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Abstract—To improve through operation (TO) plans between 
urban rail transit (URT) and suburban railway (SR) systems, 
this study overcomes the limitations of traditional transfer 
modes in handling peak-hour cross-line (CL) passenger demand. 
We develop a passenger choice behavior model integrating 
cumulative prospect theory (CPT) and quantum decision theory 
(QDT). This model quantifies passenger decision-making under 
multi-attribute trade-offs (time, cost, comfort). A TO 
optimization model is established with dual objectives: 
minimizing passenger travel time and reducing operator costs. 
We propose a chaos-enhanced non-dominated sorting genetic 
algorithm (CNSGA) with opposition-based learning for solution 
derivation. Case study results show that TO schemes reduce 
total passenger travel time by 60.7% and operational costs by 
30.1% compared to transfer-based connections. Sensitivity 
analysis reveals two key findings: (1) Passengers with higher 
time-value sensitivity prefer TO trains more strongly; (2) A 
higher proportion of such passengers improves the time-saving 
benefits of TO optimization. Although skip-stop strategies 
improve travel time for TO flows, they may negatively impact 
other passenger groups. This study provides a theoretical 
foundation for coordinated planning in hierarchical rail 
networks. 
 
 
Index Terms—Urban Rail Transit, Suburban Railway, 
Operation Plan, Cumulative Prospect Theory, Quantum 
Decision Theory 

I. INTRODUCTION 

ITH accelerating global urbanization, suburban areas 
of metropolitan regions are becoming strategic 

hinterlands for population decentralization and industrial 
relocation [1], [2]. This trend creates substantial commuter 
demand between urban cores and suburbs, placing significant 
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pressure on transportation systems. Tokyo Metropolitan Area 
data show daily cross-regional commuter volumes reach 2.86 
million person-trips [3]. Conventional solutions involve 
building high-density urban rail transit (URT) networks in 
city centers and suburban railway (SR) systems in peripheral 
regions. Transfer hubs connect these systems. 
However, this line-separation mode has significant 
limitations. As metropolitan regions expand and commuting 
distances increase, traditional transfer systems struggle to 
meet peak-hour CL passenger flow demands. Consequently, 
scholars proposed the TO mode. TO achieves functional 
complementarity and resource sharing across multi-level rail 
transit systems. It transcends traditional boundaries, enabling 
seamless cross-system train operations via URT-SR line 
interconnections. Existing research addresses three main 
aspects: 

Firstly, in the aspect of TO feasibility analysis, early 
studies focused mainly on optimizing single-level rail transit 
operations, often neglecting network coordination. With 
urban agglomeration and longer commutes, scholars 
proposed multi-level integrated operation modes 
emphasizing functional synergy. Examples include: Vigrass 
et al. [4] investigating power supply for URT-SR 
interoperability; Drechsler [5] analyzing shared-track 
operations in Karlsruhe; Sato [6] examining Tokyo's TO 
impact on Paris RER; and Novales et al. [7] identifying 
technical challenges for trams on conventional railways. 

Secondly, in terms of TO train plan optimization, Tang et 
al. [8], [9] developed mixed-integer linear programming 
models for express-local train scheduling under different 
capacity conditions. Paebo et al. [10] proposed a bi-level 
model for optimal skip-stop patterns considering passenger 
behavior. Altazin et al. [11] used skip-stop to minimize 
service recovery time. Shang et al. [12], [13] investigated 
passenger equity in oversaturated networks. Later studies 
advanced nonlinear programming for coordinated 
optimization: Yang et al. [14], [15] used MINLP to quantify 
express train benefits; Tang et al. [16] optimized scheduling 
via station classification and flow allocation; Li et al. [17] 
developed MINLP for stop patterns and dwell times; Chen et 
al. [18] proposed nonlinear models minimizing deviations 
under dynamic flows; Shao et al. [19] integrated timetabling 
and stop planning with equity. 

Regarding algorithmic approaches, traditional methods 
like GA, SA, and PSO have limitations: slow convergence 
and susceptibility to local optima. Recent advances 
incorporated chaotic and quantum mechanisms. Zhu et al. 
[20], [21] developed a chaos-based non-dominated sorting 
GA (CNSGA). Jiao et al. [22], [23], [24] created adaptive 
chaotic PSO with opposition-based learning. 
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Thirdly, analysis of passenger travel behavior. Discrete 
choice models (e.g., MNL) and expected utility theory 
dominate research. However, their assumption of complete 
rationality contradicts actual passenger decision-making 
influenced by socioeconomic factors and bounded rationality. 
Cumulative prospect theory (CPT) addresses this limitation 
[25], [26], applied in route choice [27], [28], [29], travel time 
uncertainty [30], [31], and multi-attribute tradeoffs [32]. To 
handle multi-attribute decisions (time, cost, comfort), 
quantum decision theory (QDT) complements CPT. QDT 
conceptualizes decisions as probabilistic belief states, shown 
by Martínez-Martínez [33] (Hamiltonian interactions), 
Yukalov and Sornette [34] (quantum frameworks), and 
Pothos and Busemeyer [35] (quantum cognition). 

Despite progress, current research on multi-level rail 
networks mainly focuses on transfer-based systems, with 
limited TO exploration. Existing TO studies often 
oversimplify passenger rationality and neglect multi-attribute 
behavior. This study addresses these gaps with three key 
contributions: 

(i) We develop a CPT-QDT integrated passenger travel 
choice model. CPT captures train selection under bounded 
rationality, while QDT quantifies travel mode choice 
probabilities. 

(ii) We establish a multi-objective TO train operation 
model considering passenger time value. It minimizes travel 
and operating costs under constraints (passenger flow, 
occupancy, frequency, station capacity). 

(iii) We design a CNSGA incorporating opposition-based 
learning. Logistic chaotic mapping improves traditional 
algorithms to find optimal strategy sets. 

The paper is organized as follows: Section II analyzes 
passenger travel choice under bounded rationality; Section III 
develops the TO operation model; Section IV details the 
CNSGA; Section V presents case studies; Section VI 
conducts sensitivity analysis; Section VII concludes. 

