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Abstract—In graph theory, a graph G = (V,E) is labeled
as having an adjacent vertex reducible edge coloring if there
exists a mapping f : E(G) → 1, 2, 3, 4. . . K, such that adjacent
vertices u and v with the same degree generate sets s(u)
and s(v) respectively, where S(u) = {f(uv)/uv ∈ E(g)} and
S(u) = S(v). This study focuses on calculating the chromatic
number for adjacent vertex reducible edge coloring of splitting
graphs.

Index Terms—Edge coloring, Chromatic number, Avrec,
Splitting graphs.

I. INTRODUCTION

Graph theory, a field rich with diverse structures and
applications, continues to unveil intricate relationships and
solve complex problems across disciplines [1]. One of the
fascinating areas within graph theory is the study of adjacent
vertex reducible edge coloring, particularly in the context of
split graphs. Split graphs, for each vertex of v take a new
vertex v

′
. Joining v

′
to all vertices in G adjacent to v provide

a compelling backdrop for exploring coloring techniques
[2]. The notion of reducible edge coloring for neighboring
vertex extends traditional graph coloring by ensuring that
vertices with adjacent connections share identical color sets,
thereby introducing a nuanced approach to graph represen-
tation and analysis. The idea of reducible edge coloring for
neighboring vertex was introduced by Zhong Fu Zong et
al., building on the idea of distinguishable edge coloring
[3], [4], [5], [6]. The key distinction between these two
concepts lies in their approach to edge coloring in simple
graphs: distinguishable edge coloring involves assigning dis-
tinct positive integer colors to edges incident to different
vertices v1 and v2, whereas reducible edge coloring ensures
that the colors assigned to the edges incident to vertices of
the same degree are similar. When the color sets of two
vertices are identical, the sum of the color sets are also the
same, a topic explored in the sum reducible edge coloring
introduced by Jing Wen Li et al. [7], [8]. Additionally,
Distance of (2)-vertex reducible edge coloring, where the
color sets of vertices with the same degree and within a
distance of no more than 2 are same [9]. Further research
has focused on adjacent vertex reducible edge total coloring
algorithms applied to various joint graph, and this concept
has been extended to labeling adjacent vertex reducible total
labeling of corona graphs [10], [11]. In the complex world of
transportation networks, understanding the interplay between
edge and node capacities is crucial for optimizing efficiency
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and ensuring seamless connectivity. Edge weights in these
networks symbolize the transportation capacity of routes,
while the node’s capacity is determined by the cumulative
weight of its connecting edges. An essential challenge in
network design is to balance these capacities, especially
when dealing with nodes of similar adjacent degrees. The
Adjacent Vertex Reducible Edge Coloring (AVREC) model
provides a framework for addressing this challenge. By
striving to equalize the transportation capacities of adjacent
nodes, AVREC offers a structured approach to optimizing
network performance and enhancing overall system robust-
ness. This article delves into the principles of AVREC and
explores its application in achieving balanced and efficient
transportation network. Here, we introduce new theories on
split graphs, namely, split graphs of path (Pm), cycle (Cn),
complete graph (Kr), fan graph (Fn), tadpole graph T(m,n),
and wheel graph (Wn) graph using well-known coloring
principles. This paper is organized as follows in the ongoing
sections: Definitions of AVREC and split graphs are included
in the preliminary section. Theorems about the chromatic
number of split graphs are then presented, along with the
proofs for each. Finally, a comprehensive discussion of the
conclusions drawn from our findings is provided.

II. RESULTS AND DISCUSSION

Definition 1. [12] Let the graph G(V,E) is a simple graph.
If there is a positive integer k(1 ≤ k ≤ E) and a mapping
f : E(G) → 1, 2, 3, 4. . . k. For any two vertices with distance
1 are u, v ∈ V (G), when degree of u is equal to degree of v,
then S(u) = S(v). Here S(u) = ∪ uw ∈ E(G) { f(uw)}.
Then f is adjacent vertex reducible edge coloring, referred
to as AVREC and χ

′
(G) = max {k|k − AVREC of G} is

adjacent vertex reducible edge coloring chromatic number.

