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Abstract—The objective of this article is to explore the
anti-difference principle using mixed difference operators,
deriving theorems for the mth order anti-difference related
to finite series. We establish higher order difference equations
with factorial coefficients, extending to fractional orders and
deriving a fractional anti-difference principle from its integer
counterpart. Mixed gamma geometric factorials are introduced
to formulate fundamental theorems for mixed fractional
difference equations. We analyze the behavior of the νth

order anti-difference principle, providing a solid theoretical
foundation for applying mixed difference operators in discrete
dynamics.

Index Terms—Delta integrable function, Discrete Delta
integration, Fractional sum, Closed form, Summation form,
Numerical analysis.

I. INTRODUCTION

D IFFERENCE equations play a pivotal role in
mathematical modeling, offering a framework for

analyzing systems that evolve in discrete steps. The
development of mixed (q, h)-difference operators provides
a powerful tool for studying such systems, particularly those
defined on non-uniform time scales. This modern extension
unifies concepts from difference and differential calculus into
a more generalized discrete framework.

In [1], the authors examine the connection between the
q-derivative operator Dq and divided differences within
the scope of quantum calculus. Building on this, the
(p, q)-calculus is used to derive various identities involving
the (p, q)-derivative operator, generalizing classical results.
The study in [2] extends these ideas by employing q, q(α),
and h-difference operators to derive fundamental theorems,
offering both closed-form and summation solutions to
higher-order difference equations.
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Operator theory continues to evolve in this domain. Two
generalized q-exponential operators with three parameters are
introduced in [3], leading to a range of operator identities and
their application to extended q-Gauss summation formulas.
Related developments in [4], yield q-exponential identities by
solving q-difference equations, with applications to q-Mehler
equations, generalized q-beta integrals, and generating
functions for generalized Al-SalamCarlitz polynomials.

Several works investigate the construction and inversion
of q-difference operators. In [5], a q-difference operator
of arbitrary order is defined using generalized factorials
and Stirling numbers, while [6] focus on existence and
uniqueness results for nonlinear fractional q-difference
equations under nonlocal conditions, employing fixed-point
theorems and continuity principles. Operative symbol
analysis and inverse operations are further explored in [7],
and nonlinear fractional models with nonlocal boundary
conditions are addressed in [8] using classical fixed-point
results.

The framework of q-hypergeometric functions is extended
in [9] through the development of new q-operators and
identities such as q-binomial and q-ChuVandermonde
summation formulas. These tools also support combinatorial
identities and the structural theory of special functions.

The authors in [10] investigate fractional-order delta
operators associated with the Fibonacci sequence,
introducing an infinite series formulation. They derive
explicit summation formulas for these series, enriching
the framework of discrete fractional calculus. The
work contributes to the theoretical understanding of
fractional operators applied to special sequences. Further
applications include the analysis of singular fractional
q-integro-differential equations using Caputo derivatives
in [11], where compactness arguments and convergence
theorems underpin the theoretical framework. A related
approach in [12] uses the q-Laplace transform to convert
fractional q-differential equations into solvable integer-order
forms, supported by illustrative examples.

Investigations into the algebraic structure of difference
operators continue with studies in [13], which explore the
interplay between divided differences and q-derivatives under
(p, q)-calculus, and introduce symmetric difference operators
to tackle higher-order problems. Discrete fractional calculus
methods are developed in [14], applying composition rules
and Laplace transform techniques to solve initial value
problems.

A generalized theory of difference operators of the nth

kind is developed in [15], while [16] proposes a quantum
algorithm based on block-encoded operator updates for
solving linear systems using gradient descent techniques. But
the theory of mixed difference operator is still unexplored.

Hence in this article, we extend these developments
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by introducing the (q, h)-mixed difference operator and
its corresponding anti-difference principles, along with
higher-order generalizations. Moreover we construct
geometric and mixed gamma-geometric factorials to support
applications in fractional-order settings. The effectiveness
of our approach is demonstrated through its application to
the SIR epidemic model, where the results highlight the
operators generality and practical utility across discrete and
fractional systems.

II. PRELIMINARIES RELATED TO (q, h) - MIXED
OPERATOR

Definition II.1. [10] For t ∈ R and n ∈ N, the polynomial
factorial function t(n) is defined by

t(n) =
n−1∏
r=0

(t− r). (1)

Also, for ν ∈ (−∞,∞), the νth factorial polynomial is given
by

t(ν) =
Γ(t + 1)

Γ(t− ν + 1)
, (2)

where t− ν + 1, t + 1 /∈ −N0 = {0,−1,−2, . . . }.

Definition II.2. [10] The sum of the values of kth factorial
polynomials of the first t natural numbers is given below

1(k) + 2(k) + 3(k) + · · ·+ t(k) =
(t + 1)(k+1)

k + 1
. (3)

The νth fractional Taylor monomial, defined at s, is given
by

hν(s, t) =
(t− s)(ν)

Γ(1 + ν)
, (4)

where (t− s)(ν) is obtained by replacing t with t− s in (2).

Definition II.3. [15] Let f : M q
h → R be a function. Then

the (q, h)-difference operator, denoted by ∆
(q,h)

, is defined as

∆
(q,h)

f(t) = f(tq + h)− f(t), t ∈M q
h . (5)

Lemma II.4. Let f, g : M q
h → R, q ∈ R− {0, 1} and 0 6=

h ∈ R. Then the product rule of (q, h) difference operator is

obtained as
−1
∆

(q,h)
{f(t)g(t)}

= f(t)
−1
∆

(q,h)
g(t)−

−1
∆

(q,h)
{
−1
∆

(q,h)
g(tq + h) ∆

(q,h)
f(t)}. (6)

Proof: Applying the ∆
(q,h)

operator on the function f(t)g(t)

and then adding and subtracting the term f(t)w(tq+h), we
obtain

−1
∆

(q,h)
{f(t)g(t)} = w(tq + h) ∆

(q,h)
f(t) + f(t) ∆

(q,h)
w(t).

