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Abstract—In this study, we propose an enhanced Ant Colony
Optimization algorithm embedded within a variable-resolution
grid framework to improve the performance of mobile robot
path planning. To address the typical limitations of conventional
ACO methods—namely, their slow convergence, tendency to
get trapped in local optima, and inability to produce smooth
trajectories—the algorithm incorporates a series of refined
strategies grounded in grid-based representation.Firstly, an
adaptive grid partitioning strategy with variable resolution
is developed: it enlarges the search neighborhood in com-
plex, obstacle-dense regions and contracts it in open areas,
thereby achieving a balance between search efficiency and
path quality. Secondly, a refined heuristic function, drawing
inspiration from the A* algorithm, is employed to guide ants
more effectively toward the goal. The A* algorithm is also
leveraged to initialize the pheromone distribution, which helps
accelerate convergence during the early iterations. Moreover, a
directional bias mechanism is integrated to suppress redundant
node exploration and improve search efficiency. To further
enhance the algorithm’s global exploration capability and avoid
premature convergence, a dynamic pheromone update scheme
is proposed—featuring both a reward-penalty model and an
adaptive evaporation rate.Comprehensive simulations carried
out in MATLAB evaluate the performance of the proposed
approach in comparison with the standard ACO, various
enhanced ACO versions, and other intelligent optimization
techniques, including Genetic Algorithm , Particle Swarm
Optimization, and Differential Evolution. The results consis-
tently demonstrate that the modified algorithm achieves more
efficient convergence, produces shorter and smoother paths, and
exhibits greater robustness—highlighting its strong potential for
practical applications and future hardware integration.

Index Terms—ACO algorithm, path planning, variable-size
grid, A* algorithm, pheromone update.

I. INTRODUCTION

With the rapid advancements in artificial intelligence
technology, mobile robots have achieved widespread de-
ployment and application in various fields such as logistics
and warehousing, autonomous driving, medical services, and
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agricultural production. These diverse application scenarios
have imposed stricter requirements on the autonomous nav-
igation technology of robots. Among them, path planning
technology, as one of the core elements, directly affects
the robots’ motion efficiency, the smoothness of their paths,
and their adaptability in complex and ever-changing envi-
ronments. However, when confronted with high-dimensional,
dynamic, and intricate real-world environments, traditional
path planning algorithms still face numerous challenges that
urgently need to be addressed.

Path planning serves as a fundamental research focus
in the field of robotics, particularly playing a pivotal role
in warehouse automation and intelligent logistics systems.
The primary objective of path planning is to determine an
optimal trajectory on a given environmental map—one that
ensures safety, avoids collisions, and minimizes the overall
travel distance between a specified start and target location,
all while adhering to predefined optimization criteria. In
recent years, researchers both at home and abroad have
devoted considerable efforts to the study of global path
planning methods. These approaches range from classical
deterministic algorithms, including Dijkstra’s algorithm, the
A* search strategy, and the artificial potential field method,
to a variety of intelligent optimization techniques such as
particle swarm optimization (PSO), artificial neural networks
(ANN), genetic algorithms (GA), and ant colony optimiza-
tion (ACO). The integration of these traditional and heuristic
algorithms has significantly advanced the performance and
adaptability of robotic path planning in dynamic and complex
environments.

To address the shortcomings of current algorithms, schol-
ars have been actively investigating innovative path planning
strategies that not only boost computational efficiency and
path accuracy but also strengthen the autonomous naviga-
tion capabilities of mobile robots operating in intricate and
dynamic environments.

Anil Kumar et al. [1] introduced the ACO-UCR algorithm
to improve energy efficiency in clustered wireless sensor
networks, demonstrating its advantages in wireless commu-
nication scenarios. Cai et al. proposed a two-dimensional ant
colony optimization method that integrates heuristic strate-
gies with the firefly algorithm to enhance adaptability across
different application environments [2]. Kale Ishaan et al.
developed the ACO-CI algorithm by combining ant colony
optimization with intelligent queue mechanisms to address
constraint-related engineering challenges, thereby lowering
computational overhead [3]. Hui et al. designed an enhanced
ACO model incorporating wolf pack distribution techniques
to tackle route planning issues more effectively [4]. For
multi-UAV systems, Athira et al. proposed the ACO-DTSP
algorithm, which refines pheromone update rules to improve
swarm path planning performance [5]. Liu et al. [6] intro-
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duced an improved MPGA-ACO-BP hybrid approach, which
strengthens evaluation accuracy in data fusion tasks and
demonstrates practical applicability. Zhu et al. [7] presented a
variable-resolution grid-based ACO method that accelerates
early-stage pheromone deposition, helping to mitigate the
risk of premature convergence. Jai et al. put forward an
intelligent dynamic routing optimization framework that syn-
ergizes ACO with genetic algorithms to enhance route preci-
sion [8]. To resolve issues such as deadlock, limited search
capability, and susceptibility to local optima in traditional
ACO algorithms, Si et al. proposed a novel parallel ACO
variant [9]. Lastly, Shi et al. [10] introduced the self-adaptive
LIEAD algorithm, which utilizes local information entropy
to address distributed constraint optimization problems with
improved adaptability and performance.