Definition 2. [13] To construct the splitting graph S(G) of a
graph G, follow these steps: For every vertex v in G, create
a new vertex v

′
. Connect v

′
to all vertices in G that are

adjacent to v. The resulting graph S(G) is known as the
splitting graph of G.

Theorem 1. If the graph G is a splitting graph, then
χ′

avrecS(Pm) = χ′
avrecS(Pm) + 1.

Theorem 2. For splitting graph of Pm, the

χ′
avrecS(Pm) =


2,m = 2

4,m = 3

6,m ≥ 4

Proof: Taking a vertex set of S(Pm) is
u1, u2, u3, . . . um and u′

1, u
′
2, u

′
3, . . . u

′
m satisfying f

coloring rule.
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Fig. 1: χ′
avrecS(P7) = 6
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Fig. 2: χ′
avrecS(P8) = 6

For m = 2, two 2-degree vertices are adjacent and two
1-degree vertex are not adjacent. The color sets of 2-degree
adjacent vertex are the same.

For m = 3, three 2-degree vertices are adjacent. This
vertex color sets are the same.

For m ≥ 4, We divide this proof into odd n and even n
because at(m− 1)

th vertex set colors are not same for any
value of n.

For even m:
f (uiui+1) = 1, i = 2, 4, 6, ...,m− 2

f
(
uiu

′
i−1

)
= 2, i = 3, 4, 5, . . . ,m− 1

f
(
uiu

′
i+1

)
= 3, i = 2, 3, 4, . . . ,m− 2

f (un−1um) = 3, n = 4, 6, 8,. . .

f (uiui+1) = 4, i = 3, 5, 7, ...,m− 3 except m ̸= 4

f (un−1u
′
m) = 4, m = 4, 6, 8, ...

For odd m:
f (uiui+1) = 1, i = 2, 4, 6, ...,m− 3

f (um−1u
′
m) = 1, m = 5, 7, 9, . . .

f
(
uiu

′
i−1

)
= 2, i = 3, 4, 5, . . . ,m− 1

f
(
uiu

′
i+1

)
= 3, i = 2, 3, 4, . . . ,m− 2

f (uiui+1) = 4, i = 3, 5, 7, ...,m− 2

The following are common for all m

f (u1u2) = 2

f(u2u
′
1) = 4

f (um−1um) = 3, m ≥ 4

f (u1u
′
2) = 5

f
(
unu

′
n−1

)
= 6,m ≥ 4

In general, we ensure that adjacent same degree vertex are
assigned same color sets. The splitting graph of Pm from

u2, u3,. . . um−1 vertex degree is 4 and adjacent to each other.
In context of AVREC, four colors 1,2,3,4 are enough to
make all these vertex color sets to achieved similarly. Apart
from 4-degree vertex there are 2-degree verticesf(u1u

′
2) and

f(um u′
m−1) that are adjacent and the same degree vertex

for these edges introduce 2 different new colors that is
f (u1u

′
2) and f

(
umu′

m−1

)
are 5 and 6 respectively. So the

chromatic number will be maximum and also in graph 1-
degree u′

1,u′
m and 2 degree vertices u′

3, . . . u
′
m−2 are not

adjacent and colors are already assigned since these vertices
are adjacent with 4-degree vertices. This type of graph can
be colored using up to 6 different colors, following the basic
rules of graph coloring. If the edge chromatic number is 7,
adjacent vertices of the same degree will have distinct sets
of colors, resulting in a discontinuous chromatic number. For
example, f (u3u4) = 7 ⇒ u3 color sets = u4 color sets, but
u3, u4 color sets are not equal to other adjacent 4-degree
vertices. Therefore, we cannot take more than six colors to
make color sets equal, therefore χ′

avrec(Pm) = 6, (m ≥ 4).

Theorem 3. For the splitting graph of a cycle Cn (where
n ≥ 3), we have: χ′

avrecS(Cn) = 4.

