
Enumeration of Subtrees of 4-Cactus Networks
Qi Yao, Lixin Dong, Feng Li

Abstract—For a given network, determining its reliability is
of great importance. Network reliability can be categorized
into global reliability and local reliability. The number of
spanning trees can be used to measure the global reliability
under edge failures, while the number of subtrees serves as an
indicator of local reliability under both edge and vertex failures.
Therefore, the enumeration of subtrees is of significant value
in network analysis and design. In this paper, we propose a
linear-time algorithm for counting the number of subtrees in
4-cactus networks, based on edge-deletion and vertex-deletion
contraction principles. Furthermore, we establish the upper and
lower bounds for the number of subtrees in 4-cactus networks
and characterize the extremal graphs that achieve these bounds.
These results provide valuable insights for evaluating network-
related indices and enhancing network reliability.

Index Terms—cactus networks, the number of subtrees,
graphs, algorithms

I. INTRODUCTION

W ITH the rapid development of technology and sci-
ence, we are surrounded by various types of net-

works. In addition to the more easily understood computer
and communication networks, many phenomena in our daily
lives can also be abstracted into specific networks. As long
as we identify the network nodes and the connections be-
tween them, we can derive the corresponding interconnected
network. It is clear that a network can be viewed as a
connection pattern between the components of a system.
The structure of a network can be clearly represented by a
graph, where the vertices represent the components in the
system, and the edges represent the connections between
these components. Additionally, edges can be classified as
directed or undirected, leading to the distinction between
directed graphs and undirected graphs. As networks play an
increasingly important role in our daily lives, the analysis and
design of networks have become of significant importance.
Furthermore, many networks may experience failures due to
the malfunction or failure of nodes and edges, which could
lead to network malfunctions, and in severe cases, cause
the entire network to fail. Therefore, the study of network
reliability is of great practical significance and application
value. Researchers have found that certain specific properties
of networks can be used to measure their reliability. The
number of spanning trees and the number of subtrees are
two important properties that can be used to assess network
reliability. Counting the spanning trees of a network can
be used to evaluate its global reliability, while counting the

Manuscript received May 26, 2025; revised July 25, 2025. This research
was supported by the Research Foundation from Qinghai Normal University
(Grant No. 2023QZR002).

Qi Yao is a postgraduate student at the College of Computer, Qinghai
Normal University, Xining 810008, China (e-mail: 81750@163.com).

Lixin Dong is an associate professor at the College of Computer, Qinghai
Normal University, Xining 810008, China (Corresponding author to provide
phone: +8613897663081; e-mail: 2013040@qhnu.edu.cn).

Feng Li is a professor at the College of Computer, Qinghai Normal
University, Xining 810008, China (e-mail: li2006369@126.com).

subtrees can be used to study its local reliability. Compared
with spanning tree enumeration, subtree counting involves
more complex combinatorial constructions and a greater
diversity of structural types. Therefore, the study of subtree
enumeration is crucial for network reliability analysis and
provides important guidance for network analysis and design.

Let G = (V (G), E(G)) be a graph, where V (G) is the
vertex set and E(G) is the edge set. Let n = |V (G)|
denote the number of vertices, and m = |E(G)| denote the
number of edges in G. We use Pn, Cn and Kn to denote the
path, cycle, and complete graph on n vertices, respectively.
A graph G is said to be connected if there exists a path
between any pair of vertices in G. If V (D) ⊆ V (G) and
E(D) ⊆ E(G), then the graph D is called a subgraph of G.
For a connected graph G, if the removal of a vertex u and all
edges incident to u results in a disconnected graph, then u is
called a cut vertex of G. In graph theory, a connected graph
without any cut vertices is called a block. A subgraph of G
is called a block of G if it is a block itself and the addition
of any vertex outside the subgraph results in a subgraph that
contains a cut vertex. If V (T) = V (G), E(T) ⊆ E(G),
and T is a tree, then T is called a spanning tree of G. Let
τ(G) denote the number of spanning trees of G. All acyclic
substructures of G are referred to as subtrees of G. Let η(G)
denote the total number of subtrees of G, ηu(G) denote the
number of subtrees of G that contain vertex u, and η(G−u)
denote the number of subtrees of G that do not contain vertex
u.