Ant Colony Optimization , inspired by the collective
foraging behavior observed in real ant colonies, is known
for its robust global search capability and has been exten-
sively utilized in solving path planning problems. Despite its
widespread application, conventional ACO algorithms still
suffer from several limitations, including low computational
efficiency, a tendency to fall into local optima, and the
tendency to produce paths that lack smoothness. To over-
come these challenges, numerous enhancement strategies
have been introduced by researchers—ranging from refining
the state transition rules and improving pheromone update
strategies to integrating ACO with other metaheuristic al-
gorithms. Nevertheless, challenges remain, particularly in
accelerating the search process during the early phases and
enhancing the overall effectiveness of the generated paths
[11]. In response, this study puts forward an improved ACO
framework that incorporates variable grid modeling, refined
pheromone initialization, and adaptive pheromone update
mechanisms, with the aim of boosting performance in both
convergence speed and path quality.

II. FUNDAMENTALS OF ANT COLONY OPTIMIZATION
ALGORITHM

A. The Current Situation of Models and Algorithms

Global path planning relies on environmental modeling
methods such as visibility graphs, free-space representations,
and grid-based approaches. In this study, the grid-based
method is adopted as a representative example, with its
conceptual model illustrated in Figure 1.

The grid approach discretizes the robot’s workspace into
uniform grid cells, each encoded with binary information
to indicate either free space or obstacle presence. Common
representations include quadtree (2D) and octree (3D) struc-
tures, which provide flexible hierarchical decomposition of
the environment. Once the environment is encoded into grids,
various optimization algorithms can be employed to search
for feasible paths.

The resolution of the grid model—defined by the size of
each grid cell—has a direct impact on both the richness of
environmental information captured and the computational
efficiency of the planning process. A coarser grid (i.e., larger
cells) reduces memory usage and shortens planning time but
sacrifices spatial accuracy and may fail to identify viable
paths in cluttered or narrow spaces. Conversely, a finer grid
increases resolution and improves pathfinding capability in

dense or obstacle-rich environments, but at the cost of greater
computational burden and memory demand.

Fig. 1. Grid Method Model.

Fig. 1 shows a grid-based model of a 2D space for path -
planning environment representation. The axes range from 0
to 20, and the area is divided into equal - sized square grid
cells. Blue squares indicate obstacles or non - traversable
areas, while white squares represent free or traversable space.
This model discretizes the environment, making it easier
to apply path - planning algorithms. Note that grid size
affects planning accuracy and efficiency: larger cells reduce
accuracy, while smaller cells provide higher accuracy but
boost computation and storage demands.

B. State Transition Dynamics

Within the fundamental framework of the Ant Colony
Optimization algorithm, the movement probability of an ant
from node i to a subsequent node j is governed by the state
transition rule defined as follows:

P k
ij(t) =


[τij(t)]

α
[ηij(t)]

β∑
s∈ allow [τij(t)]

α
[ηij(t)]

β
, s ∈ allowk

0, s /∈ allowk

nij =
1

dij

dij =

√
(xi − xj)

2
+ (yi − yj)

2

(1)

Here, τij denotes the pheromone level associated with the
edge connecting node i to node j, while ηij represents the
heuristic desirability of that path. The parameters α and β
control the relative influence of pheromone intensity and
heuristic information on the transition probability, respec-
tively. The term dij indicates the Euclidean distance between
nodes i and j, calculated using their coordinates (xi, yi) and
(xj , yj). Additionally, allowk refers to the set of feasible
paths available to ant k at the upcoming decision stage.