II. PASSENGER TRAVEL CHOICE MODEL BASED ON CPT-QDT 

Assume the travel mode set { , }H h g b , where g  and 
b  represent passengers choosing through trains and local 
trains, respectively.  Considering passengers' travel choices 
are influenced by factors such as time and cost, the value of 
time ( )vot h   is introduced to convert time into monetary cost.  
The generalized travel time cost h

iju  for choosing travel mode 
h  from station i  to station j  is 
 

,w z( ) ( )h h h
ij ij iju T T vot h z     (1) 

Where, ,w
h

ijT  denotes the waiting time for travel mode h  

between stations i  and j ; zT  denotes the transfer time; h
ijZ  

indicates the cost (yuan) of travel mode h  from station i  to 
j ; ( )vot h  denotes the value of time coefficient (yuan/min) 

for mode h . 
Considering passengers' travel decisions are influenced by 

factors such as time and comfort level, value functions for 
time and crowding degree are constructed, denoted as ( )h

ijv u  

and ( )h
ijv c , respectively. 
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Where,   denotes the gain sensitivity coefficient, 0 1  ; 
  denotes the loss sensitivity coefficient, 0 1  ;   

denotes the loss aversion coefficient; 0
iju  and 0

ijc  denote the 

reference points for travel time and crowding degree, with 
values corresponding to the generalized travel time cost 
before the implementation of through trains and the average 

crowding level across travel modes, respectively; h
ijc  denotes 

the crowding degree of travel mode h  from station i  to j  

station. 
The decision function ( )h

ijl  is expressed as 
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Where,   denotes the discriminability parameter;   

denotes the attractiveness parameters. 
Assuming passenger travel decisions primarily depend on 

two factors—travel time T and comfort level Y, the 

cumulative prospect value Th
odU  for travel time and the 

cumulative prospect value Yh
ijU  for crowding intensity under 

travel mode h are calculated as 
 ( ) ( )Th h h

ij ij ijU v u l   (5) 

 ( ) ( )Yh h h
ij ij ijU l v c   (6) 

Each subspace in Hilbert space is represented by a set of 
measurement events | Z , and the | Z  projection on the 

coordinate axis h  represents the potential motivation | |h  

of each option. The square of its length is the probability 
value corresponding to that option. The schematic diagram of 
Hilbert two-dimensional space is shown in Fig. 1. 

1

1

b

gg

b Z

 
Fig.1. Schematic diagram in Hilbert two-dimensional space. 
 

According to Fig. 1, in the initial state, the decision-maker 
may choose either the through train g or the local train b; 
these two options are represented by vectors | g  and | b , 

respectively. g  and b  denote the projections of | Z  on 

the | g  and | b  coordinate axes. The longer the projections 

| |g  and | |b , the higher the probability of the option being 
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selected. However, when multiple attributes (time T, comfort 
Y) jointly act on | Z , the state of | Z  will change. A 

schematic diagram of belief state variation is illustrated in 
Fig. 2. 

Through train

Local train
Initial belief state

Time attributeCongestion attribute

3Z

1Z

2Z
1b
2b

3b

1g 2g3g
2

1
3

 
Fig.2. Schematic diagram of changes in belief state. 

 
According to Fig. 2, the initial belief state 1| Z   evolves 

under the influence of T and Y. This evolution is quantified by 
the vector angle α, resulting in a superposition of states 2| Z 

and 3| Z  . For the choice alternatives {| | }hAlt g b  、  

under travel option h, the selection probability Ph
ij  is given by 

the squared modulus of the alternative across decision 
attributes. Specifically: 

 2 2 2P | P | | | | | | |
h

h h
ij x h ijZ Z x        (7) 

Where, P |
hx Z  denotes the probability of selecting travel 

mode h under belief state | Z ; h
ij  denotes the amplitude of 

passengers traveling from station i to j choosing mode h; hx  

denotes the vector state of travel mode h; P |
hx Z  denotes the 

passenger's choice belief state. 
For each passenger, among the given choice attributes, the 

projection h
ij  of option h is estimated as the cumulative sum 

of subjective differences relative to other options. That is 

 ( ) /g bg
ij g iji j

N  


   (8) 

Where, bg
od  denotes the subjective difference between 

option g and option b for passengers traveling from i to j; g  

denotes the error term of option g; N  denotes the 
normalization factor, calculated as the sum of squared 
moduli. 

Assuming the attribute set { | , }C c T Y  influencing 

choice behavior, the subjective difference gb
ij  between 

different options is computed using a linear difference 
function 

 
1
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ij c ij ijc
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
    (9) 

Where, c  denotes the relative importance coefficient of 

attribute c; ck
odU  denotes the prospect value of attribute c for 

through-train passengers; cb
odU  denotes the prospect value of 

attribute c for local-train passengers. 

The probability h
ijP  of choosing different modes of 

transportation h is 

 2 2

2
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III. MATHEMATICAL MODEL 

A. Problem Assumptions 

The following assumptions are made: 
(1) All passengers arrive approximately in a random 

Poisson distribution per unit time, and passengers transfer at 
most once, without considering passenger congestion. 

(2) Passenger travel directions, origin-destination 
characteristics, and OD passenger flows between stations 
remain constant within the study scope. 

(3) All trains operate with all-stop patterns, single routing 
configurations, fixed formation sizes, and identical turn-back 
times. 

B. Problem Description 

Let URT line SL  have station set s = {1, 2, ..., a, ..., m}, 

and SR line RL ' station set r = {m+1, m+2, ..., b, ..., n}. The 

two rail lines connect at station m. Local trains of types S and 
R operate on lines SL  and RL  respectively. During peak 

hours, a large number of CL passenger flows from line SL  to 

line RL  require transfers at connecting station m. To mitigate 

transfer inconveniences for passengers and operators, 
through trains operate between station a and station b. All 
three train types maintain all-stop patterns, with the analysis 
period set as one peak hour. URT and SR train operation 
under the TO mode is shown in Fig. 3. 

Based on the operation routes of three types of trains, lines 

SL  and RL  are divided into four sections: 1 [1, )D a , 

2 [ , )D a m , 3 [ , )D m b , and 4 [ , ]D b n . Specifically, 

sections 1D  and 4D  are exclusively operated by local trains, 

while sections 2D  and 3D  accommodate both local trains 

and TO trains. 