Counting problems are one of the core research areas
in combinatorial mathematics, and they have also become
a popular topic in graph theory. Since subtree enumeration
emerged as a research topic, many scholars have devoted con-
siderable effort to it and have achieved a number of important
results. Székely and Wang [1] were the first to study the
number of subtrees in trees. They determined the maximum
and minimum number of subtrees among all trees with n
vertices and characterized the structures of the extremal trees.
Yan and Yeh [2] investigated the problem of subtree enumer-
ation in trees using generating functions, based on the idea
of assigning weights to vertices and edges. They proposed
three linear-time algorithms to compute the total number of
subtrees, as well as the number of subtrees containing a
specific vertex or a pair of vertices. Their work introduced a
novel approach to subtree counting and also characterized
the corresponding extremal trees. Székely and Wang [3]
further investigated binary trees with the maximum number
of subtrees and explored the relationship between the number
of subtrees and the Wiener index. Kirk and Wang [4] studied
the trees with the maximum number of subtrees under a
given maximum degree constraint. Yang, Liu, and others [5]
investigated the enumeration of BC-subtrees in trees and
characterized the corresponding extremal structures. Dong
et al. [6] proposed a linear-time algorithm for investigating
the subtree enumeration problem in 3-cactus networks. They

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

established the upper and lower bounds of the number of
subtrees, as well as the entropy of subtrees in 3-cactus
networks. As an application, they further presented a linear-
time algorithm for computing the number of subtrees in Koch
networks. Zhang et al. [7] investigated several properties of
the number of subtrees in trees with a given degree sequence.
These properties were used to characterize trees with the
maximum number of subtrees among all trees with the same
degree sequence, and corresponding extremal results were
provided. Xiao et al. [8] proposed two recursive relations to
compute the number of subtrees in trees and proved that the
number of subtrees in all trees with n vertices lies within
a specific range. Sun et al. [9] studied subtree enumeration
in planar two-tree networks. By introducing virtual edges
and applying edge orientation techniques, they proposed two
linear-time algorithms to compute the number of subtrees
in planar two-tree and planar two-connected networks. As
applications, they also provided subtree-counting formulas
for Farey networks and GDURT networks. Sun et al. [10]
investigated subtree enumeration in two types of self-similar
networks. Using generating functions and dual transforma-
tions of two-forest, they solved the subtree enumeration
problem for these networks and proposed two linear-time
algorithms for computing their subtree generating functions.
Horibe et al. [11] proposed two algorithms for computing all
Characteristic Paths and Subtrees in Structurally Compressed
Tree-Structured Data, and implemented both algorithms on
a computer.

Cactus networks represent an important class of net-
works due to their unique structural properties. Numerous
researchers have explored their theoretical characteristics and
practical applications across various domains. Rautenbach
et al. [12] introduced a general definition for cactus net-
works and focused on their domatic number. Furthermore,
they characterized domatically full block-cactus graphs. Ben-
Moshe et al. [13] studied the center problem in cactus
networks and proposed two efficient algorithms for solv-
ing the 1-center and 2-center problems, respectively. Their
work holds significant implications for facility location and
optimization in networked systems. Liu et al. [14] inves-
tigated subsystem reliability based on cactus networks. By
employing a probabilistic failure model and the principle of
inclusion-exclusion, they derived approximations and upper
bounds for the subsystem reliability of multiprocessor sys-
tems, considering intersections of up to three subsystems.
Arcak et al. [15] studied the diagonal stability of cactus
graphs and proposed necessary and sufficient conditions
under which directed graphs satisfying the definition of
a cactus network exhibit diagonal stability. Building upon
their previous work in [14], Liu et al. further investigated
subsystem-based reliability of cactus networks in [16]. Using
a probabilistic failure model and the principle of inclusion-
exclusion, they derived approximations and upper bounds for
subsystem reliability by decomposing cactus-based networks
into (n−1)-dimensional subsystems and fixing a pair of ver-
tices. Ben-Moshe et al. [17] investigated the centdian prob-
lem in cactus networks and proposed new efficient sequential
and distributed algorithms for identifying all centdian nodes
in cycle graphs and cactus graphs. Cactus networks have
significant application value in network analysis, design, and
the development of high-reliability systems. When tree-like

topologies are not suitable for network design, extending to
cyclic topologies may enhance the performance of the net-
work. This paper primarily investigates the subtree enumer-
ation problem in 4-cactus networks. A linear-time algorithm
is proposed to compute the number of subtrees in 4-cactus
networks. Additionally, the minimum and maximum values
of the subtree count are determined, and the corresponding
extremal graph topologies are characterized.

II. ALGORITHM FOR ENUMERATING SUBTREES OF
4-CACTUS NETWORKS

In this section, we propose a linear-time algorithm for
computing the number of subtrees in 4-cactus networks and
prove its correctness. Before presenting the subtree enumera-
tion algorithm for 4-cactus networks, we first introduce some
important definitions and theorems.

Definition 1. [12] A graph is called a cactus graph if each
of its blocks is either a cycle or a complete graph K2. A
cactus graph in which every block is a quadrilateral (4-cycle
C4) is called a 4-cactus graph.

Definition 2. Let U(t) denote the set of all 4-cactus networks
containing t quadrilaterals (4-cycles C4). The following
recursive construction defines a 4-cactus network Gt ∈ U(t):

• For t = 0, G0 consists of a single vertex, referred to as
the initial vertex.

• For t = 1, G1 is a quadrilateral (4-cycle C4), referred
to as the initial quadrilateral. This quadrilateral is also
referred to as the initial square.