Ant Colony Optimization is an evolutionary algorithm
inspired by the natural foraging behavior of real ant colonies.
It employs a probabilistic search mechanism to identify
optimal or near-optimal paths within a graph structure.The
core principle of ACO is grounded in the indirect communi-
cation among ants through pheromone deposition. In natural
settings, ants collectively explore their environment for food
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sources. During this exploration, they deposit a chemical
substance known as pheromone along their paths. As time
progresses, the pheromone trails begin to dissipate due to
natural evaporation. However, paths with higher pheromone
concentrations become more attractive to other ants, reinforc-
ing those routes through a positive feedback mechanism. This
iterative process leads to a higher likelihood that ants will
converge on the shortest route, as shorter paths accumulate
pheromone more quickly and retain it more effectively, thus
guiding subsequent ants toward optimal solutions.

The ACO algorithm primarily operates through two fun-
damental mechanisms: state transition and pheromone updat-
ing.

τij(t+ 1) = (1− ρ)τij(t) + ∆τij(t)
∆τij(t) =

∑m
k=1 ∆τkij(t)

(2)

where m represents the total number of ants in each
iteration; ρ denotes the pheromone evaporation coefficient;
and ∆τij(t) indicates the amount of pheromone deposited
on the path from node i to node j at time t.

Obtaining the optimal solution: Each ant selects the next
node j from node i according to the transition probability
Pij . After all ants complete one iteration , the pheromone
levels on all paths are updated accordingly. This iterative pro-
cess repeats until a predefined number of cycles is reached.
Ultimately, the majority of ants converge on the same path,
which is regarded as the shortest path.

III. ADVANCED ANT COLONY OPTIMIZATION METHOD

A. Variable Grid

In path planning, the traditional ant colony algorithm
has 8 search directions, represented by 8 arrows, with the
robot’s minimum turning angle being 90°. Wu et al. improved
the algorithm [12], changing the 8 domain search to a 48
domain search. Now, the robot has 32 search directions
and a minimum turning angle of 11.25°, enhancing path
smoothness. But the 7×7 neighborhood search increases
nodes, thus increasing search time.

Fig. 2. Neighborhood Structure of Variable-size Grid.

This chapter introduces a variable grid ant colony algo-
rithm. When there are no obstacles around, Fig. 2 employs
a 3×3 search neighborhood for rapid searching. When en-
countering obstacles, it adaptively switches to a 7×7 search
neighborhood to reduce waypoints and achieve a smoother
path. After passing through obstacles, it reverts to a 3×3
search neighborhood to accelerate searching. This method
saves search time and yields better search results [7].

B. A* Algorithm

The A* algorithm is a well-established and effective graph
search method extensively applied in areas such as path plan-
ning, robot navigation, and game development. It integrates
the shortest-path strategy from Dijkstra’s algorithm with the
speed advantages provided by heuristic search. Through the
incorporation of a heuristic function, the algorithm enhances
search efficiency without compromising the optimality of the
solution.

The core concept of the A* algorithm is to start from
the initial node and gradually expand the path nodes that
are most likely to reach the goal until an optimal path from
the start to the end is found. At every iteration, the algorithm
expands the node that minimizes the cost equation f(n). This
equation is composed of two components:

f(n) = g(n) + h(n) (3)

where g(n) represents the cost incurred from the start node
to the current node n, and h(n) denotes the heuristic estimate
of the cost from node n to the goal node. Consequently, the
cost function is defined as

f(n) = g(n) + h(n),

which estimates the total cost of reaching the goal through
node n.

Frequently used heuristic functions include the Euclidean
distance, Manhattan distance, and Chebyshev distance. Pro-
vided that the heuristic function h(n) is either consistent
or admissible, the A algorithm ensures the discovery of an
optimal path between the start and goal nodes. Thanks to its
strong performance and modular, extensible design, A has
become a widely accepted baseline approach in path planning
tasks. While it can efficiently compute optimal paths in static
scenarios, its significant computational demands hinder real-
time application in dynamic or complex environments, often
necessitating integration with other techniques or algorithmic
enhancements.