1 a m b n

1D 2D 3D 4DSection Section Section Section

Connection station lineTrain stop station SL RLline  

Fig.3. URT and SR train operation under the TO mode. 
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C. Objective Function Analysis 

(1) Passenger travel time function 

The total passenger travel time T comprises waiting time, 
transfer time, and in-vehicle time. The waiting time can be 
approximated as half of the departure interval, and the 

waiting time w
ijT  for passengers traveling from station i to j is 

given by 

 w 30 , 1,2,3ij kT f k   (11) 

Where, 1 2 3f f f、 、  denote the departure frequencies (/hour) 

of train S, through-operation trains, and train R, respectively. 
A transfer penalty coefficient   is introduced to quantify 

the time and physical effort associated with transfers. The 

transfer time h
qT  at transfer station q can be expressed as 

 h (( ) ), ( )q q q qT D V w q s r       (12) 

Where, qD , qw , qV  respectively denote the waiting time, 

average walking distance, and average walking speed of 
passengers at transfer station q. 

The in-vehicle time includes both train running time and 

dwell time. The in-vehicle time z
ijT  for passengers traveling 

from station i to j is given by 

 
1 run stop

1 2

j jz
ij i i ii i

T t x t


 
     (13) 

Where, run
it  denotes the pure running time in section [ , 1]i i  ; 

ix  denotes whether through-operation trains stop at station i 

(1 for stopping, 0 otherwise); stop
it  denotes the train dwelling 

time at station i. 
The overall travel time cost T for passengers is 

 

1 w,H h,H z,H w,C

1 1
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Where, w,H
ijT , w,C

ijT  denote the waiting times for passengers 

traveling from station i to j via local route H and C 

respectively; h,H
ijT , h,C

ijT  denote the transfer times for H-route 

and C-route passengers; z,H
ijT , z,C

ijT  denote the in-vehicle 

times for H-route and C-route passengers;   denotes the cost 

conversion weight reflecting passengers’ sensitivity 
differences between travel time and fare, set based on income 
and trip purpose;   denotes the daily working hours;   

denotes the statutory working days; ijz  denotes the ticket 

fare for passengers traveling from station i to j;   denotes 
the annual per capita income. 

The passenger flow types on lines SL and RL  include 

passengers traveling only on the local line (denoted as H) and 
CL passengers (denoted as C). The local line passenger flow 
is further divided into four categories: HMM, HMK, HKM, 
HKK; the CL passenger flow is also divided into four 
categories: CMM, CMK, CKM, CKK. The classification of 
passenger flow types is shown in Fig. 4. 

Among them, the local line passenger flow (H) is divided 
into the following two cases: case1a and case1b, while the CL 
passenger flow (C) includes: case2a and case2b, specifically: 

Case 1a: HMM and HKK represent passenger flows 
within the local line section with origin-destination stations 
both being M or K, choosing only local trains or 

through-operation trains. The travel times HMM
ijT , HKK

ijT  for 

HMM and HKK are 
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Case 1b: HMK and HKM represent passenger flows 
within the local line section with origin/destination stations 

being M or K. The travel times HMK
ijT , HKM

ijT  for HMK and 

HKM are 
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 (16) 

Case 2a: CMM and CKK represent CL passenger flows 
with origin-destination stations both being M or K. These 
passengers only take local trains or TO trains with one  

transfer. The travel times CMM
ijT , CKK

ijT  for CMM and CKK 

are 

K KM M M

HKK HKM

HMM

HMK
K M M M

CKK CKM

CMM

CMK

Local-line travel H Cross-line travel C

K

StationM StationK Connection station  
Fig.4. Passenger travel type classification. 
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Case 2b: CMK and CKM represent CL passenger flows 
with origin/destination stations being M or K. The travel 

times CMK
ijT , CKM

ijT  for CMK and CKM are 
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Therefore, the travel times H
ijT , C

ijT  for local line 

passenger flow (H) and CL passenger flow (C) are 
respectively 

 H HMM HMK HKM HKK
ij ij ij ij ijT T T T T     (19) 

 C CMM CMK CKM CKK
ij ij ij ij ijT T T T T     (20) 

Through comprehensive analysis, the objective function 
Z2 aims at minimizing passengers' total travel time T. 

 
1

H C

1 1

2 min ( / )
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Z T T a q z x

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(2) Enterprise operating cost function 
Transport operator costs include fixed costs and variable 

costs. Fixed costs only consider vehicle procurement and 
depreciation costs, while variable costs include operation 
costs related to train frequency. The fixed costs scZ , rcZ  for 

lines SL , RL  are respectively 

 sc 1 1 1 2 2 2( ) sZ f B T f B T C   (22) 

 rc 3 3 3 rZ f B T C  (23) 

Where, 1B , 2B , 3B  denote the fixed formation numbers of 

three types of trains (/unit) respectively; 1T , 2T , 3T  denote 

the turnaround times of three types of trains respectively; sC , 

rC  denote the fixed vehicle costs per unit time (/yuan) on 

lines SL , RL  respectively. 

Among them, train turnaround time includes running time 
between sections, dwell time at stations, and turn-back time. 
The turnaround times 1T , 2T , 3T  for the three types of trains 

are respectively 
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Where, irunt  denotes running time in section [i, i+1] (s); istopt  

indicates dwell time at station i (s); turnt  denotes turn-back 

time at terminal stations (min). 
Variable costs relate to train-kilometer operation and 

service frequency. The unit vehicle-kilometer operating cost 
for local trains follows local line standards, 
through-operation trains follow local standards within the 
local line section and CL standards beyond, thus the variable 
costs seZ , reZ  for lines SL , RL  are respectively 

 
1 1 1

se 1 1 2 2 2 2
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m m b
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Z f B e L f B e L f B e L
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1
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n

r i
i m

Z f B e L




   (28) 

Where, se , re  denote system operating costs per 

vehicle-kilometer (yuan/vehicle-kilometer) on lines SL , RL  

respectively; iL  denotes station spacing in section [i, i+1] 

(km). 
The total transport enterprise cost Z is expressed as 

 se re sc rcZ Z Z Z Z      (29) 

Through comprehensive analysis, the objective functions 
are set as minimizing enterprise total operating cost Z1 and 
passenger travel time Z2. That is 
 re rc se sc1 min ( )Z Z Z Z Z Z      (30) 
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        (31) 

D. Constraints 

(1) Passenger demand constraints. The transportation 
capacity provided by trains operating in any section must 
meet all passenger flow demands in that section. 

