
 

 
Abstract—We study a deterministic model of a transit system 

with a rectangular service area to develop a new solution 
approach. We first point out that sometimes the iterative 
algorithm may be convergent to a point that is not the wanted 
solution. We construct an upper bound and a lower bound to 
run the bisection method that will converge to the optimal 
solution. The same numerical example used in two previously 
published papers was adopted by us to demonstrate that our 
solution approach is effective and efficient. Our paper will help 
researchers develop their solution algorithms. 
 

Index Terms—Bisection method, Iterative algorithm, 
Optimal solution, Bus transit model 
 

I. INTRODUCTION 

US transit systems with a rectangular service area had 
been studied by Kocur and Hendrickson [1], Chang and 

Schonfeld [2, 3], Imam [4], Yang et al. [5], Hung and 
Julianne [6], Lin and Julian [7], Tung et al. [8], Yang et al. [9], 
Lin and Hopscotch [10], Luo [11], Chen and Julian [12], and 
Wang et al. [13] to indicate that is a hot research topic. 
This paper will focus on Yang et al. [5] to provide a further 
discussion. Yang et al. [5] published a paper in the Journal of 
Transportation Engineering to revise the formulated solution 
proposed by Chang and Schonfeld [3] for bus service zones 
of a traffic model. Moreover, Yang et al. [5] provided an 
iterative method to construct a sequence that will converge to 
the optimal formulated solution. In this paper, we will first 
point out that sometimes the sequence generated by the 
iterative method is almost impossible to converge to the 
optimal solution. Second, we offer our approach with the 
bisection method to locate the optimal solution. Our findings 
will help those researchers who are not familiar with the 
algebraic approach of Yang et al. [5] and Chang and 
Schonfeld [3]. On the other hand, our sequence is derived by 
the bisection method that can be applied to any solution 
problem with continuous objective function which will be 
applied to many research areas. 
Several related articles with traffic models such as Furth [14], 
Kuah and Perl [15, 16], Yang and Bell [17], Yan and Chen 
[18], Ceder and Israeli [19], Tom and Mohan [20], Jara-Díaz 
and Gschwender [21], Agrawal and Mathew [22], Gao et al. 
[23], Kepaptsoglou and Karlaftis [24], Mauttone and 
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Urquhart [25], Bagloee and Ceder [26], Ranjbari et al. [27], 
Tirachini and Hensher [28], Cipriani et al. [29], Roca-Riu et 
al. [30], Xiong et al. [31], and Fielbaum et al. [32] that are 
worthy to be mentioned. 

II. NOTATION AND ASSUMPTIONS 

We use the same notation and assumptions as Chang and 
Schonfeld [3] and Yang et al. [5]. 

xz  = geometric factor for determining access time; 

wz  = ratio of wait time/headway; 

y  = express speed/local speed = express ratio; 

x  = value of access time ($/hr); 
w  = value of wait time ($/hr); 

tV  = bus speed during period t (miles/hr); 

v  = value of in-vehicle time ($/hr); 

tT  = duration of period t (hrs); 

s  = stop spacing (miles); 
r  = route spacing (miles); 

tq  = potential demand density in period t (trips/sq. 

mile/hr); 
L  = length of local bus route (miles); 
J  = express distance (miles); 

th  = headway in period t  (hr); 

g  = access speed (miles/hr); 

C  = total system cost ($); and 

tB  = bus operating cost in period t ($/vehicle hr). 

III. REVIEW OF Chang and Schonfeld [3] 

We will directly cite the results of Chang and Schonfeld [3] 
for the background explanation. They constructed a traffic 
model for bus service zones with the following total cost per 

trip  LhhrCC m ,,...,, 1 : 
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They computed the first partial derivatives to imply that 

Transit System with Rectangular Service Zone 

Xiaolin Li, Junling Zhang, Ming-Li Chen 

B 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2871-2880

 
______________________________________________________________________________________ 



 


 







 m

t tt

tt
m

t
tt

hV

TB

Tqrr

C

1

1

2

12
 


 






m

t tt

tt
m

t
tt

hV

TB

TqLyr

J

1

1

2

12

g

xzx ,        (3.2) 


 







 m

t t

tt
m

t
ttt

t V

TB

Tqrh
h

C

1

1

2

2
 














 m

t
tt

ttw
m

t t

tt
m

t
ttt Tq

Tqwz

V

TB

TqLryh

J

1

1

1

2

2
,      (3.3) 

for mt ,...,2,1 , and
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They solved the zeros for the system of first partial 

derivatives, 0
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first partial derivatives equaling to zero conditions, 
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for mt ,...,2,1 , and 





m

t t

tt
m

t tt

tt

V

Tq
rvy

Vh

TB
JL

11

4 ,            (3.7) 

where X  is defined as
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Next, they tried to combine equations in the above system 
to reduce into an equation of one variable, the length of a 
local bus route, L . They derived that 

  05.123  MJLyJL ,                    (3.9) 

in which 

 3334 ygvzzwxPXM xw ,                (3.10) 

and 
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The above result of Equation (3.9) provides a formulated 
solution for the optimal length with respect to the bus transit 

model with a rectangular service area.