C. Improved Heuristic Function

This study takes advantage of the superior optimization
capabilities of the A* algorithm and the efficient search
process. We incorporated its heuristic-guided search principle
into the heuristic function of the ant colony optimization
(ACO) algorithm to enhance the discovery of the optimal
path. By integrating an estimated movement cost, the ants
are directed more rapidly toward the goal. Additionally, our
improved heuristic function introduces a curvature suppres-
sion operator designed to reduce both the quantity of turns
and the total accumulated turning angle. The formulation of
the enhanced heuristic function is detailed below:

nij(t) =
Q

g(n) + h(n) + C(n)

C(n) = ϕ1 × bend + ϕ2 × angle

g(n) =

n∑
i=1

S(i)

h(n) =

√
(fx − nx)

2
+ (fy − ny)

2

(4)

Here, Q denotes a constant value greater than 1. The
bending inhibition factor is represented by C(n), where bend
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indicates the number of turns between the previous and the
next node. The turning angle is given by angle. Conversion
coefficients for the quantity and magnitude of these turns
are represented by ϕ1 and ϕ2, respectively. The cost from
the start node to node n is expressed as g(n). The distance
moved from the parent of node i to node i − 1 is denoted
by S(i). Meanwhile, h(n) estimates the cost from node n to
the destination. The current node’s coordinates are (nx, ny),
and the target node’s position is given by (fx, fy).

D. Improvements in Pheromone Update Mechanism

The pheromone concentration in the ant colony algorithm
is updated based on equation (1), where ants that traverse
longer paths deposit less pheromone along their routes. As
pheromones evaporate over time, iterative updates guide the
ant colony toward convergence on an optimal path, ultimately
yielding a globally optimal solution. To enhance convergence
speed and prevent entrapment in local optima, this paper pro-
poses an improved pheromone update strategy. Specifically,
after each iteration, pheromone updates are applied only to
the paths of ants that successfully reach the destination,
while those stuck or deadlocked in the map are excluded.
Moreover, a reward–penalty mechanism is introduced for
the best-performing path in each iteration: ants whose paths
outperform the current global optimum are rewarded with
increased pheromone deposition, whereas those that fall short
experience a reduction in pheromone levels along their paths.
Additionally, the worst-performing paths in each iteration
are subjected to penalties, further decreasing pheromone
concentration on those routes [13].

τij(t+ 1) = (1− ρ)τij(t) +
1

now best
− now best

best
τij(t+ 1) = (1− ρ)τij(t) +

1

no worst

(5)

where now best denotes the optimal solution identified in
the current iteration,now worst corresponds to the poorest
solution in the same iteration, and best refers to the globally
optimal solution found so far.

The pheromone evaporation coefficient, denoted by ρ,
causes the pheromone levels on paths to gradually diminish,
thereby steering the algorithm toward convergence on the
optimal route. This paper introduces an adaptive approach to
adjust ρ dynamically in response to different phases of the
algorithm’s iterations. During the initial stages, ρ is increased
to accelerate convergence speed. Conversely, in the middle
and later phases, ρ is reduced to strengthen the algorithm’s
ability to perform global optimization.

The pheromone evaporation coefficient ρ controls the
gradual decay of pheromone on the paths, playing a crucial
role in guiding the algorithm toward convergence on the op-
timal solution. In this paper, an adaptive adjustment strategy
for ρ is proposed, wherein the coefficient is dynamically
modified based on the current stage of algorithm iteration.
During the initial phase, a higher value of ρ is adopted
to accelerate the convergence process. As the algorithm
progresses into the middle and later stages, ρ is gradually
reduced to strengthen the algorithm’s ability to perform
global optimization and avoid premature convergence.

ρ(t+ 1) =


ρmax, ρ ⩾ ρmax

2

1 + et−b
ρ(t), ρmin ⩽ ρ ⩽ ρmax

ρmin, ρ ⩾ ρmin

(6)

where t represents the current iteration number, ρmin is the
minimum value of the pheromone evaporation coefficient ρ,
ρmax is the maximum value of the pheromone evaporation
coefficient ρ, and b is a constant.

E. Dynamic Pheromone Update

The conventional Ant Colony Optimization algorithm up-
dates pheromones based on heuristic rules, which heavily
depend on prior knowledge. This reliance can lead to the
omission of potentially better solutions, resulting in pre-
mature convergence and entrapment in local optima. To
address these limitations, this paper introduces a reward-and-
penalty-based pheromone update mechanism. This strategy
enables more flexible and adaptive pheromone regulation,
dynamically reinforcing or suppressing certain paths. As a
result, the algorithm’s adaptability is enhanced, convergence
speed is improved, and the risk of poor solutions is reduced,
thereby increasing the likelihood of identifying the global
optimum.