• For t ≥ 1, Gt−1 is a 4-cactus network generated by
t−1 iterations of the recursive construction. At the t-th
iteration, a folded “7-shaped” path P3 is added to the
network, and both endpoints of P3 are connected to a
vertex in Gt−1. The resulting network Gt is referred to
as a 4-cactus network.

For example, Figure 1 illustrates the recursive construction
process of a 4-cactus network G2.

If V (D) ⊂ V (G) and E(D) ⊂ E(G), then graph D is
called a proper subgraph of graph G. Let (u0, u1, u2, u3) de-
note a quadrilateral (4-cycle C4) with vertices u0, u1, u2, u3.
For a positive integer k ≥ 3, if in graph D, three of the four
vertices u0, u1, u2, u3 in a quadrilateral have degree 2, and
the fourth vertex has degree k, then this quadrilateral is called
a k-pendant quadrilateral, or simply a pendant quadrilateral.

According to the definition of a 4-cactus network, when
t ≥ 2, any Gt ∈ U(t) must contain a pendant quadrilateral,
and the corresponding Gt contains at least one vertex of
degree no less than 4. If Gt contains a 4-pendant quadrilateral
as defined, then the 4-cactus network is said to belong to Cat-
egory A. If Gt does not contain any 4-pendant quadrilateral,
then the 4-cactus network Gt is said to belong to Category
B. The following Theorem 3 presents some properties of 4-
cactus networks.

Theorem 3. Let t ≥ 0 be an integer, and let Gt ∈ U(t) be
a 4-cactus network generated through t iterations. Then the
following conclusions hold:
(1) Gt contains t quadrilaterals (4-cycles C4), 3t + 1 ver-

tices, and 4t edges.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

Fig. 1. Recursive Construction Process of the 4-Cactus Network G2.

(2) If (u0, u1, u2, u3) is a pendant quadrilateral in Gt, and
dGt(u1) = dGt(u2) = dGt(u3) = 2, then for t ≥ 2, u0

is a cut vertex of Gt.
(3) For t ≥ 3, every 4-cactus network G in Category B

contains two pendant quadrilaterals, (u0, u1, u2, u3) and
(u0, v1, v2, v3), that share a common vertex u0.

Proof. Conclusions (1) and (2) follow directly from Def-
inition 2. We now proceed to prove Conclusion (3). Let
G ∈ U(t) be a 4-cactus network in Category B. According
to Definition 2, when t ≥ 3, if G ∈ U(3), then G has one
vertex of degree 6 and nine vertices of degree 2. Therefore,
Conclusion (3) holds.

Assume t ≥ 4, and that Conclusion (3) holds for all
values less than t. According to Definition 2, G contains a
pendant quadrilateral (x,m1,m2,m3) such that dG(m1) =
dG(m2) = dG(m3) = 2. Since G belongs to Category B,
we have dG(x) > 4. Let G∗ = G − {m1,m2,m3}, then
G∗ ∈ U(t−1). If G∗ also belongs to Category B, then by the
inductive hypothesis, G∗ contains two pendant quadrilaterals
(u0, u1, u2, u3) and (u0, v1, v2, v3) that share a common
vertex u0. Since G belongs to Category B, the vertex u0 must
not be the degree-4 vertex in any 4-pendant quadrilateral in
G. If x /∈ {u0, u1, u2, u3, v1, v2, v3}, then the quadrilaterals
(u0, u1, u2, u3) and (u0, v1, v2, v3) remain pendant quadrilat-
erals in G, and thus Conclusion (3) holds. Assume now that
x ∈ {u0, u1, u2, u3, v1, v2, v3}. If x = u0, then the three
pendant quadrilaterals (u0, u1, u2, u3), (u0, v1, v2, v3), and
(u0,m1,m2,m3) all share the common vertex u0. Therefore,
Conclusion (3) also holds. If x ∈ {u1, u2, u3, v1, v2, v3}, by
symmetry, assume x = u1, then G contains two pendant
quadrilaterals: (u0, u1, u2, u3) and (u1,m1,m2,m3), with
u1 as their common vertex. Additionally, since dG(u1) =
4, so the quadrilateral (u1,m1,m2,m3) is a 4-pendant
quadrilateral. Therefore, G belongs to Category A, which
contradicts the fact that G belongs to Category B. If G∗

belongs to Category A, then G∗ contains a 4-pendant
quadrilateral (u∗

0, u
∗
1, u

∗
2, u

∗
3), where dG∗(u∗

1) = dG∗(u∗
2) =

dG∗(u∗
3) = 2. Since G belongs to Category B, we have

x ∈ {u∗
0, u

∗
1, u

∗
2, u

∗
3}. If x = u∗

0, then G contains two
pendant quadrilaterals: (x, u∗

1, u
∗
2, u

∗
3) and (x,m1,m2,m3),

which satisfy Conclusion (3). If x ∈ {u∗
1, u

∗
2, u

∗
3}, then G

belongs to Category A, which contradicts the assumption
that G belongs to Category B. In conclusion, Conclusion (3)
is proven. □

According to Definition 2, the topological structure of a 4-
cactus network can vary in many ways. Below, we introduce
two special types of 4-cactus networks: PA4

t and ST4
t . These

two specific types of 4-cactus networks are illustrated in

Figures 2 and 3, respectively. PA4
t is a quadrilateral path

consisting of t quadrilaterals (4-cycle C4), constructed by
connecting PA4

t−1 with a new quadrilateral. This connection
is made by identifying a degree-2 vertex of a pendant quadri-
lateral in PA4

t−1 with one vertex of the new quadrilateral.
ST4

t consists of t quadrilaterals (4-cycle C4), all sharing
exactly one common vertex, which is referred to as the center
of ST4

t .