  1 1 111

k n
i ij s sj kk a

q E f   
   (32) 
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Where, s , r  respectively denote the full load rates of S 

trains and R trains;  ( =1,2)siE i  denote the passenger 

capacities of S trains and through-operation trains 

respectively; 3rE  denotes the passenger capacity of R trains 

(persons). 
(2) Departure frequency constraints. To ensure operational 

service levels, train frequencies on lines must meet specific 

requirements. For lines SL , SL , the combination of train 

frequencies must satisfy minimum tracking interval 
constraints while considering passengers' waiting time 
should not be excessively long, thus the sum of frequencies 
for both train types cannot be lower than the line's minimum 
departure frequency. That is 
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 cap
Smin 1 2 Sf f f N    (36) 

 Cap
Rmin 2 3 Rf f f N    (37) 

Where, cap
SN , cap

RN  denote the carrying capacities of lines 

SL , RL  respectively; Sminf , Rminf  denote the minimum 

departure frequencies for lines SL , RL  respectively. 

(3) Vehicle utilization constraints. To prevent excessive 
operational costs, the number of deployed vehicles must meet 
specific conditions. That is 

 1 21
1 1 2 2 maxmax{ , }

60 60
zh e

e e

L t V L
f B f B B

V V

   
   

   
. (38) 

 3 22
3 3 2 2 maxmax{ , }
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V V

    
   

   
 (39) 

Where, 1 2 3, ,L L L  denote the routing range lengths (/km) of 

local train S, through-operation train, and local train R 

respectively; 21 22,L L  denote the routing range lengths (/km) 

of [ , ]a m  and [ , ]m b  respectively; maxB  denotes the 

maximum vehicle deployment number (units); eV  denotes 

train operating speed (km/h);     denotes the ceiling 

function. 
(4) Turn-back station capacity constraints. To avoid 

frequent turn-back operations of through-operation trains at 
terminals, their departure frequencies must be limited. That is 

 2 2 min max

60
, ,  [ , ]i

zh

f f Z f f f
t

 
    
 

 (40) 

Where, zht  denotes train turn-back time. 

(5) Through-routing range constraints. To ensure 
through-operation trains turn back at appropriate stations, 
turn-back station locations must be constrained. That is 

 1     { , , , N }a m b n a m b n       (41) 

(6) Variable integer constraint 
 1 2 3 min max, , , , , , ,    [ , ]if f f a b c m n Z f f f    (42) 

IV.  SOLUTION ALGORITHM 

TO train scheduling model constitutes a large-scale integer 

programming problem where computational complexity 

increases exponentially with station quantity iX  on the line. 

Based on the constructed TO scheduling model, we designed 

a chaotic non-dominated sorting genetic algorithm (CNSGA) 

incorporating oppositional learning for optimization. 

Compared with conventional genetic algorithms, CNSGA 

employs chaotic mapping instead of random number 

generators (applied in population initialization, crossover 

operators, and mutation operators), effectively avoiding local 

optima pitfalls. 

Start

Gen＞maxGen 

Selection, crossover, variation

NO

Yes

Set the evolutionary algebra Gen=0 and 
initialize the population P(Gen)

Calculate the fitness values of individuals in P(Gen), and perform fast 
non-dominated ranking and congestion degree calculation on P(Gen)

Binary tournament selection, crossover and mutation were conducted 
on P(Gen) to generate the corresponding offspring population Q(Gen)

Combine the populations P(Gen) and Q(Gen) to generate R(Gen), 
and calculate the fitness of individuals in population R(Gen)

Perform fast non-dominated ranking and congestion 
degree calculation on the population R(Gen)

Combined with the elite strategy, suitable individuals are selected from 
population R(Gen) to form the new generation population P(Gen+1).

Gen=Gen+1

End
 

Fig.5. Algorithm flowchart of CNSGA. 

A. Strategy for Generating Initial Solutions from Chaotic 
Maps Based on Oppositional Learning 

Genetic algorithm performance is primarily evaluated 
through global convergence and convergence speed. The 
initial solution strategy using oppositional learning-based 
logistic 21 22,L L  chaotic mapping helps overcome premature 
convergence and enhances population diversity. The logistic 
mapping iteration equation is 
 1 (1 )i i iX r X X      (43) 
Where, iX  represents the mapping value at the i -th 
generation; 1ix   denotes the updated mapping value at the 

1i  -th generation; r is the control parameter with value 4. 
By introducing generalized opposition-based learning 

strategy, the algorithm simultaneously searches current 
positions and oppositional positions during population 
initialization. Let iOP  represent the oppositional particle of 
particle iX : 
 min max( )D D

i iOP K X X X     (44) 
Where, K denotes a random number, (0,1)K  ; min max,D DX X  
indicate lower and upper bounds in the D-dimensional search 
space. 

To ensure positivity of oppositional particle relative values, 
constraints are applied: 
 0(0.5 / 2),OPi i iOP OP oper rand     (45) 
Where, rand  represents a random number, (0,1)rand  ; 
Simulation analysis from [21] demonstrates optimal 
algorithm convergence when ( )operation   takes value 
[0.5,1]. 

1 2 3 4 5 6 7 8 9 10 … 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SL RL

 

Fig.6. Circuit diagram. 
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B. Cross and mutation based on logistic chaotic mapping 

If random number rc is smaller than crossover probability 
pc, the algorithm executes simulated binary crossover (SBX) 
operations following 

 1 1 2

1
[(1 ) (1 ) ]

2
i i i
c p px x x      (46) 

 2 1 2
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Where, u is a random number between 0 and 1, which is an 
indicator of the crossover operator and is generated using 
logistic chaotic mapping j

iu X . 

If the generated random number rm is smaller than 
mutation probability pm, mutation operation is performed. 
For solution sX , the mutation follows 

 * ( )u l
s s s s sX X X X      (49) 

 

1
( 1)

1
( 1)

(2 ) ,            0.5

(1 2(1 )) ,     

m

m

s s
s

s

u if u

u other










  
 

 (50) 

Where, su  is a random number between 0~1, A denotes the 

crossover operator index generated by logistic chaotic 
mapping, that is j

s iu X . 

The CNSGA flowchart is shown in Fig 5. 

V. CASE STUDIES 

The LS line of a certain city's rail transit has 13 stations

{13,..,28}r  . The LR line of the suburban railway has 16 

stations {1,2...,13}s  . The station collections are 

respectively, and the URT line and the suburban railway pass 

through the junction station 13 to achieve seamless operation. 