Specifically, as expressed in equation (7), the mecha-
nism increases the pheromone concentration on the best-
performing path in each iteration, encouraging ants to fol-
low this route in future searches. Conversely, the worst-
performing paths are penalized by reducing their pheromone
levels, lowering their probability of being chosen. This
dynamic and targeted adjustment approach strengthens the
algorithm’s global search ability while maintaining efficient
convergence.

τij(k + 1) = (1− ρ)τij(k) +
∑T

t=1 ∆τ tij(k)

∆τ tij(k) =



Q

Lm
+

Ly − Lm

Lmean − Ly
, Lm ⩽ Ly

Q

Lm
− Lm − Lc

Lc − Lmean
, Lm ⩾ Lc

Q

Lm
, Otherwise

(7)

In this context, ρ denotes the pheromone evaporation
coefficient, Q represents the pheromone intensity constant,
Lm is the total length of the path traversed by ant m in the
current iteration, Ly refers to the shortest path identified in
the current iteration, Lc corresponds to the longest (worst)
path, and Lmean is the average length of all paths during
that iteration.

Traditionally, the ant colony optimization algorithm em-
ploys a fixed evaporation coefficient ρ to update pheromone
levels after each iteration. However, a small ρ value may
cause pheromones to accumulate excessively on certain
paths, increasing the likelihood of premature convergence
to local optima. Conversely, an overly large ρ can result in
rapid pheromone decay, thereby weakening the algorithm’s
guidance and stability.

To overcome this limitation, this paper proposes an adap-
tive strategy for adjusting the evaporation coefficient. By
decreasing ρ progressively as the number of iterations in-
creases, the algorithm reduces the ants’ over-reliance on
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pheromone trails, thereby enhancing the diversity and ran-
domness of path exploration. This dynamic adjustment mech-
anism is mathematically described by equation (8), and the
changing trend of ρ over iterations is illustrated in Fig. 3.

Fig. 3. The Relationship Between the Evaporation Coefficient and the
Number of Iterations.

ρ(T + 1) =

 ρmin ρ ⩽ ρmin

Tmax

Tmax + 3T
∗ 1

e1−ρ(T )
else

(8)

Here, r denotes the coefficient of evaporation, T refers
to the current iteration index, Tmax specifies the maximum
allowed number of iterations, and ρmin represents the lowest
value of the evaporation coefficient.

At the beginning of the process, a relatively high evap-
oration coefficient is employed to promote extensive ex-
ploration and local search by the ants. Subsequently, this
coefficient is gradually reduced, which extends the duration
that pheromones persist on the paths. As a result, the impact
of pheromones on the choice of paths is enhanced, aiding
the algorithm in converging toward improved solutions.

F. Limiting the Pheromone Threshold
In order to enhance the solution quality obtained by

the Ant Colony algorithm and maintain randomness during
convergence, while effectively preventing premature conver-
gence to local optima, the Max-Min Ant System strategy is
adopted. Following each pheromone update, the pheromone
levels on the updated nodes are constrained within specified
bounds [14]. The principle governing the pheromone thresh-
old limitation is described as follows:

τij =

 τmin, if τij < τmin

τmax, if τij > τmax

τji, else
(9)

By limiting the range of pheromone values to [τmin, τmax],
the pheromones of all paths found during the search are
confined within this interval. This ensures that pheromones
are concentrated on relatively optimal path nodes, which
not only increases the likelihood of searching for other
paths but also avoids excessive pheromone differences among
path nodes that could cause the algorithm to prematurely
converge.

IV. ADAPTIVE ACO-BASED PATH-FINDING ALGORITHM

The adaptive pathfinding ant colony algorithm integrates
three distinct mechanisms. Firstly, it introduces a guided
direction mechanism to enhance the tendency of ants when
selecting nodes [14]. Secondly, the initial pheromone update
process is improved by employing the A* algorithm to gener-
ate a preliminary path, followed by an increased pheromone
concentration around the grid cells along this route. Finally,
the heuristic function of the ant colony algorithm incorpo-
rates the pathfinding strategy of the A* algorithm, allowing
iterative path optimization to ultimately identify the optimal
route. Through the fusion of these three mechanisms with the
conventional ant colony algorithm, the adaptive pathfinding
ant colony algorithm is formulated [15].