Thus the proof completes by taking ∆
(q,h)

w(t) = g(t) and

−1
∆

(q,h)
g(t) = w(t).

III. ANALYSIS OF THE (q, h)-DIFFERENCE OPERATOR

The (q, h)-difference operator generalizes the standard
difference operator by incorporating both scaling and
shifting. This paper aims to derive and analyze its
fundamental properties, investigate its behavior under
different transformations, and explores how it acts on several
types of functions.

A. Linearity and Additivity

To establish that the operator is linear, we check
the additivity and homogeneity properties. Let f(t) and
g(t) be any two functions and α be any scalar. Then
∆

(q,h)
(f(t) + g(t))

= f(t+ qh)− f(t) + g(t+ qh)− g(t)
= ∆

(q,h)
f(t) + ∆

(q,h)
g(t).

Thus the operator satisfies additivity.
Now ∆

(q,h)
(αf(t)) = (αf(t+ qh))− αf(t)

= α (f(t+ qh)− f(t)) = α ∆
(q,h)

f(t).

Thus, the operator is linear.

B. Shift-invariance

For the shifted function f(t + δ), we can compute
∆

(q,h)
f(t+ δ) = f(t+ δ + qh)− f(t+ δ).

This shows that the operator shifts the function’s argument
by both δ and h, preserving the form of the operator.
Therefore, the operator shifts the argument and operates as
expected on the shifted function.

C. Scaling-invariance

Now, consider the scaled function f(qt). The operator acts
as ∆

(q,h)
f(qt) = f(q2t + h) − f(qt). Here, the operator

incorporates both scaling by q and shifting by h. This
indicates that the operator affects both the scale and the shift
in the input variable.

D. Idempotence

If the operator is idempotent, the idempotence condition
is ∆

(q,h)
∆

(q,h)
f(t) = ∆

(q,h)
f(t).

For simplicity, we consider the function f(t) = t.
∆

(q,h)
t = (qt+ h)− t = (q − 1)t+ h.

Now, apply the operator again to this result,
∆

(q,h)
((q − 1)t+ h) = (q(q−1)t+h+h)−((q − 1)t+ h) .

Comparing this with ∆
(q,h)

t = (q − 1)t + h shows the

operator is not idempotent for f(t) = t, but for some other
types of functions (e.g., constant functions), idempotence
may hold.

E. Commutativity with Other Operators

Next, we investigate whether the (q, h)-difference
operator commutes with other standard operators, such as
differentiation. Consider ∆

(q,h)

(
d
dtf(t)

)
.Then we write

∆
(q,h)

(
d
dtf(t)

)
=

d

dt
f(t+ qh)− d

dtf(t).
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But d
dtf(t+ qh) = lim

ε→0

f(t+ qh+ ε)− f(t+ qh)

ε
,

and
d

dt
f(t) = lim

ε→0

f(t+ ε)− f(t)

ε
.

Thus, the two terms do not directly commute and
this suggests that the operator does not commute with
differentiation.

F. Taylor Series Expansion

Next, we investigate the effect of the (q, h)-difference
operator on a Taylor series. For a function f(t) with a Taylor
expansion around t = s, f(t) =

∑∞
n=0

f(n)(s)
n! (t − s)n, we

apply the (q, h)-difference operator, that is

f(t+ qh)f(t) =
∞∑
n=0

f (n)(s)

n!
[(t+ qh− s)n − (t− s)n] .

Using the binomial expansion for (t+ qh− s)n, we get
(t+ qh− s)n =

∑n
k=0

(
n
k

)
(t− s)n−k(qh)k. Thus, the

difference becomes

(t+ qh− s)n − (t− s)n =
n∑
k=1

(
n

k

)
(t− s)n−k(qh)k.

∆
(q,h)

f(t) =
∞∑
n=0

f (n)(s)

n!

n∑
k=1

(
n

k

)
(t− s)n−k(qh)k.

This provides the new form of the function under the action
of the (q, h)-difference operator, showing how each term in
the Taylor series is modified by the operator.

Here in this section, we derived the properties of
additivity, homogeneity, shift-invariance, scaling-invariance,
and examined its interaction with differentiation. We also
expanded the effect of the operator on Taylor series.

IV. ANTI-DIFFERENCE PRINCIPLE OF MIXED OPERATOR

In this section, we derive the theorems for the
anti-difference principle using the mixed difference operator.

Theorem IV.1. Let x, y : M q
h → R, t ∈ R, and n ∈ N.

Then the first-order anti-difference principle (q, h) operator
is given by
−1
∆

(q,h)
x(t)−

−1
∆

(q,h)
x

(
t− h

∑n−1
j=0 qj

qn

)

=
n−1∑
r=0

x

(
t− h

∑r
s=0 q

s

qr+1

)
. (7)

Proof:

Consider
−1
∆

(q,h)
x(t) = y(t). (8)

Then we have
x(t) = ∆

(q,h)
y(t). (9)

Applying Definition II.3,in the above equation,

x(t) = y(tq + h)− y(t). (10)

Next, substitute t by t/q in equation (10), we get

y(t + h) = x

(
t

q

)
+ y

(
t

q

)
. (11)

Now, substitute t by t− h in equation (11), and we get

y(t) = x

(
t− h
q

)
+ y

(
t− h
q

)
. (12)

Next, substituting t by t−h
q in equation (12) gives

x

(
t− h
q

)
= x

(
t− h

∑1
r=0 q

r

q2

)
+ y

(
t− h

∑1
r=0 q

r

q2

)
.