The parameters of the weight function under profit 

conditions:  =0.72,  =1.19; otherwise  =0.76,  =1.21. 

The composition of different types of trains: 1sB = 2sB = rB

=7. The fixed capacity of trains is 1460 people, the full load 

rate r = s =0.8, the turnaround time of trains at turnaround 

stations turnt =4 min, the minimum turnaround time interval 

zht =2 min, and the passenger transfer travel time hT =0.5 

min. Distances: SL =32 km, RL =28 km. The minimum 

departure frequency minrf A= minsf =5 pair/h, designed 

throughput capacity cap
rN = s

capN =30 pair/h, fixed vehicle 

cost per unit time rC =45 yuan/vehicle-hour, sC =40 

yuan/vehicle-hour, system operating cost per 

vehicle-kilometer re =12 yuan/vehicle-kilometer, se =10 

yuan/vehicle-kilometer. The schematic diagram of the circuit 

is shown in Fig. 6. The study period was selected as the peak 

hour. Passenger flow data is shown in Fig. 7. 
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Fig.7. Analysis of long-term Peak-hour Passenger flow data. 

 
As shown in Fig. 7, the distribution of inbound passenger 

flow throughout the day follows a unimodal pattern with 
significant morning peak characteristics. The morning peak 

period of the line SL  is approximately 06:30-09:00, and the 

morning peak period of the line RL  is approximately 

07:00-09:00. The selected study period is 07:00-08:00. 

A. Model solution results 

We used the Python 3.9.13 programming platform to solve 

the model using the MOPSOCO algorithm. The parameters 

were: population size M =200, external storage quantity N

=100, acceleration constant 2C =0.3, and inertia weight 

coefficient min =0.4. The iteration process of the objective 

function value is shown in Fig. 8. 

As shown in Fig. 8, the designed CNSGA algorithm 

effectively solves the target problem. As passenger total 

travel time increases, enterprise total cost gradually decreases, 

indicating a trade-off relationship between the two objectives 

due to target conflicts. 
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(b) HV iteration curve graph 

Fig.8. The double objective iterative curve is set with pareto frontier. 

B. Comparison of Different Schemes 

The optimal solution for enterprise cost (Solution A), 

intermediate solution (Solution B), and optimal solution for 

passenger time (Solution C) were selected to analyze the 

Pareto frontier. The operation schemes corresponding to 

these solutions are shown in Fig. 9. 

Fig. 9(a) shows that Solution A (enterprise cost optimum) 

minimizes transport costs by reducing train frequencies and 

through-route length. However, this compromises passenger 

comfort, service level, and time savings. This scheme is 

suitable only for transitional stages with limited resources. 

Fig. 9(b) shows that Solution B (intermediate) is a 

balanced solution. Maintaining service levels with 

through-section [7,20], it maximizes passenger flow 

coverage while balancing passenger time and enterprise cost. 

Fig. 9(c) shows that Solution C (passenger time optimum) 

maximizes through-route coverage and increases train 

frequencies to reduce travel time and improve service quality. 

However, this requires more vehicles, increases purchase 

costs, causes urban section congestion, and significantly 

raises operating costs. 

After analyzing these solutions, we constrained train load 

factors to <100% and adopted fuzzy logic to select the ideal 

solution from the Pareto front (Fig. 10). Fig. 10 shows that 

the ideal solution falls within the compromise range, 

selecting the same through-section as Solution B but with 

optimized frequencies. This reduces enterprise costs while 

improving passenger service levels, and is adopted as the 

optimal solution. 

The dual-objective values converged around 200 

generations, with the total passenger travel time cost being 

64,699.9 minutes and the total enterprise operating cost 

reaching 230,907.67 yuan. The stopping scheme for trains 

running through regional [5,20] is [1,0,1,1,0,1,1,1,0,1,0,1,1]. 

When passenger flow and other parameters remain 

unchanged, under the traditional transfer operation mode, the 

peak-hour operation frequency for Line [missing identifier] is 

[missing value] trains, and the operation frequency for Line 

[missing identifier] is [missing value] trains. A comparison of 

the operation plans before and after optimization is shown in 

Table 1. 

Subway station Connection station Urban station

1 2 3 4 9 13 14 15 16 25

1 10f  2 6f  3 8f 

…… …… ……

 
(a) Scheme A- Optimal Solution for the total cost of the enterprise 

Subway station Connection station Urban station

1 2 7 13 14 20 25

1 10f  2 6f  3 10f 

…… …… …… ……

 
(b) Scheme B- Intermediate solution 
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Subway station Connection station Urban station

1 2 5 13 14 22 25

1 20f  2 8f  3 10f 

…… …… …… ……

 
(c) Scheme C - Optimal Solution for Total Passenger time 

Fig 9 Three special solutions 

Subway station Connection station Urban station

1 2 7 13 14 20 25

1 15f  2 6f  3 10f 

…… …… …… ……

 
Fig 10 Ideal Solution 
 

TABLE I 
THE COMPARISON OF THE OPERATING PLAN RESULTS BEFORE AND AFTER OPTIMIZATION 

operation scheme Z1/min Relative savings Z2/yuan Relative savings 
Integrated operation 64699.98 60.7% 230907.67 30.1% 
Transfer connection 164691.76 -- 330498.06 -- 

 
According to Tab.1, compared to the traditional transfer 

and connection mode, the TO train operation plan saves 60.7% 

and 30.14% in Z1 and Z2, respectively. According to the data 

analysis results, the operation of through trains has brought 

savings to both passengers and enterprises, verifying the 

feasibility of the constructed operation plan. According to 

Table 1, compared to the TO station stop mode, the TO cross 

station stop mode saves 19.26% in passenger travel costs, but 

increases 1.89% in enterprise operating costs. Therefore, the 

integrated operation and cross station stop mode have a dual 

impact on passengers and businesses. Compared with the 

transfer connection mode, it can significantly reduce the 

travel time of CL passengers. However, compared with the 

TO station stop mode, due to the complex operational 

organization conditions required, the operating costs of 

enterprises actually increase. 

