scenarios, especially in fields like earthquake rescue where 
path planning requires high timeliness and accuracy, the 
improved AOA showcases unparalleled technical advantages 
and potential applications. 

 

C. Total Traversal Time 
The total time for the robot to traverse includes the time 

spent on path optimization, the time taken to traverse the path 
length, the time consumed for turning, and the duration of 
stay at each RP. In the total time iteration curves for the two 
robots shown in Fig. 11, (a) and (b) record the total time 
changes for R1 and R2, respectively. During the actual path 
traversal, the traditional AOA tends to produce subpar 
solutions because it repeatedly visits RPs. This not only 
slows down the convergence but also affects the stability of 
the algorithm during iterations. The improved AOA records 
traversed RPs in real time by creating a path set. Whenever 
the algorithm discovers new RPs, it adds them to the set. 
When planning the next node, it carefully selects from nodes 
outside the set, completely avoiding the issue of revisiting. 
Other comparative algorithms also exhibit different 
performance characteristics: BAT converges slowly, and in 
complex settings, R2 needs approximately 80 iterations to 
identify the optimal solution, which tends to be high in value 
but less effective. CGWO shows relatively better 
convergence, yet the solution quality is mediocre, with R1's 
optimal solution taking roughly 16 min, and it underperforms 
in simple environment optimizations. GA's convergence 
speed is limited, exhibiting a gradual decline in the time 
curve during iterations, necessitating numerous iterations for 
optimization, leading to prolonged application time and low 
efficiency. While WOA can locate better optimal solutions, it 
converges too slowly and easily gets trapped in local optima. 

Overall, the improved AOA shines in cutting down the 
total time, clocking in at just around 29.6 min. It nails the 
shortest time and fastest convergence, and it seriously ramps 
up computational efficiency. 

D. Number of turns 
In the process of robots traversing paths, a turn is counted 

when the turning angle is greater than 10 degrees. Fig. 12 
shows the fitness function curves of the number of turns 
made by two robots, where (a) and (b) record the changes in 
the number of turns during the traversal of R1 and R2, 
respectively. The traversal path of R1 is relatively simple, 
while that of R2 is more complex. The traditional AOA has 
poor global search capability and inefficient exploration in 
the early stages. It takes approximately 60 iterations to find 
the minimum number of turns. The traditional AOA is only 
suitable for simple obstacle environments, and the paths this 
algorithm generates often contain redundant inflection points. 
The improved AOA adaptively adjusts step sizes according 
to obstacle density and achieves obstacle avoidance via 
dynamic arithmetic operations. This improvement 
significantly enhances path quality, effectively avoids invalid 
inflection points, and greatly reduces the number of turns. 
The two robots require only six turns to complete the 
traversal. Other comparative algorithms also exhibit different 
performance characteristics: BAT has poor optimization 
efficiency, leading to frequent turns during path traversal and 
slow convergence. It is only suitable for scenarios with low 
real-time requirements. CGWO can demonstrate efficient 
optimization capabilities in the early stages of iteration, but it 
often requires multiple turns to traverse complex paths, 
resulting in low practicality. GA demonstrates strong initial 
optimization performance but easily converges with 
suboptimal solutions, requiring multiple iterations to 
minimize the number of turns. WOA suits long-term iterative 
tasks and gradually approaches the optimal solution, but its 
initial solution quality is suboptimal, and it tends to get 
trapped in local optima. 

Overall, the improved AOA has significant advantages in 
path planning performance, requiring only about 20 iterations 
to achieve the minimum number of turns, greatly improving 
the efficiency of path planning, and making it more suitable 
for applications in earthquake rescue scenarios. 

 

E. Success rate of obstacle avoidance 
Obstacle avoidance success rate is an important indicator 

of robot performance in complex environments, which is 
defined as the ratio of the number of successful obstacle 
avoidance attempts to the total number of obstacle avoidance 
attempts by the robot during traversal. The success rates of 
the traditional AOA are 59% and 61%, indicating that it has 
basic obstacle avoidance capability, but it is limited by the 
lack of global search efficiency and is prone to fail in 
complex obstacle scenarios due to path redundancy. By 
systematically optimizing the strategy, the improved AOA 
shows excellent performance in the obstacle avoidance task: 
the success rate of R1 reaches 100%, and R2 increases to 
84%. Other comparative algorithms also exhibit different 
performance characteristics: BAT has the lowest success 
rates of 34% and 38% in obstacle avoidance. It relies on the 
acoustic pulse simulation mechanism, which has weak 
anti-jamming ability in complex obstacle environments. 
Consequently, it fails to effectively handle the demands of 
complex path planning. CGWO has success rates of 67% and  

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2807-2821

 
______________________________________________________________________________________ 



 

 
 

 

 

 
(a) The number of turns of the fitness curve for R1                                          (b) The number of turns of the fitness curve for R2                     

 
Fig. 12.  The fitness function curves of the number of turns 

 
 

 
(a) The path length fitness curve of R1                                                           (b) The path length fitness curve of R2                                     

Fig. 10.  The fitness function curves for path length 
 

 
(a) Total time fitness curve for R1                                                                   (b) Total time fitness curve for R2                                         

 
Fig. 11.  The fitness function curve of the total traversal time 
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40%, which are adapted to simpler obstacle environments. 
And the success rates of 33% and 40% for GA reflect that the 
genetic operation is not able to effectively balance the 
exploration and optimization of path optimization. Path 
optimization fails to effectively balance exploration and 
exploitation. The success rates of WOA are 66% and 57%, 
and its simulated whale spiral search mechanism shows 
stability in most scenarios, but the algorithm relies on 
long-term iterations to gradually approach the optimal 
solution, and the overall efficiency is low. 