(13)
Substitute equation (13) into equation (12), yielding

y(t) = x

(
t− h
q

)
+ x

(
t− h

∑1
r=0 q

r

q2

)

+ y

(
t− h

∑1
r=0 q

r

q2

)
. (14)

By continuing this iterative process, we arrive at the
following generalization for n terms

y(t) =
n−1∑
r=0

x

(
t− h

∑r
s=0 q

s

qr+1

)
+ y

(
t− h

∑n−1
r=0 qr

qn

)
.

(15)
Using (8), the above equation becomes

−1
∆

(q,h)
x(t)−

−1
∆

(q,h)
x

(
t− h

∑n−1
r=0 qr

qn

)

=
n−1∑
r=0

x

(
t− h

∑r
s=0 q

s

qr+1

)
, (16)

which completes the proof.

Corollary IV.2. Let x, y : M q
h → R, where q ∈ R− {0, 1},

n ∈ N, and t ∈ R. If h = 0, then equation (16) reduces to
the following form

−1
∆

(q,0)
x(t)−

−1
∆

(q,0)
x

(
t

qn

)
=
n−1∑
r=0

x

(
t

qr+1

)
. (17)

Proof: The proof is obvious when h=0 in (16).

Corollary IV.3. Let x, y : M q
h → R, where h ∈ R − {0},

t ∈ R and n ∈ N. If q = 1, then (16) simplifies as

−1
∆

(1,h)
x(t)−

−1
∆

(1,h)
x(t− nh) =

n−1∑
r=0

x(t− (r + 1)h). (18)

Proof: The proof is trivial when q=1 in (16)

Example IV.4. Case (i). In equation (18), let h=m=2 and
f(t) = 3t. We then have the following calculations:

∆
2

(
3t

32 − 1

)
= 3t,

2

∆
2

(
3t

(32 − 1)2

)
= 3t

2
,

−2
∆
2

3t =
3t

(32 − 1)2
,

−2
∆
2

3t
∣∣∣
−∞

= 0,

and for s = 5, Using the formula in equation (18), we get

−m
∆
h
f(s)−

−1
∆
−1/t

ft(m, s, h) =
t∑

r=0

fr(m, s, h). (19)

we use the result from equation (19) to get

−2
∆
2

3s −
−1
∆
−1/t

ft(2, s, 2) =

t∑
r=0

fr(2, s, 2). (20)
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When s = 5, the first term in equation (20) simplifies to

−2
∆
2

3s
∣∣∣
s=5

=
3s

(32 − 1)2

∣∣∣
5

=
35

82
=

310

35 · 82
. (21)

Now, by setting k = 2, we find
−1
∆
−1/t

ft(2, 5, 2) =
−1
∆
−1/t

{
(t+ 1)35−(t+2)2

}
= (t+ 1)

35−(t+2)2

32 − 1
+

35−(t+1)2

(32 − 1)2
. (22)

When t = 3, the above equation simplifies to
−1
∆
−1/t

ft(2, 5, 2)
∣∣∣
t=3

=
−1
∆
−1/t

{
(t+ 1)35−(t+2)2

} ∣∣∣
t=3

= 4
3−5

32 − 1
+

3−3

(32 − 1)2
=

41

35 · 82
. (23)

Expanding the right-hand side of equation (20), we get∑t
r=0 fr(2, 5, 2) =

∑3
r=0(r + 1)3(1−2r)

= 3 +
2

3
+

3

33
+

4

35
=

922

35
=

922 · 82

35 · 82
. (24)

Hence equation (20) is verified by equations (21), (23) and
(24).

Case (ii). Now, in equation (19), take h = −2, m = 2
and f(t) = 3−t. We compute the following:

∆
−2

(
3−t

32 − 1

)
= −3−t,

2

∆
−2

(
3−t

(32 − 1)2

)
= 3−t,

g(t) =
3−t

(32 − 1)2
, g(t)

t→∞
= 0,

and we have the equation

−2
∆
−2

1

3s
−
−1
∆
−1/t

ft(2, s,−2) =
t∑

r=0

fr(2, s,−2). (25)

When s = 5 and t = 3, as in case (i), we obtain

−2
∆
−2

1

3s

∣∣∣
s=5

=
1

3s(32 − 1)2

∣∣∣
5

=
1

35 · 82
=

310

315 · 82
. (26)

Next, using the definition of ft(m, s,−h), we find

−1
∆
−1/t

ft(2, 5,−2)
∣∣∣
t=3

=
−1
∆
−1/t

{
(t+ 1)

35+(t+2)2

} ∣∣∣
t=3

= 4
1

315 · 8
+

1

313 · 82
=

41

315 · 82
. (27)

Expanding the RHS of the equation (25), we get

t∑
r=0

fr(2, 5,−2) =
3∑
r=0

(r + 1)

35+(r+2)2
=

922

315
. (28)

Therefore, equation (19) is verified by equations (26), (27)
and (28).

V. HIGHER ORDER ANTI-DIFFERENCE PRINCIPLE BY
(q, h) OPERATOR

In this section, we develop theorems and corollaries
for mth order anti-difference principle using the mixed
difference operator.

Theorem V.1. Let x, y : M q
h → R, where m,n ∈ N and

t ∈ R. Then the higher-order anti-difference principle of the
mixed difference operator is given by

−m
∆

(q,h)
x(t)−

m−1∑
d=0

n(d)

d!