 

VI. PARAMETER ANALYSIS 

A. Cross station stop mode saves travel time for different 
passenger flows 

To analyze skip-stop mode's impact on travel time across 
passenger flow types, the proportions of HMM, HKM, HMK, 
HKK, CMM, CMK, CKM, and CKK flows relative to total 
passenger volume were calculated. Simultaneously, the 
average travel times of these eight flow types under skip-stop 
and all-stop modes were compared. Travel time savings 
comparisons under different modes are shown in Fig. 10. 

As seen in Fig. 11, the skip-stop mode demonstrates 
significant advantages in improving travel efficiency. Further 
analysis shows that CKK and HKK passenger flows achieve 
substantial time savings of 2.36/min and 5.13/min 

respectively through skip-stop operations. However, for 
CKM, CMK, and SKM passenger flows, time savings are 
relatively small, and travel time may even increase (HMK, 
HMM, CMM). 
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(b) Average time saved by various types of passenger flow 
Fig.11. Comparison of travel time savings in different modes. 

B. The impact of profit sensitivity coefficient  , loss 
sensitivity coefficient  , discrimination parameter , and 

attractiveness parameter  on the cumulative prospect value  
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Considering the impact of relevant key parameters in the 
value function on the cumulative prospect value, the 
influence of these key parameters is shown in Fig. 12. 

 

(a) Effect of Parameters  、 on U 

 

(b) Effect of Parameters  、  on U 

Fig.12. The Influence of Key Parameters in the Value Function on the 
Cumulative Prospect Value U. 

As shown in Fig. 12, the cumulative prospect value U  
increases with the increase of   and  . Meanwhile, it can 

be seen that the gain sensitivity coefficient   has a greater 
impact on the cumulative prospect value than the loss 
sensitivity coefficient  . This indicates that when path travel 

time is less than passengers' expectations, passengers tend to 
exhibit risk-averse psychology. Simultaneously, the 
cumulative prospect value U  increases with the increase of 
  but decreases with the increase of  . This demonstrates 

that the discriminability parameter   has a far greater 
influence on the cumulative prospect value than the 
attractiveness parameter  . 

C. The impact of time value on passenger selection 
probability 

To explore the complex mechanism of mutual influence 

between passengers' time value and choice probability, we 

take the time value vot (k) of passengers choosing through 

trains as an example, analyze the changes under different vot 

(k) values. The impact of time value on passenger choice 

probability is shown in Fig. 13(a) and 13(b). 
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(b) Three dimensional Line Chart of the Influence of vot (g) Pair 

Fig.13. The influence of the value of time on the probability of passengers 
choice. 

As shown in Fig. 13, the probability of passengers 
choosing through trains is positively correlated with the time 
value vot (k). When vot (k) > 0.5, the probability of passenger 
flows between [D2, D3] and between [D2, D4] choosing 
through trains is the highest, indicating their most urgent 
demand for through trains. Therefore, when vot (k) > 0.5 and 
there exists significant CL passenger flow, operating through 
trains has higher necessity; whereas when vot (k) ≤ 0.5, the 
probability of passengers choosing through trains is relatively 
low, and the demand for operating through trains is relatively 
small. In summary, when passengers' time value is high, 
operating through trains can effectively meet travel demands 
and improve transportation efficiency. In actual rail transit 
operations, through-train operation plans should be 
reasonably formulated based on passengers' time value and 
flow characteristics to maximize operational benefits. 

D. The disurbance effect of the ratio of vot (g): vot (b) on 
the operation plan 

The proportion of time value vot(g) for passengers 
choosing through trains to time value vot(b) for passengers 
choosing local trains can be divided into three cases: 
0<vot(g):vot(b)<1, vot(g):vot(b)=1, and vot(g):vot(b)>1.We 
take Pareto solutions under different ratios of vot(g):vot(b) to 
compare the impact on operation plans before and after 
considering passenger travel time value. The Pareto solution 
sets under different vot(g):vot(b) values are shown in Fig. 14. 
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 (a) Pareto solution at vot (g): vot (b)=0 
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(b) Pareto solution at vot (g): vot (b)=1 
 

According to Fig. 14, it can be seen that when the time 

value ratio is 0.5 (Fig. 14a), the curves before and after 

considering the time value basically overlap, indicating that 

the difference in passenger time value has a weak impact on 

the optimization results at this time. As the ratio increases to 

1 (Fig. 14b), the two curves begin to separate, and the 

solution considering time value shows a downward trend in 

both operating costs and passenger travel time. 
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(c) Pareto solution at vot (g): vot (b)=1.5  
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(d) Pareto solution at vot (g): vot (b)=2 

Fig.14. The impact on the operation plan before and after considering the 
value of time. 

When the ratio further increases to 1.5 (Fig. 14c) and 2 
(Fig. 14d), the curve spacing significantly widens, and the red 
curve (considering time value) shifts significantly to the left 
on the passenger travel time cost axis compared to the black 
curve (not considering time value), indicating that the 
increase in time value difference would enhance the 
optimization effect: a higher vot (g): vot (b) ratio prompts the 
TO plan to be more inclined to reduce the travel time cost of 
high time value passengers, while adjusting the operation 
plan to achieve an effective balance of total system cost, 
verifying the leverage effect of time value difference in 
collaborative optimization operation efficiency and 
passenger travel. 

E. The influence of operating frequency on different types 
of passenger flows 

The operating frequencies of three train types differentially 

impact passenger flows. To analyze this, adjustment plans for 

departure frequencies are denoted as 1 2 3( , , )F f f f   . 

Changes in average travel time per OD interval and passenger 

flow attraction under frequency adjustments were examined. 

Impacts on different passenger types are shown in Fig. 15. 

As seen in Fig. 15, passengers traveling within 1 3[ ]D D  

and 2 3[ ]D D  intervals are most sensitive to through-train 

frequency 2f . When 2f  increases (e.g., Scheme F(-1,2,-2)), 

the proportion of CL passenger flow (passengers in 

1 3[ ]D D  and 2 3[ ]D D ) increases by 12%. 1 1[ ]D D  

passengers are more sensitive to 1f , while 4 4[ ]D D  

passengers are mainly affected by 3f . However, overall, 

passenger flows within urban rail and regional lines remain 

relatively "quiet": average travel time fluctuates only ±2min, 

with flow proportion stabilizing at 20%-25%, indicating 

service saturation. Therefore, increasing 2f  attracts more 

passengers to choose through trains while reducing CL travel 

time. 