Subtree-Counting Algorithm. Algorithm for enumerating
subtrees of a 4-cactus network Gt = (V (Gt), E(Gt)).
Initialize: Let Gt = (V (Gt), E(Gt)) be a 4-cactus network
consisting of t quadrilaterals (4-cycle C4). Its vertex set is
V (Gt) = {u0, u1, v1, w1, u2, v2, w2, . . . , ut, vt, wt}, and its
edge set is {e1, e2, . . . , e4t}, where for each i = 1, 2, . . . , t,
the vertices ui, vi, wi are newly added in the i-th recursive
iteration. Let η(Gt) denote the number of subtrees of Gt.
Initialize the weight of each vertex as an ordered pair of real
numbers (1, 0).

1: for (k = t; k ≥ 1; k −−) do
2: Let (p1, q1), (p2, q2), (p3, q3), and (p4, q4) denote

the weights of vertices uk, vk, wk, and the common
neighbor of uk and vk (excluding wk), respectively. After
deleting vertices uk, vk, wk, update the value of (p4, q4)
as follows:

p4 := p4
(
4p1p2p3 + p1 + p2 + p1p2

+ p1p3 + p2p3 + 1
)
,

q4 := q1 + q2 + q3 + q4 + p1p2p3

+ p1p3 + p2p3 + p1 + p2 + p3.

(1)

3: end for
4: return η(Gt) = p4 + q4.

It is easy to see that the Subtree-Counting algorithm
performs a total of t iterations, so its time complexity is
O(t). When executing the Subtree-Counting Algorithm on a
4-cactus network Gt ∈ U(t), we can regard the execution
order of the algorithm as the reverse of the construction
process of Gt. Specifically, during the construction of Gt, a
new quadrilateral is added in each iteration; conversely, each
iteration of the algorithm’s for-loop contracts and removes
one quadrilateral. Therefore, the for-loop iterations in the
algorithm are valid throughout the process, and by the end
of execution, only a single initial vertex remains.

To facilitate understanding of the execution process of the
Subtree-Counting Algorithm, two examples, Example 1 and
Example 2, are provided below.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

Fig. 2. The 4-cactus network PA4
t .

Fig. 3. The 4-cactus network ST4
t .

Example 1. Let G1 = (V,E) be a quadrilateral (4-cycle
C4), where V = {u0, u1, v1, w1} and E = {e1, e2, e3, e4},
as shown in Figure 4. Then G1 has six subtrees that do not
contain u0, namely the complete graphs on the vertex sets
{u1}, {v1}, {w1}, {u1, w1}, {v1, w1}, and G1 − {u0}. In
addition, G1 has ten subtrees that contain u0, specifically the
complete graphs on {u0}, {u0, u1}, and {u0, v1}, and the
graphs obtained by deleting a single vertex or a single edge:
G1 − {u1}, G1 − {v1}, G1 − {w1}, G1 − {e1}, G1 − {e2},
G1 − {e3}, and G1 − {e4}. Therefore, the total number
of subtrees of G1 is η(G1) = 6 + 10 = 16. Applying
the Subtree-Counting Algorithm, the initial weights of the
vertices u0, u1, v1, and w1 are all set to (1, 0). According to
equation (1), we obtain p4 = 10 and q4 = 6. Consequently,
by executing the Subtree-Counting Algorithm, we verify that
η(G1) = 16.

Example 2. Let G be a 4-cactus network generated through
five iterations, as illustrated in Figure 5. By applying the
Subtree-Counting Algorithm to G, the process of computing
the number of subtrees is visualized step by step in the
Figure 5. In each computation step i (where i = 1, 2, 3, 4, 5),
the three vertices ai, bi, ci are removed. At the final step, the
algorithm yields the result: η(G) = 43210 + 1254 = 44464.

Next, we prove the correctness of the Subtree-Counting
Algorithm.

Theorem 4. Let Gt be a 4-cactus network gener-
ated through t iterations, with vertex set V (Gt) =

Fig. 4. The 4-cactus network G1.