−(m−d)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=
n−1∑

r=m−1

r(m−1)

(m− 1)!
x

 t− h
r∑
s=0

qs

qr+1

 . (29)

Proof: Theorem IV.1 provides the proof for m = 1.

Applying the operator
−1
∆

(q,h)
on both sides of equation (7),

we obtain

−2
∆

(q,h)
x(t)−

−2
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=
−1
∆

(q,h)

n−1∑
r=0

x

 t− h
r∑
s=0

qs

qr+1


 . (30)

The right-hand side of equation (30) is calculated as follows:

−1
∆

(q,h)

n−1∑
r=0

x

 t− h
r∑
s=0

qs

qr+1




=
−1
∆

(q,h)
x

 t− h
∑
s=0

qs

q

+
−1
∆

(q,h)
x

 t− h
1∑
s=0

qs

q2



+
−1
∆

(q,h)
x

 t− h
2∑
s=0

qs

q3

+ · · ·+
−1
∆

(q,h)
x

 t− h
n−1∑
s=0

qs

qn


Simplifying further,

−1
∆

(q,h)

n−1∑
r=0

x

 t− h
r∑
s=0

qs

qr+1


 =

n−1∑
r=0

−1
∆

(q,h)
x

 t− h
r∑
s=0

qs

qr+1


(31)

Replacing t by (t− h)/q, (t− h
1∑
r=0

qr)/q2,

(t − h
2∑
r=0

qr)/q3, . . . in equation (15) and then substituting
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equation (15) into (31), we obtain

−1
∆

(q,h)
x

(
t− h
q

)
= x

 t− h
1∑
r=0

qr

q2

+

 t− h
2∑
r=0

qr

q3



+ · · ·+x

 t− h
n−1∑
r=0

qr

qn

+
−1
∆

(q,h)
x

 t− h
n−1∑
r=0

qr

qn

 . (32)

Similarly, we obtain

−1
∆

(q,h)
x

 t− h
1∑
r=0

qr

q2

 = x

 t− h
2∑
r=0

qr

q3



+ · · ·+ x

 t− h
n−1∑
r=0

qr

qn

+
−1
∆

(q,h)
x

 t− h
n−1∑
r=0

qr

qn

 .

Repeating the same process, we arrive

−1
∆

(q,h)
x

 t− h
2∑
r=0

qr

q3

 = x

 t− h
3∑
r=0

qr

q4



+ · · ·+x

 t− h
n−1∑
r=0

qr

qn

+
−1
∆

(q,h)
x

 t− h
n−1∑
r=0

qr

qn

 . (33)

Using these results in equation (31), we obtain

−1
∆

(q,h)

n−1∑
r=0

x

 t− h
r∑
s=0

qs

qr+1


 = x

 t− h
1∑
r=0

qr

q2



+ 2x

 t− h
2∑
r=0

qr

q3

+ · · ·+ (n− 1)x

 t− h
n−1∑
r=0

qr

qn



+ n
−1
∆

(q,h)
x

 t− h
n−1∑
r=0

qr

qn

 .

Substituting this into equation (30), we get

−2
∆

(q,h)
x(t)−

−2
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



− n
−1
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn

 =
n−1∑
r=1

rx

 t− h
r∑
s=0

qs

qr+1

 .

(34)

Again, applying
−1
∆

(q,h)
on both sides of (30) and using (15),

we obtain

−3
∆

(q,h)
x(t)−

−3
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn

 .−n
−2
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



= p · x


t− h

2∑
j=0

qj

q3

+
2∑
p=1

p · x


t− h

3∑
j=0

qj

q4



+ . . .+
n−1∑
p=1

p ·∆−1
(q,h)

x


t− h

n−1∑
j=0

qj

qn


Putting k = 1 in (3) and then substituting in the
above equation, we obtain

−3
∆

(q,h)
x(t)−

−3
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



− n
−2
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn

− n(2)

2!

−1
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=

n−1∑
r=2

r(2)

2!
x

 t− h
r∑
s=0

qs

qr+1

 .

Similarly, we obtain the fourth inverse as

−4
∆

(q,h)
x(t)−

−4
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



− n
−3
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



− n(2)

2!

−2
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=
n−1∑
p=2

p(2)

2!
x


t− h

p+1∑
j=0

qj

qp+2

 (35)
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Proceeding like this, we get the general form of mth inverse

−m
∆

(q,h)
x(t)−

−m
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



−
m−1∑
k=1

n(k)

k!

−(m−k)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=
n−1∑

r=m−1

r(m−1)

(m− 1)!
x

 t− h
r∑
s=0

qs

qr+1

 ,

which completes the proof.

Corollary V.2. Let x, y : M q
h → R, m,n ∈ N, q ∈ R−{0},

t ∈ R and
−m
∆

(q,0)
= Imq . If h = 0, then equation (29) becomes

−m
∆

(q,0)
x(t)−

m−1∑
r=0

n(d)

d!

−(m−d)
∆

(q,0)
x
(
t/qn

)

=
n−1∑

r=m−1

r(m−1)

(m− 1)!
x
(
t/qr+1

)
. (36)

Corollary V.3. Let x, y : M q
h → R, t ∈ R, h ∈ R − {0},

m,n ∈ N and
−m
∆

(1,h)
= ∆m

h . If q = 1, then equation (29)

simplifies to
−m
∆

(1,h)
x(t)−

m−1∑
d=0

n(d)

d!

−(m−d)
∆

(1,h)
x(t− nh)

=
n−1∑

r=m−1

r(m−1)

(m− 1)!
x(t− (r + 1)h). (37)

Corollary V.4. Let x, y : M q
h → R, t, h 6= 0 ∈ R, q ∈

R − {0, 1}, n,m ∈ N and n > m . Then the mth order
anti-difference principle related to mixed difference equation
for finite series is given by

−m
∆

(q,h)
x(t)−

n−1∑
d=n−m

n(d−n+m)

(d− n+m)!