However, extreme frequency adjustments cause flow 

imbalance. Scheme F(-1,2,-2) increases travel time for 
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4 4[ ]D D  passengers by 28% and decreases flow proportion 

by 8%. When reducing 3f  in Scheme F(3,0,-1), 3 4[ ]D D  

travel time increases by 22%, with flow shifting to 2 3[ ]D D . 

Thus, excessive increase of 2f  with reduction of 1f / 3f  may 

cause insufficient service in certain sections, prolonged travel 

times, or flow imbalance. 
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Fig 15. The impact of the operation frequency adjustment scheme on 
different types of passenger flows 

F. Fairness Analysis of Through Operation 

Through trains consume partial resources of local lines. 
To analyze the impact of through-train operation on urban 
rail local lines and suburban railway local lines, and to 
explore the fairness of through operation, variations in travel 
time change rates for passengers across different zones are 
illustrated in Fig 16. 

s shown in Fig 16(a), passenger travel time changes 
exhibit a distinct spatial gradient: the most significant 
increase occurs in the urban rail line segments (Stations 1-5), 
forming a red high-impact zone. The impact gradually 
diminishes as stations extend towards the suburbs (Stations 
5-13). The cross-line zones (Stations 14-20) form a blue 
valley with significantly reduced times, while the impact 
levels off in the outer suburban areas (Stations 22-28). This 
demonstrates that passengers in the urban core bear the 
primary negative effects, whereas those in cross-line zones 
gain the most benefits, reflecting the efficiency-fairness 
trade-off in transportation system optimization. 
As seen in Fig 16(b), a striking "twin-peak and single-valley" 
topography emerges: the urban core (Stations 4-8) appears as 
a red peak, while the cross-line zone (Stations 14-20) forms a 
blue valley, visually illustrating the differential impacts of 

through operation. The magnitude of time change increases 
with proximity to the city center and attenuates with distance, 
indicating greater sensitivity to operational adjustments 
among central urban passengers. 
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(b) A three-dimensional surface graph of the change rate of passengers' 

travel time in different regions 
Fig 15. The variation in the rate of change of passengers' travel time in 
different regions 

Therefore, while through operation resolves efficiency 
losses in cross-modal connections through spatiotemporal 
resource redistribution, it partially transfers costs to local-line 
passengers. This inherent "efficiency gains-cost shifts" 
trade-off in multi-level rail network coordination requires 
improvement through scheduling and demand management. 

VII. CONCLUSION 

1) This study innovatively applies CPT-QDT theory to 
URT-SR through-operation research, constructing an 
optimization model integrating multi-attribute passenger 
behavior. It reveals complex mechanisms of passenger flow 
allocation and operational resource coordination under 
bounded rationality, providing theoretical basis for 
multi-level rail network coordination. Practical applications 
require dynamic parameter adjustments based on line 
characteristics to enhance model adaptability. 

2) Compared to transfer mode, through-operation 
reduces average CL travel time by 8.32min, with total 
passenger travel time and enterprise operating costs reduced 
by 60.7% and 30.1% respectively. 
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3) Parameter analysis indicates, Passengers with high 
time value show greater preference for through trains, and an 
increased time value ratio significantly enhances 
optimization effects. While skip-stop patterns reduce overall 
passenger travel time, their potential negative impacts on 
certain passenger flows require careful trade-offs. Although 
through operation improves cross-line efficiency, it transfers 
time costs to urban core passengers, creating a spatial 
disparity characterized by "efficiency gains-cost shifts." 
Future efforts should focus on targeted optimization of 
scheduling strategies to enhance equity across regions. 

4) Future research should: integrate real-time passenger 
data; develop time-varying parameter frameworks to enhance 
adaptability to sudden demands; explore coordination 
mechanisms between through-operation and other transport 
modes; thereby improving regional transport network 
resilience. 

REFERENCES 

[1] C. Zhu, X. Yang, Z. Wang, J. Fang, J. Wang, L. Cheng, “Optimization 
for the train plan with flexible train composition considering carbon 
Emission,” Engineering Letters, vol. 31, no. 2, pp. 562-573, 2023. 

[2] H. Wu, J. Zhen, J. Zhang, “Urban rail transit operation safety 
evaluation based on an improved CRITIC method and cloud model,” 
Journal of Rail Transport Planning & Management, vol. 16, Article ID 
100206, 2020. 

[3] Ito. M, “Through service between railway operators in Greater Tokyo,” 
Japan Railway & Transport Review, vol. 63, pp. 14-21, 2014. 

[4] Vigrass. J. W, “Alternative forms of motive power for suburban rail 
rapid transit,” In ASME/IEEE Joint Conference on Railroads, pp. 
65-77, 1990. 

[5] Drechsler. G, “Light railway on conventional railway tracks in 
Karlsruhe, Germany,” In Proceedings of the Institution of Civil 
Engineers-Transport, Vol. 117, no. 2, pp. 81-87, 1996. 

[6] Sato. L, Essig. P, “How Tokyo’s Subways Inspired the Paris RER,” 
Japan Railway & Transport Review, vol. 23, PP. 36-42, 2000. 

[7] Novales. M, Orro. A, Bugarin. M, “Madrid tram-train feasibility study 
conclusions,” Proceedings of the Institution of Mechanical Engineers, 
Part F: Journal of Rail and Rapid Transit, Vol. 217, no. 1, pp. 1-10, 
2003. 

[8] L. Tang, X. Xu, “Optimization for operation scheme of express and 
local trains in suburban rail transit lines based on station classification 
and bi-level programming,” Journal of Rail Transport Planning & 
Management, Vol. 21, Article ID 100283, 2022. 

[9] L. Tang, A. D’Ariano, X. Xu, et al. “Scheduling local and express 
trains in suburban rail transit lines: Mixed–integer nonlinear 
programming and adaptive genetic algorithm,” Computers & 
Operations Research, Vol. 135, Article ID 105436, 2021. 

[10] Parbo. J, Nielsen. O. A, Prato. C, “Reducing passengers’ travel time by 
optimizing stopping patterns in a large-scale network: A case-study in 
the Copenhagen Region,” Transportation Research Part A: Policy and 
Practice, Vol. 113, pp. 197-212, 2018. 

[11] Altazin. E, Dauzère-Pérès. S, Ramond. F, et al. “Rescheduling through 
stop-skipping in dense railway systems,” Transportation Research 
Part C: Emerging Technologies, Vol. 79, pp.73-84, 2017. 