{u0, u1, v1, w1, u2, v2, w2, . . . , ut, vt, wt}, and let (p, q) de-
note the weight of vertex u0. When the Subtree-Counting
Algorithm terminates, the following conclusions hold:
(1) p is the number of subtrees of Gt that contain u0,

denoted by ηu0(Gt).
(2) q is the number of subtrees of Gt that do not contain

u0, denoted by η(Gt − u0).
(3) p+ q is the total number of subtrees in Gt, denoted by

η(Gt).

Proof. We apply mathematical induction on t. When t = 1,
G1 is a quadrilateral (4-cycle C4). According to the Subtree-
Counting Algorithm, we obtain p = 10 and q = 6. It has
been verified that η(G1) = 16. Therefore, the conclusions
hold for t = 1. Now, assume that k ≥ 2, and that the above
conclusions hold for all t < k.

When t = k ≥ 2, the structure of Gt is illustrated in
Figure 6. The following proof will refer to Figure 6 and the
notations used therein. From the figure, it can be seen that S1,
S2, S3, and S4 are four vertex-disjoint subgraphs, where: S1

contains only one vertex u1 from the initial quadrilateral G1,
S2 contains only one vertex v1 from G1, S3 contains only
one vertex w1 from G1, and S4 contains only one vertex u0

from G1.
When the vertices u1, v1, w1, and u0 are each regarded as

a vertex in S1, S2, S3, and S4, respectively, for convenience
of notation, we relabel them as m1, m2, m3, and m4. In the
remainder of the proof of the theorem, we identify u1 = m1,
v1 = m2, w1 = m3, and u0 = m4.

Since G1 is the initial quadrilateral of Gt, each mi can
be regarded as the initial vertex of the 4-cactus network
Si. For each i ∈ {1, 2, 3, 4}, Si is at most a 4-cactus
network generated through t−1 recursive iterations. Thus, by

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

Fig. 5. The process of computing the number of subtrees of G.

Fig. 6. The graph Gt.

applying the Subtree-Counting Algorithm to each Si, when
the algorithm terminates, only the vertex mi remains in Si,
and the corresponding weights of m1, m2, m3, and m4 are
(p1, q1), (p2, q2), (p3, q3), and (p4, q4), respectively. By the
inductive hypothesis, conclusions (a) and (b) hold for each
i ∈ {1, 2, 3, 4}: (a) pi is the number of subtrees in Si that
contain mi; (b) qi is the number of subtrees in Si that do
not contain mi.

At this stage of the Subtree-Counting Algorithm, the
remaining graph to be processed is G1 = (u0, u1, v1, w1),
and the current weights of the vertices u0, u1, v1, and w1

are (p4, q4), (p1, q1), (p2, q2), and (p3, q3), respectively. In
the final execution of the Subtree-Counting Algorithm, the

vertices u1, v1, and w1 are deleted, and according to equation
(1), the weight (p, q) of the vertex u0 is updated as follows:


p = p4

(
4p1p2p3 + p1 + p2 + p1p2

+ p1p3 + p2p3 + 1
)
,

q = q1 + q2 + q3 + q4 + p1p2p3

+ p1p3 + p2p3 + p1 + p2 + p3.

(2)

Let TS denote the set of all subtrees of Gt. We now

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

partition the set TS in detail as follows:

T S0 = {T ∈ T S : m1 ∈ V (T) and m2,m3,m4 /∈ V (T)},
T S1 = {T ∈ T S : m2 ∈ V (T) and m1,m3,m4 /∈ V (T)},
T S2 = {T ∈ T S : m3 ∈ V (T) and m1,m2,m4 /∈ V (T)},
T S3 = {T ∈ T S : m4 ∈ V (T) and m1,m2,m3 /∈ V (T)},
T S4 = {T ∈ T S : m1,m2 ∈ V (T) and m3,m4 /∈ V (T)},
T S5 = {T ∈ T S : m1,m3 ∈ V (T) and m2,m4 /∈ V (T)},
T S6 = {T ∈ T S : m1,m4 ∈ V (T) and m2,m3 /∈ V (T)},
T S7 = {T ∈ T S : m2,m3 ∈ V (T) and m1,m4 /∈ V (T)},
T S8 = {T ∈ T S : m2,m4 ∈ V (T) and m1,m3 /∈ V (T)},
T S9 = {T ∈ T S : m3,m4 ∈ V (T) and m1,m2 /∈ V (T)},
T S10 = {T ∈ T S : m1,m2,m3 ∈ V (T) and m4 /∈ V (T)},
T S11 = {T ∈ T S : m1,m2,m4 ∈ V (T) and m3 /∈ V (T)},
T S12 = {T ∈ T S : m2,m3,m4 ∈ V (T) and m1 /∈ V (T)},
T S13 = {T ∈ T S : m1,m3,m4 ∈ V (T) and m2 /∈ V (T)},
T S14 = {T ∈ T S : m1,m2,m3,m4 ∈ V (T)},
T S15 = {T ∈ T S : m1,m2,m3,m4 /∈ V (T)}.