−(n−d)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=
n−m∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
x

 t− h
m+r−1∑
s=0

qs

qm+r

 .

(38)
Proof: The proof follows by replacing

x−1∑
d=0

n(d)

d!

−(x−d)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn

with

n−1∑
d=n−m

n(d−n+m)

(d− n+m)!

−(n−d)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



and
n−1∑

r=m−1

r(m−1)

(m− 1)!
x

 t− h
r∑
s=0

qs

qr+1

with

n−m∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
x

 t− h
m+r−1∑
s=0

qs

qm+r


in equation (29).

Theorem V.5. Let x, y : M q
h → R, q, h ∈ R − {0} and

−m
∆

(q,h)
x(0) = 0. Then the mth order anti-difference principle

of the mixed operator for infinite series is given by

−m
∆

(q,h)
x(t) =

∞∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
x

 t− h
m+r−1∑
s=0

qs

qm+r

 ,

(39)
where m ∈ N and t ∈ R.
Proof: The proof follows by taking lim

n→∞
in equation (38).

VI. GEOMETRIC FACTORIALS IN MIXED DIFFERENCE
OPERATOR

In this section, we develop higher-order difference
equations using the mixed difference operator and its inverse
operator by incorporating factorial coefficient functions.

Definition VI.1. Let m ∈ N, s, q, h, t ∈ R such that

s − h
t∑

j=0

qj/qt+m ∈ M q
h and let x : M q

h → R be a

given function. Then the factorial coefficient of x at t on
(m, s, q/h) is defined as

xt(m, s, q/h) =
(t+m− 1)(m−1)

(m− 1)!
x


s− h

t∑
j=0

qj

qt+m

 . (40)

Theorem VI.2. Let x, y : M q
h → R, q, h ∈ R− {0, 1},

t ∈ N, s ∈ R and if the series
∞∑

r=t+1
x(s− h

r∑
j=0

qj)/qr+1

is convergent and xt(m, s, q/h) is given by (40), then

−1
∆

(q,h)
x(s)−

∞∑
r=t+1

xr(1, s, q/h) =
t∑

r=0

xr(1, s, q/h). (41)

Proof: Taking lim
n→∞

in equation (15) and assuming
−1
∆

(q,h)
x(0) = 0, we get

−1
∆

(q,h)
x(t) = x

(
t−h
q

)
+ x

 t−h
1∑
r=0

qr

q2

+ . . .

+ x


t− h

r∑
p=0

qp

qr+1

+ x


t− h

r+1∑
p=0

qp

qr+2

+ . . . (42)
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Replacing t by s and r by t in (42), we obtain

−1
∆

(q,h)
x(s) = x

(
s−h
q

)
+ x

s− h
1∑
r=0

qr

q2

+ . . .

+ x

s− h
t∑

r=0
qr

qt+1

+ x

s− h
t+1∑
r=0

qr

qt+2

+ . . . .

Rewriting in terms of summation, we obtain

−1
∆

(q,h)
x(s) =

t∑
r=0

x

 s−h
r∑
j=0

qj

qr+1

+
∞∑

r=t+1
x

 s−h
r∑
j=0

qj

qr+1

 .

Finally, applying equation (40) in (42) for m = 1, the proof
is completed.

Lemma VI.3. Let s ∈ R, t ∈ N, h, q ∈ R−{0} and assume

that the series
∞∑

r=t+1
x(s − h

r∑
j=0

qj)/qr+1 is convergent.

Then, we have

∞∑
r=t+1

xr(m, s, q/h) =

[
xt+1(m, s, q/h)

]2
xt+1(m, s, q/h)− xt+2(m, s, q/h)

.

(43)
Proof: By the property of the sum of a geometric series, we
obtain (43).

The following theorem provides a higher-order finite series
formula for the (q, h) difference operator.

Theorem VI.4. Consider the conditions given in Theorem
VI.2. Then the first-order anti-difference principle of the
(q, h) difference operator is given by
−1
∆

(q,h)
x(s)− [xt+1(1, s, q/h)]2

xt+1(1, s, q/h)− xt+2(1, s, q/h)

=
t∑

r=0

xr(1, s, q/h) (44)

Proof: The proof follows by substituting (43) into (41)
for m = 1.

Theorem VI.5. Let x, y : M q
h → R, s ∈ R, m, t ∈ N, h > 0

and q > 1 . Then, the higher-order (q, h) difference operator
is given by

−m
∆

(q,h)
x(s)− [xt+1(m, s, q/h)]2

xt+1(m, s, q/h)− xt+2(m, s, q/h)

=
t∑

r=0

xr(m, s, q/h).

Proof: From equation (39), we have

−m
∆

(q,h)
x(t) =

(m− 1)(m−1)

(m− 1)!
x


t− h

m−1∑
j=0

qj

qm


+

m(m−1)

(m− 1)!
x


t− h

m∑
j=0

qj

qm+1

+ . . .

+
(m− (r − 1))(m−1)

(m− 1)!
x


t− h

m−(r−1)∑
j=0

qj

qm+r



+
(m− r)(m−1)

(m− 1)!
x


t− h

m−r∑
j=0

qj

qm+r+1

+ . . .

Replacing t, r by s, t in the above equation gives

−m
∆

(q,h)
x(s) =

m+t−1∑
y=m−1

y(m−1)

(m− 1)!
x


s− h

y∑
j=0

qj

qy+1



+
∞∑

y=m+t

y(m−1)

(m− 1)!
x


t− h

y∑
j=0

qj

qy+1

 .