A. Guided Direction Mechanism

The core concept of the ant colony algorithm involves sev-
eral steps: initially, pheromone concentrations on all possible
paths are set to starting values. Next, ants probabilistically
select their next nodes and build complete paths. Throughout
this process, path lengths are recorded, and pheromone trails
are updated accordingly. The shortest path discovered so
far is preserved, while both pheromone levels and tabu lists
are refreshed. This iterative cycle repeats until the stopping
criterion is met. Ants determine their target nodes by consid-
ering pheromone intensity along with heuristic information.
However, during the very first iteration, all ants must traverse
the entire map to establish an initial rough path, which incurs
considerable computational time.

Fig. 4. Optional Nodes for the Original Ant Colony Algorithm.

As shown in Fig. 4 in the traditional ant colony algorithm,
an individual moves toward the surrounding nodes. Around
the current node D, there is an obstacle grid (black block).
The selection of the next node requires calculating the
transition probabilities of seven nodes (D1-D7), resulting in
a longer computation time in the planning of the route [16].

To address the limitations of the traditional ant colony
algorithm in node selection, a guiding direction mechanism
is introduced to steer the choice of nodes, thereby effectively
reducing computational complexity. This mechanism utilizes
directional information from the start point S to the end
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Fig. 5. Schematic Diagram of the Guidance Direction Mechanism.

point T to constrain the selection of the next node, cutting
down the original set of seven possible nodes to only three,
which enhances the efficiency of the path-finding process. As
illustrated in Fig. 5, a coordinate system is established with
the starting node S serving as the origin. The subsequent
node chosen after the current node must align with the
direction from S toward T . Let the coordinates of the current
node D be (xc, yc), and those of a candidate next node Dn

be (xd, yd). According to the guiding direction criteria, the
difference in the x-coordinate xd−c = xd − xc should be
greater than or equal to zero, while the difference in the y-
coordinate yd−c = yd − yc must be less than or equal to
zero. Consequently, among the seven candidate nodes D1

through D7 depicted in Fig. 4, only three nodes—D3, D4,
and D5—satisfy these conditions.

B. Incorporating the Path-finding Mechanism of A* Algo-
rithm into the Ant Colony Algorithm

Furthermore, when obstacles occupy nodes D3 and D5

adjacent to the current node, the guiding direction mechanism
fails to provide any feasible next nodes. In such situa-
tions, the node selection strategy switches to the pathfinding
method of the A* algorithm. The A* algorithm is a determin-
istic search technique that merges the benefits of Dijkstra’s
algorithm and Breadth-First Search. It is widely recognized
as one of the most efficient approaches for determining the
shortest path length within grid-based models.

F (n) = G(n) +H(n)

G(n) =

√
(xn − xs)

2
+ (yn − ys)

2

H(n) =

√
(xn − xe)

2
+ (yn − ye)

2

(10)

In this context, G represents the movement cost from the
start point S to the end point T along the generated path
passing through the required grids. Meanwhile, H denotes
the estimated cost from a given grid to the end point T . As
illustrated in Fig. 6, when the current position is at node D4,
the guiding direction mechanism is no longer applicable, and
the node selection strategy switches to the A* path-finding
algorithm.

Fig. 6. Schematic Diagram of Path-finding.

In this node selection framework, the initial pheromone
intensity is defined by

τ0 =
m

Lm
,

where m represents the total number of ants, and Lm

denotes the cost of the path from the current node to the
target T , calculated as

Lm = G(n) +H(n).

Accordingly, the probability that an ant selects the subse-
quent node is formulated as:

pkij(t) =


[τij(t)]

α
[ηij(t)]

β∑
i∈ak

[τis(t)]
α
[ηis(t)]

β
, j ∈ ak

0, others
(11)

Here, τ0 denotes the pheromone level on the edge (i, j),
ηij represents the heuristic factor between nodes i and j, and
αk is the set of nodes that ant k is allowed to visit in the
next step.

C. Improving Initial Pheromone with A* Algorithm

In the conventional ant colony algorithm, the initial
pheromone concentration is uniformly assigned to all nodes
on the map, which often leads to an extended duration for
the first iteration [17]. To address this, the A* algorithm
is utilized to enhance the initial pheromone distribution.
Specifically, the A* algorithm is first applied to generate a
suboptimal path, after which the pheromone concentration
along this path is increased. This strategy of leveraging A* to
improve the initial pheromone levels more effectively directs
the ants during path searching and consequently speeds up
the algorithm’s convergence [18].