From the partition of the set T S , it follows that T S =⋃15
i=0 T Si. According to (a) and (b) above, we have:

|T S0| = p1, |T S1| = p2, |T S2| = p3, |T S3| = p4, and
|T S15| = q1+q2+q3+q4. Since the edge u1w1 is included
in every tree in T S5, it follows that |T S5| = p1p3, and
similarly, |T S6| = p1p4, |T S7| = p2p3, |T S8| = p2p4.
Because there are no edges u0w1 and u1v1 in Gt, it follows
that |T S4| = |T S9| = 0. Since the edges u1w1 and v1w1

are included in every tree in T S10, we have |T S10| =
p1p2p3, and similarly, |T S11| = p1p2p4, |T S12| = p2p3p4,
|T S13| = p1p3p4. Each tree in T S14 includes exactly
three edges of G1, and there are only four distinct eligible
combinations of edges in G1, therefore |T S14| = 4p1p2p3p4.
From the definitions of T Si and equation (2), we have:

ηu0
(Gt) = |T S3|+ |T S6|+ |T S8|+ |T S9|

+ |T S11|+ |T S12|+ |T S13|+ |T S14|
= p4 + p1p4 + p2p4 + 0 + p1p2p4 + p1p3p4

+ p2p3p4 + 4p1p2p3p4

= p4
(
4p1p2p3 + p1 + p2 + p1p2 + p1p3

+ p2p3 + 1
)
= p.

(3)

Similarly, we obtain:

η(Gt − u0) = |T S0|+ |T S1|+ |T S2|+ |T S4|
+ |T S5|+ |T S7|+ |T S10|+ |T S15|

= p1 + p2 + p3 + 0

+ p1p3 + p2p3 + p1p2p3 + q1 + q2

+ q3 + q4 = q.

(4)

Thus,

η(Gt) =
15∑
i=0

|T Si| = ηu0
(Gt) + η(Gt − u0) = p+ q.

This verifies that, when the Subtree-Counting Algorithm
terminates, the outputs correspond to the values stated in (1),
(2), and (3) of Theorem 4. Therefore, the correctness of the
Subtree-Counting Algorithm is established. □

Fig. 7. The 4-cactus network Gt.

III. UPPER AND LOWER BOUNDS ON THE NUMBER OF
SUBTREES OF 4-CACTUS NETWORKS

In this section, we determine the upper and lower bounds
on the number of subtrees of 4-cactus networks and derive
the corresponding formulas for these bounds. We first present
Lemma 5, which will be used in the subsequent proofs.

Lemma 5. [8] Let G be a connected network with n ≥ 3
vertices. Suppose G1 and G2 are two subgraphs of G such
that G = G1 ∪ G2, V (G1) ∩ V (G2) = {v}, and E(G1) ∩
E(G2) = ∅. Then:

η(G) = η(G1) + η(G2) + (η(G1)− η(G1 − v)− 1)

· (η(G2)− η(G2 − v)− 1)− 1.
(5)

Theorem 6. For an integer t, ST4
t is the unique 4-cactus net-

work in U(t) that attains the maximum number of subtrees.

Proof. Using mathematical induction on t, it is clear that the
theorem holds for t ∈ {0, 1, 2}. Let k ≥ 3 be an integer,
and assume that the theorem holds for all t < k. Now, we
consider the case when t = k.

Let G∗ be a 4-cactus network containing k quadrilaterals,
and let (u, v, w, x) be a pendent quadrilateral such that
dG∗(u) ≥ 4 and dG∗(v) = dG∗(w) = dG∗(x) = 2.
By Conclusion (2) of Theorem 3, u is a cut vertex. Let
G∗

1 = G∗ − {v, w, x} and G∗
2 = (u, v, w, x).

By the inductive hypothesis, we have η(G∗
1) ≤ η(ST 4

k−1),
with equality if and only if G∗

1 = ST 4
k−1. If G∗ = ST 4

k , then
G∗

1 − u = (k − 1)P3, where P3 denotes a path with three
vertices. If G∗ ̸= ST 4

k , then (k−1)P3 is a proper subnetwork
of G∗

1 − u, which implies that η(G∗
1 − u) > η((k − 1)P3).

Since G∗
2 = (u, v, w, x) and G∗

2 − u = P3, by Lemma 5, it
follows that η(G∗) ≤ η(ST 4

k), with equality if and only if
G∗ = ST 4

k . Thus, Theorem 6 is proved. □
Corollary 7 follows directly from the Subtree-Counting

Algorithm.

Corollary 7. Let Gt ∈ U(t) be a 4-cactus network, as
shown in Figure 7, where the circular region represents
Gt−1. Suppose (u, v, w, x) is a pendant quadrilateral of Gt,
with degrees dGt(v) = dGt(w) = dGt(x) = 2. Also, let
Gt−1 = Gt − {v, w, x}. Then:
(1) η(Gt) = 9ηu(Gt−1) + η(Gt−1) + 6.
(2) ηw(Gt) = 7ηu(Gt−1) + 3.
(3) ηx(Gt) = 6ηu(Gt−1) + 4.