[12] P. Shang, R. Li, Z. Liu, et al. “Timetable synchronization and 
optimization considering time-dependent passenger demand in an 
urban subway network,” Transportation Research Record, Vol. 2672, 
no. 8, pp. 243-254, 2018. 

[13] A. Yang, B. Wang, J. Huang, “Service replanning in urban rail transit 
networks: Cross-line express trains for reducing the number of 
passenger transfers and travel time,” Transportation Research Part C: 
Emerging Technologies, Vol. 115, Article ID 102629, 2020. 

[14] Yang. A, Huang. J, Wang. B, et al. “Train scheduling for minimizing 
the total travel time with a skip-stop operation in urban rail transit,” 
IEEE Access, Vol. 7, pp. 81956-81968, 2019. 

[15] Tang. L, Xu. X, “Optimization for operation scheme of express and 
local trains in suburban rail transit lines based on station classification 
and bi-level programming,” Journal of Rail Transport Planning & 
Management, Vol. 21, Article ID 100283, 2022. 

[16] Li. Z, Mao. B, Bai. Y, et al. “Integrated optimization of train stop 
planning and scheduling on metro lines with express/local mode,” 
IEEE Access, Vol. 7, pp.88534-88546, 2019. 

[17] Chen. Z, Li. S, D’Ariano. A, et al. “Real-time optimization for train 
regulation and stop-skipping adjustment strategy of urban rail transit 
lines,” Omega, Vol. 110, Article ID 102631, 2022. 

[18] Shao. J, Xu. Y, Sun. L, e tal. “Equity-oriented integrated optimization 
of train timetable and stop plans for suburban railways system,” 
Computers & Industrial Engineering, Vol. 173, Article ID 108721, 
2022. 

[19] Zhu. T, Su. Y, Huang. T, “A dimension reduction classification method 
combining chaotic mapping and genetic algorithm for Zhuhai-1 
hyperspectral images,” In International Conference on Wireless 
Communications, Networking and Applications, pp. 384-389, 2022. 

[20] Lu. H, Niu. R, Liu. J, Zhu. Z, “A chaotic non-dominated sorting genetic 
algorithm for the multi-objective automatic test task scheduling 
problem,” Applied Soft Computing, vol. 13, no. 5, pp.2790-2802, 2013. 

[21] Jiao. C, Yu. K, Zhou. Q, “An opposition-based learning adaptive 
chaotic particle swarm optimization algorithm,” Journal of Bionic 
Engineering, vol.21, pp. 3076–3097, 2024. 

[22] Zhan. Y, Ye. M, Zhang. R, He. S, & Ni. S, “Multi-objective 
optimization for through train service integrating train operation plan 
and type selection,” Transportation Letters, vol. 16, no. 9, pp. 
1039-1058, 2024. https://doi.org/10.1080/19427867.2024.2268754. 

[23] Kang. L, Lai. Y, Wang. J, Cao. W, “A Pacesetter-Lévy multi-objective 
particle swarm optimization with Arnold Chaotic Map with 
opposition-based learning,” Information Sciences, vol. 678, pp. 121048, 
2024. 

[24] Di. X, Liu. H. X, “Boundedly rational route choice behavior: A review 
of models and methodologies”. Transportation Research Part B: 
Methodological, vol. 85, pp. 142-179, 2016. 

[25] Kahneman. D, Tversky. A, “Prospect theory: An analysis of decision 
under risk,” In Handbook of the Fundamentals of Financial Decision 
Making: Part I, pp. 99-127, 2013. 

[26] Gao. S, Frejinger. E, Ben-Akiva. M, “Adaptive route choices in risky 
traffic networks: A prospect theory approach,” Transportation 
Research Part C: Emerging Technologies, vol. 18, no. 5, pp. 727-740, 
2010. 

[27] Xu. H, Lou. Y, Yin. Y, & Zhou. J, “A prospect-based user equilibrium 
model with endogenous reference points and its application in 
congestion pricing,” Transportation Research Part B: Methodological, 
vol. 45, no. 2, pp. 311-328, 2011. 

[28] Zhang. C, Liu. T. L, Huang. H. J, & Chen. J, “A cumulative prospect 
theory approach to commuters’ day-to-day route-choice modeling with 
friends’ travel information,” Transportation Research Part C: 
Emerging Technologies, vol. 86, pp. 527-548, 2018. 

[29] Hensher. D. Areene. W. H, Li. Z, “Embedding risk attitude and 
decision weights in non-linear logit to accommodate time variability in 
the value of expected travel time savings,” Transportation Research 
Part B: Methodological, vol. 45, no. 7, pp. 954-972, 2011. 

[30] Ghader. S, Darzi. A, Zhang. L, “Modeling effects of travel time 
reliability on mode choice using cumulative prospect theory,” 
Transportation Research Part C: Emerging Technologies, vol. 108, pp. 
245-254, 2019. 

[31] Avineri. E, “A cumulative prospect theory approach to passengers 
behavior modeling: waiting time paradox revisited,” In Intelligent 
Transportation Systems, Vol. 8, no. 4, pp. 195-204, 2004. 

[32] Martínez-Martínez. I, “A connection between quantum decision theory 
and quantum games: The Hamiltonian of strategic interaction,” Journal 
of Mathematical Psychology, vol. 58, pp. 33-44, 2014. 

[33] Moreira. C, Wichert. A, “Quantum probabilistic models revisited: The 
case of disjunction effects in cognition,” Frontiers in Physics, vol. 4, no. 
26, 2016. 

[34] Pothos. E. M, Busemeyer. J. R, “A quantum probability explanation for 
violations of ‘rational’ decision theory,” Proceedings of the Royal 
Society B: Biological Sciences, vol. 276, no. 1665, pp. 2171-2178, 
2009. 

Shuoyue Gao was born in Shaanxi, China. She 
received her Bachelor’s degree in Traffic and 
Transportation from Shijiazhuang Tiedao 
University, China, in 2023. Currently, she is 
pursuing a Master’s degree in Traffic and 
Transportation (Railway Transportation 
Engineering) at Lanzhou Jiaotong University. Her 
research interests include through operations and 
passenger flow distribution. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2834-2846

 
______________________________________________________________________________________ 