Proof: Let the vertex sets of S(Cn) be
u1, u2, u3, . . . , un and u′

1, u
′
2, u

′
3, . . . , u

′
n. We can assign

colors to the edges according to the f -coloring rule,
depending on whether n is even or odd.

For even n:

f(uiu
′
i+1) = 1, i = 1, 2, 3, . . . , n− 1

f(unu
′
1) = 1, n = 4, 6, 8, . . .

f(uiui+1) = 2, i = 1, 3, 5, . . . , n− 1

f(uiui+1) = 3, i = 2, 4, 6, . . . , n− 2

f(unu1) = 3, n = 4, 6, 8, . . .

f(uiu
′
i−1) = 4, i = 2, 3, 4, . . . , n

f(u1u
′
n) = 4, n = 4, 6, 8, . . .
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For odd n:

f(uiu
′
i+1) = 1, i = 1, 2, 3, . . . , n− 1

f(unu
′
1) = 1, n = 3, 5, 7, . . .

f(uiui+1) = 2, i = 1, 3, 5, . . . , n− 2

f(unu
′
n−1) = 2, n = 3, 5, 7, . . .

f(uiui+1) = 3, i = 2, 4, 6, . . . , n− 1

f(u1u
′
n) = 3, n = 3, 5, 7, . . .

f(uiu
′
i−1) = 4, i = 2, 3, 4, . . . , n− 1

f(unu1) = 4, n = 3, 5, 7, . . .

The splitting graph of Cn has n maximum degree vertices
with a degree value of four. For these 4-degree adjacent
vertices, four colors are sufficient, resulting in uniform color
sets. Besides the n maximum degree vertices, there are n
two-degree vertices in the graph that are not adjacent. These
two-degree vertices connect to the already colored 4-degree
vertices. Interestingly, the colors for the 2-degree vertices
have already been assigned. We used only four colors for
the entire graph to ensure uniform color sets for adjacent
vertices with the same degree. Therefore, χ′

avrecS(Cn) = 4.
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Fig. 3: χ′
avrecS(C6) = 4
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Fig. 4: χ′
avrecS(C7) = 4

Theorem 4. For the splitting graph of the complete graph
Kr, χ′

avrecS(Kr) = ∆, where r ≥ 2.

Proof: Let the vertex sets of the splitting graph of Kr

be u1, u2, u3, . . . , ur and u′
1, u

′
2, u

′
3, . . . , u

′
r, satisfying the

f -coloring rule: When r = 2, there are two maximum-
degree vertices with degree 2 that are adjacent, and two 1-
degree vertices that are not adjacent. To satisfy the coloring
condition, only two colors are sufficient. When r = 3, there
are three maximum-degree vertices with degree 4 that are
adjacent, and three 2-degree vertices that are not adjacent.
To meet the coloring requirement, four colors are sufficient.
When r = 4, there are four maximum-degree vertices with
degree 6 that are adjacent, and four 3-degree vertices that
are not adjacent. Here, six colors are sufficient. For r = 5,
∆ = 8, thus χ′

avrec(K5) = 8. For r = 6, ∆ = 10, so
χ′

avrec(K6) = 10, and this pattern continues. In all these
graphs, colors are assigned for adjacent vertices with the
same degree. In the splitting graph of Kr, the maximum-
degree vertices are similar and adjacent to each other. The
other degree vertices, which are not adjacent, each have r−1
degrees. Additionally, colors are already assigned to these
vertices since they are adjacent to existing maximum-degree
vertices. Therefore, χ′

avrec(Kr) = ∆, for r ≥ 2.

Observation 1. For the tadpole graph, we have:
χ′

avrec(Tn,1) = 3, n ≥ 3.

Proof: Let the vertex set of the tadpole graph Tn,1

be u1, u2, u3, . . . , un and v1, satisfying the f -coloring rule.
Now, we assign adjacent vertex-reducible edge coloring to
the edges as follows:

f(unv1) = 3, n ≥ 3

f(u1un) = 2, n ≥ 3

f(uiui+1) =

{
1, i ≡ 1 (mod 2)

2, i ≡ 0 (mod 2)
, i = 1, 2, 3, . . .