Interchanging the terms

m+t−1∑
y=m−1

y(m−1)

(m− 1)!
x

s− h y∑
j=0

qj

 by

t∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
x


s− h

m+r−1∑
j=0

qj

qm+r



and
∞∑

y=m+t

y(m−1)

(m− 1)!
x


t− h

y∑
j=0

qj

qy+1

 by

∞∑
r=t+1

(m+ r − 1)(m−1)

(m− 1)!
x


s− h

m+r−1∑
j=0

qj

qm+r

 .

and then applying equation (43) completes the proof.

VII. MIXED GAMMA GEOMETRIC FACTORIALS IN
FRACTIONAL ORDER DIFFERENCE EQUATIONS

In this section, we develop the fractional-order
anti-difference principle from its integer-order equation
given in Lemma VI.3, by which we derive fundamental
theorems of mixed fractional difference equations involving
mixed gamma geometric factorials.

Definition VII.1. Let s, q, t, ν ∈ R

such that (s − h
t∑

j=0

qj)/qt+ν ∈ M q
h and let x : M q

h → R

be a function. Then, the gamma factorial-coefficient of x at
t on (ν, s, q/h) is defined as

xt(ν, s, q/h) =
Γ(t + ν)

Γ(t + 1)Γ(ν)
x

(
s− h

t∑
j=0

qj

)
qt+ν

. (45)
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Definition VII.2. Let s, q, t, ν ∈ R such that (s− h
t∑

j=0

qj)

qt+ν ∈ M q
h and let the function xt(ν, s, q/h) be given in

equation (45). Then the q/h-Geometric factorial function is
defined as

∞∑
r=t+1

xr(ν, s, q/h) =
[xt+1(ν, s, q/h)]2

xt+1(ν, s, q/h)− xt+2(ν, s, q/h)
.

(46)

Theorem VII.3. Let x, y : M q
h → R, q, h ∈ R− {0, 1},

t, ν, n ∈ R and n−ν ∈ N. Then, the νth order anti-difference
principle of the (q, h) difference equation is given by

−ν
∆

(q,h)
x(t)−

n−1∑
r=n−ν

Γ(n+ 1)

Γ(2n− r − ν + 1)Γ(r − n+ ν − 1)

×
−(n−r)

∆
(q,h)

x


t− h

n−1∑
j=0

qj

qn



=
1

Γ(ν)

n−ν∑
r=0

xΓ(ν + r)

Γ(r + 1)

 t− h
ν+r−1∑
s=0

qs

qν+r

 . (47)

Proof: By generalizing the integer order to real order
(m > 0 ∈ R = ν) in equation (38), we obtain

−ν
∆

(q,h)
x(t)−

n−1∑
r=n−ν

n(r−n+ν)

(r − n+ ν)!

−(n−r)
∆

(q,h)
x


t− h

n−1∑
j=0

qj

qn



=

n−ν∑
r=0

(ν + r − 1)(ν−1)

(ν − 1)!
x

 t− h
ν+r−1∑
s=0

qs

qν+r

 . (48)

Now from (2), we obtain

n(r−n+ν) =
Γ(n+ 1)

Γ(2n− r − ν + 1)
and (49)

(ν + r − 1)(ν−1) =
Γ(ν + r)

Γ(r + 1)
. (50)

Hence the proof is completed by applying (49) & (50) in
(48).

Theorem VII.4. Let x, y : M q
h → R, h ∈ R − {0}, t ∈ N,

q ∈ R− {0, 1} and s, ν ∈ R. Then the νth order (fractional
or real order) anti-difference principle of the (q, h) difference
equation in terms of ft(ν, s, q/h) is given by

−ν
∆

(q,h)
x(s)− [xt+1(ν, s, q/h)]2

xt+1(ν, s, q/h)− xt+2(ν, s, q/h)
= ft(ν, s, q/h).

(51)
Proof: From equation (2), we have

(t+ ν)(ν−1) =
Γ(t+ ν + 1)

Γ(t+ 2)
(52)

and
(t+ ν + 1)(ν−1) =

Γ(t+ ν + 2)

Γ(t+ 3)
(53)

To generalize the integer order of equation in Theorem VI.5
to real ν > 0, we proceed as follows
1. Gamma Function Properties
The Gamma function has the property Γ(z+1) = zΓ(z) This
can be useful when deriving relations for integer arguments.
2. Transformation of Equations
By utilizing properties of the Gamma function and the shifts
in ν, we can equate both expressions derived from (52)
and (53). This leads us to focus on the limit forms of
fractional orders as they converge into integer sequences.
3. Fractional Order Derivation Each term of the νth order
can be expanded and simplified leading us directly into
the implications of the difference equation. Given the forms
derived from the transformation, focusing on powers and
ratios within the terms leads to the result:
−ν
∆

(q,h)
x(s) = ft(ν, s, q/h)+

[xt+1(ν, s, q/h)]2

xt+1(ν, s, q/h)− xt+2(ν, s, q/h)
(54)

In conclusion, after transforming the appropriate Gamma
function identities and applying fractional calculus
techniques, we arrive at the νth anti-difference principle,
completing the proof.

Result VII.5. For finding the fractional difference equation
using mixed difference operator for an infinite series, we

should analyze the behavior of the series
s∑
j=0

qj .