Theorem 8. Let t ≥ 3 be an integer, and G ∈ U(t) be a 4-
cactus network that belongs to Category B. Then, there exists

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

a 4-cactus network G∗ that belongs to Category A such that
η(G∗) < η(G).

Proof. Let G ∈ U(t) be a 4-cactus network belonging to
Category B. From Conclusion (3) of Theorem 3, it follows
that G contains two pendant quadrilaterals (u0, u1, u2, u3)
and (u0, u, w, v), with degree conditions dG(u0) ≥ 6 and
dG(u1) = dG(u2) = dG(u3) = dG(u) = dG(w) = dG(v) =
2, as shown in Figure 8(a). Let S be as shown in Figure 8.
Let p0 (or q0) represent the number of subtrees in S that
contain u0 (or do not contain u0). From the Subtree-Counting
Algorithm, it is known that by deleting vertices u1, u2, and
u3 from G, the weight of vertex u0 is reset to (pu0

, qu0
) as

follows: pu0
= 10p0 and qu0

= q0 + 6. Then, by deleting
vertices u0, w, and v from G, the weight of vertex u is reset
to ηu(G) = 7pu0 +3 and η(G−u) = 3pu0 +3+ qu0 . Thus,
we obtain η(G) = 100p0 + q0 + 12.

Let G∗ be the graph shown in Figure 8(b), which G∗ is
obtained by gluing the vertex u0 from S and a degree-2
vertex from PA4

2. From the Subtree-Counting Algorithm, it
is known that by deleting vertices u0, u1, and u2 from G∗,
the weight of vertex u3 is reset to (pu3

, qu3
) as follows:

pu3 = 6p0 + 4 and qu3 = 4p0 + q0 + 2. Next, by deleting
vertices u3, u4, and u5 from G∗, the weight of vertex u is
reset to ηu(G

∗) = 6pu3
+4 and η(G∗−u) = 4pu3

+qu3
+2.

Thus, we obtain η(G∗) = 64p0 + q0 + 48. By calculating
η(G)−η(G∗) = 36p0−36, and since p0 > 1, it follows that
η(G)− η(G∗) > 0. Therefore, Theorem 8 is proved. □

Theorem 9. For an integer t, PA4
t is the unique 4-cactus net-

work in U(t) that attains the minimum number of subtrees.

Proof. From Theorem 8, we know that for every 4-cactus
network G that belongs to Category B in U(t), there exists
a 4-cactus network G∗ that belongs to Category A, and G∗

has fewer subtrees. Therefore, it is sufficient to prove that
PA4

t is the unique 4-cactus network in Category A with the
minimum number of subtrees.

We will use mathematical induction on t. Let Gt ∈ U(t)
be a 4-cactus network, and (u, v, w, x) be one of its pendant
quadrilaterals such that dGt

(u) = 4 and dGt
(v) = dGt

(w) =
dGt

(x) = 2. We will prove the following conclusions: (1)
PA4

t is the unique 4-cactus network in U(t) that attains
the minimum number of subtrees; (2) ηx(Gt) achieves its
minimum value if and only if Gt = PA4

t .
For t = 1 and t = 2, the conclusions are clearly

valid. Assume k ≥ 3, and that the conclusions hold for
all t < k. Now, consider the case where t = k. Let
Gk−1 = Gk − {v, w, x}. Since dGk−1

(u) = 2, by Corollary
7 and the induction hypothesis, we have:

ηx(Gk) = 6ηu(Gk−1) + 4 ≥ 6ηu(PA
4
k−1) + 4, (6)

η(Gk) = 9ηu(Gk−1) + η(Gk−1) + 6

≥ 9ηu(PA
4
k−1) + η(PA4

k−1) + 6.
(7)

Equality holds if and only if Gk = PA4
k. Thus, Theorem 9

is proved. □
Next, we will calculate the number of subtrees of ST4

k and
PA4

t , and provide the specific formulas for the calculations.
Let u0 be the central vertex of ST4

k, and let v0 be a degree-
2 vertex of a pendant quadrilateral in PA4

t , as shown in

Figures 2 and 3. Using the Subtree-Counting Algorithm, the
following recurrence formulas can be derived:{
ηu0(ST

4
t) = 10 ηu0(ST

4
t−1), ηu0(ST

4
0) = 1,

η(ST4
t − u0) = η(ST4

t−1 − u0) + 6, η(ST4
0 − u0) = 0.