The tadpole graph Tn,1 has n − 1 same 2-degree vertices
that are adjacent for all values of n. All 2-degree vertices
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have color sets assigned with {1, 2}. Apart from these, in all
graphs, there are two different categories of degree vertices:
un and v1. Therefore, the total colors used for all graphs
is 3, and the chromatic number of the tadpole graph is
χ′

avrec(Tn,1) = 3, for n ≥ 3.

Observation 2. For the tadpole graph, we have:
χ′

avrec(Tn,m) = 4, n ≥ 3, m ≥ 2.

Proof: Let the vertices of the cycle Cn be
u1, u2, u3, . . . , un and the vertices of the path Pm be
v1, v2, v3, . . . , vm. By connecting these two graphs with the
bridge e = unv1, we obtain the tadpole graph Tn,m. Now,
we assign adjacent vertex-reducible edge coloring to the
edges as follows:

f(unv1) = 3, n ≥ 3

f(unu1) = 2, n ≥ 3

f(uiui+1) =

{
1, i = 1, 3, 5, . . .

2, i = 2, 4, 6, . . .

f(vivi+1) =

{
4, i = 1, 3, 5, . . .

3, i = 2, 4, 6, . . .

Observation 1 follows similarly from Tn,1, regarding the
coloring for Cn and the bridge unv1 = 3. Additionally, in
the path Pm, there are m−1 vertices of degree 2, and the m-
th vertex is pendent. Here, the color set for 2-degree vertices
is {3, 4}. Thus, the maximum number of colors assigned is
4. Therefore, the AVREC chromatic number of Tn,m = 4,
for n ≥ 3 and m ≥ 2.

Theorem 5. For the splitting graph of the tadpole graph of
T(n,m), the χ′

avrecS(T(n,m)) = 12, n ≥ 3, m ≥ 3.

Proof: Taking the vertices of the splitting graph
of the tadpole graph, we have u1, u2, u3, . . . , un,
u′
1, u

′
2, u

′
3, . . . , u

′
n, and v1, v2, v3, . . . , vm, v′1, v

′
2, v

′
3, . . . , v

′
m.

Now AVREC is assigned to the edges as follows:

f(uiui+1) =

{
1, i = 1, 3, 5, . . .

2, i = 2, 4, 6, . . .

f(unu1) = 2, n ≥ 3

f(uiu
′
i+1) = 3, i = 1, 2, 3, . . . , n− 1

f(uiu
′
i−1) = 4, i = 2, 3, 4, . . . , n− 1

f(unu
′
n−1) = 5, n ≥ 3

f(unu
′
1) = 6, n ≥ 3

f(unv
′
1) = 7, n ≥ 3

f(unv1) = 8, n ≥ 3

f(vivi+1) =


8, i = 2, 4, 6, . . . ,m− 2 ifm is even
8, i = 2, 4, 6, . . . ,m− 3 ifm is odd
9, i = 1, 3, 5, . . . ,m− 2 ifm is odd
9, i = 1, 3, 5, . . . ,m− 3 ifm is even

f(vn−1v
′
m) =

{
8, ifm is odd
9, ifm is even

f(u′
nv1) = 10, n ≥ 3

f(vm−1vm) = 11, m ≥ 3

f(vmv′m−1) = 12, m ≥ 3

Following the above pattern for n ≥ 3,m ≥ 3, the obtained
chromatic number of the splitting graph of the tadpole graph
S(T(n,m)) is 12. Refer figure 5.

Theorem 6. For the splitting graph of the tadpole graph of
χ′

avrecS(T(n,1)) = 9, n ≥ 3.