τij( initial ) =
dmin

dSI + diT
C(0), freegrids

τij( initial ) =
0

dSI + diT
, obstaclegrids

(12)

Here, dSI denotes the distance from the start point S to
the current node i, while diT represents the distance from
node i to the target T . Additionally, the value of C(0) is set
to 1, corresponding to the initial pheromone concentration
used in the original ant colony algorithm.
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Compared to the conventional ant colony algorithm, the
proposed approach for enhancing the initial pheromone
distribution allows individual ants to more effectively rec-
ognize the dominant network. As illustrated in Figure 7,
the path dST represents an initial route planned by the
A∗ algorithm. According to the method described in this
paper, the initial pheromone concentration assigned to nodes
along dST reaches a maximum value of 1. Moreover, the
closer a current node is to the path dST , the higher the
initial pheromone value attributed to the corresponding grid.
Consequently, this improved initialization technique enables
ants to conduct path searching in a more focused and efficient
manner compared to the traditional ant colony algorithm.

Moreover, to prevent the algorithm from becoming trapped
in local optima, it is essential to impose upper and lower
bounds on the pheromone concentration. Following the Max-
Min Ant System (MMAS) approach, the pheromone concen-
tration τij(t) is constrained within the interval [τmin, τmax]
after each update, as expressed in Equation (13). Here, τij(t)
denotes the pheromone level on the edge between nodes i
and j during the t-th iteration, while τmax and τmin represent
the respective maximum and minimum pheromone limits.

τmin ≤ τij(t) ≤ τmax (13)

Fig. 7. Schematic Diagram of the Initial Pheromone.

Multiple prior studies have investigated the integration
of A* with Ant Colony Optimization (ACO) to enhance
path-planning effectiveness. For instance, Zhu et al. [7]
introduced a variable-grid ACO algorithm that employs A* to
guide the initialization of pheromones, thereby accelerating
convergence during the early iterations. Similarly, Liu et al.
[11] embedded heuristic information from A* into the ant’s
movement strategy within complex environments, resulting
in improved path smoothness.

However, most of these approaches focus on static fusion
strategies and lack adaptive control in response to environ-
mental changes. In contrast, the algorithm proposed in this
paper not only integrates the A* heuristic into the transi-
tion probability calculation and pheromone initialization, but
also introduces a direction-guided mechanism and adaptive
grid size adjustment, enabling dynamic responsiveness to
obstacle density and search context. Furthermore, a reward-
punishment pheromone update strategy with adaptive evap-
oration coefficient is incorporated to improve global search

Fig. 8. Flowchart of the Improved ACO Algorithm.

capability and reduce the risk of premature convergence -
features not fully addressed in the existing literature.

D. Comparison with Existing Methods

Compared to existing methods that integrate A* with
ACO [7, 11], this work offers a more comprehensive im-
provement framework. Unlike static pheromone initialization
approaches, our method dynamically adapts grid size based
on obstacle density and further introduces a directional
guidance mechanism to reduce search complexity. In ad-
dition, the proposed adaptive pheromone evaporation rate
and reward-punishment mechanism enhance global search
ability and convergence robustness. These innovations jointly
address the issues of premature convergence, redundant turns,
and poor early-stage search quality that are often found in
existing hybrid methods.
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V. FLOW OF ADAPTIVE PATH-FINDING ANT COLONY
ALGORITHM

This work introduces three enhancement strategies com-
pared to the traditional ant-based optimization method: in-
corporating a guiding direction mechanism, utilizing A* to
initialize pheromone levels more effectively, and embedding
the A* path-finding approach within the ant-inspired frame-
work [19]. Building upon these improvements, an enhanced
algorithm—referred to as the adaptive path algorithm—is
proposed for robot path planning. The flowchart depicting
this algorithm is shown in Fig. 8.

Fig. 9. Comparison of Iteration Trends.

Fig. 10. Path Optimization Curve of Traditional Algorithm.

VI. SIMULATION EXPERIMENT AND STRUCTURAL
ANALYSIS

A. Experimental Setup

The simulation experiments were conducted using MAT-
LAB 2023b. For each combination of parameters, 20 inde-
pendent simulations were performed to determine the optimal
configuration, as summarized in Table I. Subsequently, path-
planning tests were carried out on the grid model depicted in
the figure to evaluate the performance of the proposed Ant
Colony Optimization algorithm.

Fig. 11. Path Optimization Curve of the Improved ACO Algorithm in [7].