(8)
and

ηv0(PA
4
t) = 6 ηv0(PA

4
t−1) + 4, ηv0(PA

4
0) = 1,

η(PA4
t − v0) = η(PA4

t−1 − v0)

+ 4 ηv0(PA
4
t−1) + 2, η(PA4

0 − v0) = 0.
(9)

We will solve the recurrence formulas separately and
obtain the following:

ηu0(ST
4
t) = 10t. (10)

η(ST4
t − u0) = 6t. (11)

η(ST4
t) = 10t + 6t. (12)

ηv0(PA
4
t) =

1

5
(9 · 6t − 4). (13)

η(PA4
t − v0) =

36

25
(6t − 1)− 6t

5
. (14)

η(PA4
t) =

81

25
· 6t − 6t

5
− 56

25
. (15)

By Theorems 6 and 9, η(ST4
t) and η(PA4

t) represent
the upper and lower bounds, respectively, on the number
of subtrees in a 4-cactus network with t quadrilaterals. As
shown in equations (12) and (15), it can be observed that
as the number of quadrilaterals increases, the number of
subtrees in ST4

t and PA4
t grows exponentially, increasing

at a very rapid rate.

IV. CONCLUSION

This paper investigates the subtree counting problem for 4-
cactus networks, proposes a linear algorithm for calculating
the number of subtrees in a 4-cactus network, determines
the two extreme values of the subtree count for 4-cactus
networks, and characterizes the network topologies corre-
sponding to these two extremal graphs. This work provides
useful guidance for the analysis and design of highly reli-
able networks. However, when extending the ideas of this
algorithm to n-cactus networks, certain challenges remain.
Future research could further explore the subtree counting
problem for n-cactus networks and extend the study to other
important network properties of cactus networks.

REFERENCES

[1] L. A. Székely and H. Wang, “On subtrees of trees,” Advances in
Applied Mathematics, vol. 34, no. 1, pp138–155, 2005.

[2] W. Yan and Y.-N. Yeh, “Enumeration of subtrees of trees,” Theoretical
Computer Science, vol. 369, no. 1-3, pp256–268, 2006.

[3] L. A. Székely and H. Wang, “Binary trees with the largest number of
subtrees,” Discrete applied mathematics, vol. 155, no. 3, pp374–385,
2007.

[4] R. Kirk and H. Wang, “Largest number of subtrees of trees with a given
maximum degree,” SIAM Journal on Discrete Mathematics, vol. 22,
no. 3, pp985–995, 2008.

[5] Y. Yang, H. Liu, H. Wang, and S. Makeig, “Enumeration of bc-subtrees
of trees,” Theoretical Computer Science, vol. 580, pp59–74, 2015.

[6] L. Dong, H. Zhao, and H.-J. Lai, “Entropy and enumeration of subtrees
in a cactus network,” Frontiers in Physics, vol. 8, p.575648, 2020.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

Fig. 8. (a) The Network G. (b) The Network G∗.

[7] X.-M. Zhang, X.-D. Zhang, D. Gray, and H. Wang, “The number
of subtrees of trees with given degree sequence,” Journal of Graph
Theory, vol. 73, no. 3, pp280–295, 2013.

[8] Y. Xiao, H. Zhao, Z. Liu, and Y. Mao, “Trees with large numbers
of subtrees,” International Journal of Computer Mathematics, vol. 94,
no. 2, pp372–385, 2017.

[9] D. Sun, L. Li, K. Liu, H. Wang, and Y. Yang, “Enumeration of subtrees
of planar two-tree networks,” Applied Mathematics and Computation,
vol. 434, p.127404, 2022.

[10] D. Sun, H. Liu, Y. Yang, L. Li, H. Zhang, and A. Fahad, “Enumeration
of subtrees of two families of self-similar networks based on novel
two-forest dual transformations,” The Computer Journal, vol. 67, no. 5,
pp1652–1662, 2024.

[11] T. Horibe, Y. Itokawa, T. Uchida, Y. Suzuki, and T. Miyahara,
“Enumeration algorithms for all characteristic paths and subtrees from
structurally compressed tree-structured data,” IAENG International
Journal of Computer Science, vol. 45, no. 1, pp206–218, 2018.

[12] D. Rautenbach and L. Volkmann, “The domatic number of block-
cactus graphs,” Discrete Mathematics, vol. 187, no. 1-3, pp185–193,
1998.

[13] B. Ben-Moshe, B. Bhattacharya, Q. Shi, and A. Tamir, “Efficient algo-
rithms for center problems in cactus networks,” Theoretical Computer
Science, vol. 378, no. 3, pp237–252, 2007.

[14] X. Liu, S. Zhou, J. Liu, and Z. Yu, “Subgraph reliability of the
cactus-based networks,” in 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion (QRS-C).
IEEE, 2021, pp890–896.

[15] M. Arcak, “Diagonal stability on cactus graphs,” in 49th IEEE Con-
ference on Decision and Control (CDC). IEEE, 2010, pp6553–6558.

[16] X. Liu, S. Zhou, J. Liu, and H. Zhang, “Reliability analysis of the
cactus-based networks based on subsystem,” The Computer Journal,
vol. 67, no. 1, pp142–152, 2024.

[17] B. Ben-Moshe, A. Dvir, M. Segal, and A. Tamir, “Centdian computa-
tion in cactus graphs,” Journal of Graph Algorithms and Applications,
vol. 16, no. 2, pp199–224, 2012.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2863-2870

__