Overall, the improved AOA performs excellently in 
obstacle avoidance efficiency, with remarkable optimization 
results, and can meet the task requirements in various 
complex environments. 

From a multi-dimensional experimental perspective, the 
improved AOA demonstrates significant advantages in path 
planning performance. Firstly, in the 3D environment 
simulation experiments, visually comparing the planned 
paths of various algorithms reveals that the improved AOA 
generates more concise and fluent paths. It accurately avoids 
various obstacles, demonstrating strong environmental 
adaptability. Secondly, a quantitative comparative analysis of 
core indicators is conducted. These indicators include the 
shortest optimization time, shortest path length, shortest 
traversal time, minimum number of turns, and obstacle 
avoidance success rate. The analysis reveals that the 
improved AOA outperforms other algorithms in all key 
metrics. This fully validates its superior comprehensive 
performance. Lastly, a detailed observation of the fitness 
function curves of each indicator further highlights the 
performance advantages of the improved AOA. It not only 
converges faster and has higher solving efficiency but also 
demonstrates outstanding stability and reliability in complex 
environments. These characteristics make the improved 
AOA highly practical and promising for complex scenarios 
such as earthquake rescue, effectively meeting the stringent 
requirements of high-risk, high-complexity tasks for path 
planning. 

 

V. CONCLUSION 
In WSNs, numerous SNs are spread across the 3D space. 

The current research focus is on using MSs to gather data 
from these SNs. The challenge lies in optimizing the paths for 
multiple MSs, ensuring a balance between the time taken for 
algorithm optimization, total traversal time, path length, 
number of turns, and the success rate of obstacle avoidance. 
To enhance rescue efficiency in earthquake-stricken areas, 
this paper introduces the MSPDC. It comprises three steps: 
pre-deploying several SNs in the disaster zone, utilizing the 
K-means algorithm for its efficiency in handling large data 
sets to identify the cluster centers of intact nodes, and then 
using these as RPs to establish the best possible locations. 
Subsequently, an improved DPC algorithm is employed to 
segment all RPs into distinct clusters. This algorithm excels 
in automatically identifying cluster centroids based on local 
density and relative distance. It iteratively refines the 
allocation of boundary points to enhance node coverage and 
clustering stability, thereby maximizing the reception of 
information from the disaster area. Finally, path planning is 
performed using an improved AOA, which is simple and easy 

to implement with its global search capability. Each cluster is 
assigned a robot equipped with an MS responsible for 
collecting data from the nodes within its cluster and 
transmitting it to the emergency command center. This 
coordinated approach ensures that multiple MSs operate 
efficiently, avoiding the redundancy of collecting data from 
the same RPs. The algorithm has been further enhanced to 
determine optimal initial positions for robots within each 
cluster in a 3D space. Additionally, to navigate potential 
unknown obstacles in actual rescue operations, an AABB 
collision detection mechanism is implemented to ascertain 
the robot's position relative to obstacle boundaries. The step 
size is adjusted adaptively according to the density of 
obstacles, and flexible obstacle avoidance is achieved by 
dynamically adjusting arithmetic operators. The algorithm 
undergoes further optimization for effective evasion of 
randomly appearing obstacles in earthquake rescue scenarios. 
It strikes a balance between computational efficiency and 
real-time performance. Additionally, it avoids excessive 
computational complexity to ensure it does not hinder 
real-time response and network performance. In a 3D 
environment, the improved AOA is compared with 
traditional AOA, BAT, CGWO, GA, and WOA. The 
improved algorithm shows significant advantages in finding 
the optimal path, reducing the total path length and time, 
decreasing the number of turns, and increasing the success 
rate of obstacle avoidance. These features make it suitable for 
practical scenarios like earthquake rescue operations.  

This paper assumes that obstacles are randomly generated 
and fixed, without considering the issue of moving obstacles. 
In the actual earthquake rescue process, the real-time 
movement of victims within the disaster area needs to be 
considered. Although the MSPDC proposed in this paper 
improves node coverage, quickly finds the shortest path in a 
3D environment, reduces the number of turns, and enhances 
the success rate of obstacle avoidance, it does not address the 
issue of network energy consumption. Future research will 
focus on parameter optimization of the MSPDC and explore 
effective strategies to reduce network energy consumption. 
This is not only a further improvement of the algorithm's 
performance but also a key step in promoting its widespread 
application in complex earthquake rescue environments. 
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