Proof: A cycle Cn graph is joined to a singleton graph
k1 by a bridge to form the (n, 1)-tadpole graph, also known
as the n-pan graph. This means that the (n, 1)-tadpole graph
and the n-pan graph are isomorphic. Two particular examples
of this graph are the (4, 1)-tadpole graph, also called the
banner graph, and the (3, 1)-tadpole graph, also called the
paw graph. The vertices of the splitting graph of the tadpole
graph T(n,1) are u1, u2, u3, . . . , un, u′

1, u
′
2, u

′
3, . . . , u

′
n, and

v1, v
′
1. Now, by assign AVREC to the edges we get:

f(unu1) =

{
1, if n is odd
4, if n is even

f(uiui+1) =

{
1, i = 1, 3, 5, . . . , n− 1

4, i = 2, 4, 6, . . . , n− 1

f(uiu
′
i−1) = 2, i = 2, 4, 6, . . .

f(uiu
′
i+1) = 2, i = 3, 5, 7, . . .

f(unu
′
1) =

{
2, n = 3, 5, 7, . . .

3, n = 4, 6, 8, . . .

f(u1u
′
n) = 5, n ≥ 3

f(u1u
′
2) = 6

f(u1v
′
1) = 7

f(u1v1) = 8

f(u′
1v1) = 9

As the maximum value of k used is 9, for the (n, 1) tadpole
graph, the chromatic number based on AVREC is 9.

Theorem 7. For the tadpole graph’s splitting graph,
χ′

avrecS(T(n,2)) = 11, n ≥ 3.

Proof: Assume that the vertices of the tadpole graph’s
splitting graph are u1, u2, u3, . . . , un, u

′
1, u

′
2, u

′
3, . . . , u

′
n and

v1, v2, v
′
1, v

′
2. This is referred to with a forbidden theorem.

Theorem 8. For the wheel graph’s splitting graph,
χ′

avrecS(Wn) = n+ 5, n ≥ 5.

Proof: Assume that the vertices of the wheel graph’s
splitting graph are u1, u2, u3, . . . , um, u′

1, u
′
2, u

′
3, . . . , u

′
m. To

prove this theorem, we will discuss two cases: odd and even.
Case (i): If n is odd

f(uiun) = 1, i = 1, 2, 3, . . . , n− 1, n = 5, 7, 9, . . .

f(uiu
′
n) = 6, i = 1, 2, 3, . . . , n− 1, n = 5, 7, 9, . . .

f(uiui+1) =

{
2, i ≡ 1 (mod 2)

3, i ≡ 0 (mod 2)
, i = 1, 2, 3, . . . , n
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Fig. 5: χ′
avrecS(T8,7) = 12

f(uiu
′
i+1) = 4, i = 1, 2, 3, . . . , n− 2

f(un−1u
′
1) = 4, n = 5, 7, 9, . . .

f(ui+1u
′
i) = 5, i = 1, 2, 3, . . . , n− 1

f(u1u
′
n−1) = 5, n = 5, 7, 9, . . .

f(unu
′
i) = i+ n− 1, i = 1, 2, 3, . . . , n, n = 5, 7, 9, . . .

Case (ii): If n is even

f(uiu
′
i+1) = 1, i = 1, 2, 3, . . . , n− 2

f(un−1u
′
i) = 1, i = 6, 8, 10, . . .

f(uiun) = 2, i = 1, 2, 3, . . . , n− 1, n = 6, 7, 8, . . .

f(uiui+1) =

{
3, i ≡ 1 (mod 2)

4, i ≡ 0 (mod 2)
, i = 1, 2, 3, . . . , n− 2

f(un−1u
′
n−2) = 3, n = 6, 8, 10, . . .

f(u1u
′
n−1) = 4, n = 6, 8, 10, . . .

f(un−1u1) = 5, n = 6, 8, 10, . . .

f(uiu
′
i−1) = 5, i = 2, 3, 4, . . . , n− 2

f(uiu
′
n) = 6, i = 1, 2, 3, . . . , n− 1, n = 6, 8, 10, . . .

f(unu
′
i) = i+n− 2, i = 1, 2, 3, . . . , n, n = 6, 8, 10, . . .