1) If q ∈ R and s is odd, then

(
1+q2 +q4 + · · ·+qs

)
(1+q) =

s/2∑
j=0

q2j(1+q). (55)

2) If q ∈ R and s is even, then

(
1+q2+· · ·+qs

)
(1+q) =

(s−2)/2∑
j=0

q2j(1+q)+qs. (56)

Theorem VII.6. Let x, y : M q
h → R, ν, t ∈ R, q > 1,

h > 0, (ν + r − 1)/2 ∈ N, and (ν + r − 3)/2 ∈ N. Then
the ν-th order of the (q, h) difference operator for an infinite
series is given by

−ν
∆

(q,h)
x(t) =

∞∑
r=0

hν(t+ ν − 1) x

(
t− hSr
qν+r

)
, (57)

where Sr =
(ν+r−1)/2∑

s=0
(1 + q)q2r.

Also, it can be expressed as

−ν
∆

(q,h)
x(t) =

∞∑
r=0

hν(t+ ν − 1) x

(
t− hSr + qν+r−1

qν+r

)
,

(58)

where Sr =
(ν+r−3)/2∑

s=0
q2r(1 + q).

Proof: To show that the relations hold, we begin by recalling
the properties of the mixed difference operator and its
inverse.

1. Understanding the components: Each term in the
summation represents the application of the mixed operator
on a shifted argument of x. By using the definition of Sr,
we can interpret its role as adjusting the exponent based on
the order of the difference operator and its fractional nature
determined by ν.
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2. Convergence: The sums Sr converge due to the
conditions placed on q and the fact that (ν + r − 1)/2 and
(ν + r− 3)/2 are integers. Thus, for each r, the component
x
(

t−hSr
qν+r

)
is well-defined and contributes to the summation.

3. Substituting with manipulations
By substituting the definitions of Sr into the equations and

manipulating the sums appropriately, we can derive that

−ν
∆

(q,h)
x(t) =

∞∑
r=0

hν(t+ν−1)x

t− h
(ν+r−1)/2∑

s=0

(1 + q)q2r

 .

(59)
4. Equality establishment: By generalizing the operator as

stated in Theorem V.5, we demonstrate that both expressions
in equations (1) and (2) yield the same infinite series
representation of the ν-th order anti-difference principle,
thus completing the proof. Thus, the formulation is proven,
culminating in the established results of the theorem.

The following example examines the behavior of the ν-th
order anti-difference principle, as expressed in Theorem
VII.4.

Example VII.7. By fixing the values s = 8.3 and t = 50,
Figure 1 shows that for any ν > 0 ∈ R, the values of
the (q, h) difference equation decrease over time, indicating
convergence.

Figure 1 presents the general solution for Theorem VII.4
for any real q and h values. As a result, we can predict the
stability behavior of (q, h) difference operators.

Hence in this section, we utilized factorial-coefficient
and gamma geometric factorial methods to develop integer
and fractional order theorems for the mixed difference
operator. Finally, we analyzed the value stability of the mixed
difference operator.

VIII. APPLICATION OF THE MIXED DIFFERENCE
OPERATOR TO THE SIR EPIDEMIC MODEL

A. Classical SIR Model
The classical SIR epidemic model is given by the system

of differential equations

dS

dt
= −βSI, dI

dt
= βSI − γI, dR

dt
= γI

We now replace the derivatives with the mixed difference
operator ∆(q,h), leading to the following discrete-time
equations

− ∆
(q,h)

S(t) = −βS(t)I(t)

− ∆
(q,h)

I(t) = βS(t)I(t)− γI(t)

− ∆
(q,h)

R(t) = γI(t)

B. Higher-Order Terms in the Mixed Difference Operator
By using Theorem V.1, we generalize the difference

operator as

−m ∆
(q,h)

x(t) =
n−1∑

r=m−1

r(m−1)

(m− 1)!
x

(
t− h

r∑
s=0

qs

)
This leads to a more complex model where higher-order
interactions between the compartments are captured.

Fig. 1. Solution for Theorem VII.4 with ν values 0.3, 1.4, 2.8, and 3.8,
where q and h vary as −4,−2, 0, 2, 4.

C. Time-Dependent Parameters and Interventions
We introduce time-dependent parameters for the infection

and recovery rates

β(t) = β0

(
1− t

T

)
γ(t) = γ0 + δ sin

(
2πt

T

)
The equations become − ∆

(q,h)
S(t) = −β(t)S(t)I(t)

− ∆
(q,h)

I(t) = β(t)S(t)I(t)− γ(t)I(t)

and − ∆
(q,h)

R(t) = γ(t)I(t)

D. Numerical Example
Consider an epidemic with S(0) = 1000, I(0) = 10, and

R(0) = 0, β = 0.3, γ = 0.1 and h = 0.1. The population
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Fig. 2. Additional solution plots for different (q, h) values.

dynamics can be simulated iteratively as

S(t+ 1) = S(t)− hβS(t)I(t)

I(t+ 1) = I(t) + h(βS(t)I(t)− γI(t))

R(t+ 1) = R(t) + hγI(t).

The results can be visualized through numerical plots for
S(t), I(t) and R(t).

E. Incorporating Higher-Order Anti-Difference Principles

We apply the first-order anti-difference principle from
Theorem IV.1 to extend the SIR epidemic model

−1
∆

(q,h)
S(t) =

n−1∑
r=0

S

(
t− h

∑r
s=0 q

s

qr+1

)

This principle introduces more complexity by capturing
delayed interactions, where the state of the disease at time t
depends on past values of S(t), I(t) and R(t).

F. Modeling Delayed Effects in Disease Spread

The parameter q controls the amount of memory in
the epidemic, and adjusting this value allows us to model
different scenarios with short or long-term memory effects
in the disease dynamics.

G. Higher-Order Anti-Difference Principle

We apply the higher-order anti-difference principle from
Theorem V.1 to model interactions over multiple time steps

−m
∆

(q,h)
S(t) =

∞∑
r=0

(m+ r − 1)(m−1)

(m− 1)!
S

(
t− h

∑m+r−1
s=0 qs

qm+r

)
. This accounts for higher-order effects in the spread of the
epidemic.