Fig. 12. Path Optimization Curve of Our Improved ACO Algorithm.

Figure 9 illustrates the convergence comparison among
three ant colony optimization algorithms applied to path
planning. The findings reveal that the proposed algorithm
in this study achieves convergence around the 10th iteration,
which is notably faster than both the traditional ant colony
algorithm and the improved method presented in Reference
[7]. Furthermore, the final optimal path length obtained is
approximately 29.2, surpassing the results of the method in
Reference [7] as well as the conventional algorithm. These
experimental outcomes validate that the proposed enhance-
ment mechanism significantly improves both the convergence
rate and path quality, demonstrating superior optimization
performance and greater practical applicability in engineering
contexts.

Figures 10 to 12 compare the path-planning outcomes of
the traditional ant colony algorithm, the improved version,
and the ant colony algorithm augmented with variable grid
technology within a 20×20 grid environment. The start point
is positioned at grid coordinate (0, 0), while the target is
located at (20, 20). The results indicate that the conventional
algorithm tends to become trapped in local minima, resulting
in suboptimal paths that are redundant and inefficient. In con-
trast, the improved algorithm with variable grid technology,
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TABLE I
PARAMETER SETTINGS.

Element Setting
Ant colony size m 100
Heuristic element β 6
Pheromone component α 1
Starting pheromone decay coefficient ρ 0.8
Lower bound of pheromone evaporation coefficient ρmin 0.1
Iterations T 100

designed for complex environments, effectively eliminates
path redundancy, prevents ants from revisiting locally op-
timal areas, guides them around obstacles, and enables the
discovery of the global optimal path.

Table II compares the path-finding durations of three ant
colony-based algorithms. Among them, the variable-size grid
ant colony algorithm achieves the fastest time of 0.1139
seconds, followed by the traditional ant colony algorithm
with 0.2938 seconds, while the improved ant colony al-
gorithm presented in [7] records the longest duration of
0.3447 seconds. These results demonstrate that the proposed
variable-size grid ant colony algorithm exhibits the highest
efficiency in pathfinding among the three methods.

TABLE II
COMPARISON OF IMPROVED ALGORITHMS.

Algorithm type path-finding time/s
Traditional Ant Colony Algorithm 0.2938
Improved Ant Colony Algorithm in [7] 0.3447
ACO Method with Variable-Resolution Grid Structure 0.1139

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS.

Algorithm Optimal Path Length Average Convergence Iterations
Improved ACO 37.6 43

PSO 41.3 59
DE 39.8 71
GA 42.1 66

B. Comparative Analysis

To ensure a fair comparison, all algorithms were evaluated
on the same map using identical start and goal positions,
each running for 100 iterations. The genetic algorithm used
a recombination probability of 0.8 and a mutation probability
of 0.05; the particle swarm optimization algorithm utilized
a population size of 30 with an inertia weight of 0.9; and
the differential evolution algorithm applied a mutation factor
of 0.5 alongside a crossover rate of 0.7. Each method was
executed 20 times to compute average metrics including path
length, number of iterations to convergence, and computation
time.

Moreover, to thoroughly assess the performance of the
enhanced ant colony optimization algorithm, this study con-
ducts comparative experiments involving GA, DE, and PSO.
These experiments use the same map, identical start and end
points, and consistent operational parameters, gathering sta-
tistical measures such as path length, convergence iterations,
and average computation time. As presented in Table III, the
improved ACO algorithm surpasses the other three methods
in both convergence speed and path quality, highlighting its
superior robustness in dynamic obstacle environments.

VII. CONCLUSION

This study presents a robot path planning approach
founded on an enhanced Ant Colony Optimization algorithm.
To overcome the drawbacks of low initial search efficiency
and vulnerability to local optima inherent in traditional ACO
methods, the following improvements have been introduced:

• A differentiated pheromone distribution strategy was
implemented to optimize the initial pheromone alloca-
tion, enhancing the ant colony’s search efficiency and
improving path planning performance.

• A dynamic pheromone updating strategy combining a
reward-punishment mechanism and an adaptive evap-
oration coefficient was adopted to increase the global
search capacity and avoid local optima.

The experimental findings indicate that the enhanced ACO
algorithm achieves superior global search performance, faster
convergence, and improved path quality in a variety of
complex map environments.The generated paths are not only
shorter and smoother but also display better stability and
robustness in repeated experiments.
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