The splitting graph of the wheel graph Wn has one maximum
degree vertex that is 2(n− 1), denoted un, (n− 1) 6-degree
vertices u1, u2, u3, . . . , un−1, one (n− 1)-degree vertex that
is u′

0, and (n − 1) 3-degree vertices u′
1, u

′
2, u

′
3, . . . , u

′
n−1.

There are (n − 1) 6-degree vertices that are only adjacent,
so this vertex color set must be the same. The remaining
vertices, which are not adjacent, also need to maximize the
chromatic number by allocating different colors. Therefore,
the chromatic number of avrecS(Wn) = n+ 5, n ≥ 5.

Observation 3. For the complete bipartite graph,
χ′

avrec(Kn,n) = n, n ≥ 3.

Theorem 9. For the splitting graph of the complete bipartite
graph, χ′

avrec S(Kn,n) = 2n, n ≥ 3.

Proof: Let X,Y be vertex sets of complete bipartite
graph u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn respectively
and to create a splitting graph of complete bipartite graph
taking new vertices u′

1, u
′
2, u

′
3, . . . , u

′
n and v′1, v

′
2, v

′
3, . . . , v

′
n.

In this graph u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn are
mutually adjacent to each other. Consequently, edge incident
2n maximum degree vertices are assigned with 2n color
sets. That is for corresponding n vertices, the maximum
assigned colors are 2n. Therefore, the chromatic number of
the splitting graph of the complete bipartite graph is 2n.
Also, we have 2n number of 3-degree vertices which are not
adjacent and these vertices are incident to already colored
maximum degree vertices.

Theorem 10. For the splitting graph of fan graph
χ′

avrecS(Fn) = n+ 12, n ≥ 5.

Proof: Let the splitting graph of the fan graph vertices
be u0, u1, u2, u3, . . . , un and u′

0, u
′
1, u

′
2, u

′
3, . . . , u

′
n. Now

assign AVREC to the edges as follows.

f(uiui+1) =


1, if i = 1, 3, 5, . . . , n− 1, if n is even,
1, for odd n, i = 1, 3, 5, . . . , n− 2,

2, if i = 2, 4, 6, . . . , n− 2, if n is even,
2, for odd n, i = 2, 4, 6, . . . , n− 1.

f(uiu
′
1) = 3, i = 2, 3, 4, . . . , n− 1

f(uiu
′
0) = 4, i = 2, 3, 4, . . . , n− 1

f(uiu
′
i+1) = 5, i = 2, 3, 4, . . . , n− 1

f(uiu0) = 6, i = 2, 3, 4, . . . , n− 1

f(u′
iu0) = i+ 11, i = 1, 2, 3, . . . , n

f(u1u
′
2) = 7

f(unu
′
n−1) = 8, n ≥ 5

f(u1u
′
0) = 9 ‘
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f(unu
′
0) = 10, n ≥ 5

f(u1u0) = 11

f(unu0) = n+ 12, n ≥ 5

As per the f -coloring rule, by following the above pattern,
the chromatic numbers are obtained. In this graph, there are
n− 2 same 6-degree adjacent vertices. There are six colors
which are enough to make color sets the same. These six
colors are incident to various different degree vertices, such
as n−2 3-degree independent vertices, two 2-degree vertices
for all n, one n-degree vertex, two 4-degree vertices, and one
2n-degree vertex. However, these six colors do not cover all
the edges, so we assign different colors to the remaining
edges that maximize the chromatic number. Therefore, the
chromatic number of the splitting graphs of the fan graph is
n+ 12, n ≥ 5.

III. CONCLUSION

We have studied the splitting graphs of path, cycles,
complete graphs, complete bipartite graphs, tadpole graphs,
fan graph and wheel graphs in our investigation of adjacent
vertex reducible edge coloring of splitting graphs. Our re-
search shows that the structural characteristics of the original
graphs drive the application of edge coloring techniques
in these splitting graphs, revealing distinct and intriguing
patterns.
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