H. Time-Dependent Parameters and Interventions

We introduce time-dependent parameters β(t) and γ(t)
where β(t) = β0

(
1− t

T

)
and γ(t) = γ0 + δ sin

(
2πt
T

)
.

These parameters allow us to simulate the effects of changing
intervention strategies.

I. Numerical Simulation

Given initial conditions S(0) = 1000, I(0) = 10, R(0) =
0 and the parameters β = 0.3, γ = 0.1, and h = 0.1. Then
we simulate the epidemic dynamics iteratively as

S(t+ 1) = S(t)− h · β(t)S(t)I(t)

I(t+ 1) = I(t) + h · (β(t)S(t)I(t)− γ(t)I(t))

R(t+ 1) = R(t) + h · γ(t)I(t).

.

IX. RESULTS AND DISCUSSION

A. Key Findings

Our research has led to several critical discoveries
regarding the application of mixed difference operators in
the framework of anti-difference principles, particularly
• Higher-Order Anti-Difference Principles: We

successfully derived new formulations for higher-order
and fractional anti-difference principles using mixed
difference operators. These principles extend existing
theories in discrete mathematics. Notably, we explored
their applications in various systems such as epidemic
modeling and population dynamics.

• Mixed Gamma Geometric Factorials: The integration
of mixed gamma geometric factorials allowed us to
formulate key theorems relevant to the analysis of mixed
fractional difference equations, opening up avenues
for advanced discrete models with more memory and
delayed responses.

• Application to Epidemic Models: We demonstrated
the application of these advanced principles to
refine the SIR epidemic model, capturing more
complex interactions, memory effects, and varying
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time-dependent parameters for infection and recovery
rates. This approach allows for a more granular
understanding of disease dynamics under varying
intervention strategies.

B. Presentation of Results

The results obtained from our study are presented through
various formats that enhance comprehension

• Equations and Theorems: Significant findings are
documented in mathematical theorems and equations.
For example, Theorem V.5 provides a detailed
formulation related to mixed difference operators:

m

∆
q
f(x) =

m∑
k=0

(
m

k

)
(−1)kf(x+ kq),

where ∆
q

denotes the q-difference operator. This

equation allows us to capture higher-order behavior in
dynamic systems.

• Figures and Graphs: The behavior of the ν-th
order anti-difference principle and its applications
are illustrated through figures and examples (e.g.,
Figures I and II), which represent distinct behavior
across defined intervals. These visualizations provide
a concrete understanding of how the mixed difference
operator influences system evolution over time.

C. Discussion

1) Implications of the Results: The implications from
our findings highlight essential contributions to our research
question

• Theoretical Advancements: The extension of the
anti-difference principle invites new methodologies
for evaluating discrete dynamic systems, affirming
our original hypothesis surrounding the potential
applications of mixed operators. By applying
higher-order principles, we have shown that discrete
models can better capture real-world phenomena that
involve delays and memory.

• Broader Applications: The results significantly bolster
the theoretical foundation established within previous
studies, indicating practical relevance in various
mathematical modeling scenarios, including population
dynamics, epidemic modeling, and financial systems.
Our framework could be used to enhance predictive
models in epidemiology, considering the complexities
of real-world interventions and immunity effects.

2) Alignment with Existing Literature:

• Our findings show a strong alignment with previous
research efforts focused on mixed difference equations.
Specifically, our advancements support extensive
literature discussing polynomial relationships in discrete
calculus, validating many of the theoretical assertions
made in earlier studies. However, our work extends
these relationships to handle non-linear dynamics, such
as epidemic models where feedback loops and memory
effects play a significant role.

3) Theoretical and Practical Implications:
• Real-World Applications The frameworks developed

may be adapted for use in numerical simulations,
predictive modeling, and other quantitative analyses,
emphasizing their applicability in fields that depend on
discrete processes. The SIR model application serves
as a key example where these principles provide
more accurate predictions than traditional models by
incorporating memory and delayed responses.

4) Results on q-difference equations and mixed operators:

• Consistency Many correlations identified are consistent
with findings from prior studies, reinforcing established
knowledge. However, our derived relationships extend
beyond traditional applications by introducing the
concept of fractional anti-differences and memory
effects.

• Differences Certain divergences, especially observed in
extreme behaviors of anti-differences for large inputs,
merit further exploration. These discrepancies may arise
from novel methodologies employed in our research,
such as the introduction of time-varying parameters in
the SIR epidemic model.

5) Limitations of the Study:
• Scope and Sample Constraints: The theoretical

constructs may not have been exhaustively tested across
all variable states. Future investigations should strive
for a broader sample size to enhance generalizability,
particularly in real-world epidemic simulations.

• Measurement Variability: Potential inaccuracies in
measuring certain polynomial outputs could affect
result consistency. Addressing these through refined
methods would be beneficial in future research avenues.
Additionally, the sensitivity of mixed difference models
to initial conditions warrants further exploration.

6) Suggested Future Research: Building upon our
findings, future research directions could include:
• Exploring New Applications Further investigations

could apply mixed difference operators in non-linear
or multi-variable contexts, enhancing the empirical
foundation of discrete calculus approaches. Potential
applications in climate modeling, disease forecasting,
and complex systems could provide valuable insights.

• Methodological Innovations: Enhancements in
analytical methodologies are encouraged, potentially
allowing for the incorporation of advanced statistical
measures that could yield more robust validations of
the anti-difference principles established in this study.
A deeper exploration of numerical stability and error
propagation in higher-order difference models could
also be pursued.
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