 
IV. REVIEW OF Yang et al. [5] 

Yang et al. [5] first revised the questionable in Chang and 
Schonfeld [3] for the algebraic method of a cubic polynomial, 
and then they offered an analytical approach to rewrite 
Equation (3.9) as 
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Based on Equation (4.1), an iterative algorithm was 

generated with the initial point, 00 L  to imply that 
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Yang et al. [5] proved that their sequence derived by 
Equation (4.2) is an alternative sequence that will converge to 
the optimal solution of the area length.

 
V. OUR CHALLENGE FOR THE ITERATIVE METHOD 

Before we apply the bisection method to find the optimal 
solution, we present a motivation to explain under some 
extreme cases, unless the researchers knew the desired 
solution in advance, to execute an iterative algorithm cannot 
converge to the desired solution. 
Our goal is to find local positive minimum points of the 
objective function, fሺxሻ, with 

fሺxሻ ൌ xଷ െ 21xଶ ൅ 144x ൅ 168,            (5.1) 
for െ∞ ൏ ݔ ൏ ∞. Researchers computed the first derivetive 
to imply that 

dfሺxሻ dx⁄ ൌ 3xଶ െ 42xଶ ൅ 144,             (5.2) 
for െ∞ ൏ ݔ ൏ ∞. Researchers tried to solve dfሺxሻ dx⁄ ൌ 0 
by an iterative algorithm, and then there are two possible 
procedures,  

x ൌ ሺ14x െ 48ሻ x⁄ ,                         (5.3) 
and 

x ൌ ሺxଶ ൅ 48ሻ 14⁄ .                        (5.4) 
Based on Equation (5.3), the researchers will run 

x୩ାଵ ൌ ሺ14x୩ െ 48ሻ x୩⁄ ,                  (5.5) 
According to Equation (5.4), the researchers will execute 

x୩ାଵ ൌ ሺx୩
ଶ ൅ 48ሻ 14⁄ .                   (5.6) 

We recall the restriction of a local positive minimum point, 
the iterative algorithm proposed by Equation (5.5) cannot 
search for 0 ൑ x ൑ 24 7⁄  such that researchers will select 
Equation (5.6) to operate their iterative algorithm. 
Researchers considered the monotonic property of the 
generated sequence ሺx୩ሻ  to computed x୩ାଵ െ x୩ ൒ 0  is 
equivalent to x୩

ଶ ൅ 48 ൒ 14x୩ to imply that  
ሺx୩ െ 8ሻሺx୩ െ 6ሻ ൒ 0.                  (5.7) 

Based on Equation (5.7), researchers has five different 
selections for the initial point, (i) xଵ ൏ 6, (ii) xଵ ൌ 6, (iii) 
6 ൏ ଵݔ ൏ 8, (iv) xଵ ൌ 8, and (v) xଵ ൐ 8. 

For the case (i), with xଵ ൏ 6 , we already derive that 
xଶ ൐ xଵ. We recall Equation (5.6) to derive that if x୩ ൏ 6, 
then x୩ାଵ ൏ 6  such that ሺx୩ሻ  is a bounded above and an 
increasing sequence such that the limit of the ሺx୩ሻ exists. 
We will begin to prove that the sequence ሺx୩ሻ will converge 
to 6. We compute that 

6 െ x୩ାଵ ൌ ሺ36 െ x୩
ଶሻ 14⁄ , 

ൌ ሺ6 െ x୩ሻሾሺ6 ൅ x୩ሻ 14⁄ ሿ, 
൏ 6ሺ6 െ x୩ሻ 7⁄ .                           (5.8) 
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Referring to Equation (5.8), we obtain that 
6 െ x୩ାଶ ൏ 6ሺ6 െ x୩ାଵሻ 7⁄ , 

൏ ሺ6 7⁄ ሻଶሺ6 െ x୩ሻ.                         (5.9) 
We can abstractly express the finding of Equation (5.9) as 
follows, 

6 െ xଵା୩ ൏ ሺ6 7⁄ ሻ୩ሺ6 െ xଵሻ.                (5.10) 
We take the limit on the both sides of Equation (5.10) to 
imply that 

6 െ lim୩՜ஶ x୩ ൌ 0.                       (5.11) 
For the case (ii), with xଵ ൌ 6, we obtain that every x୩ ൌ 6, 

such that ሺx୩ሻ is a constant which will converge to 6. 
For the case (iii), with 6 ൏ ଵݔ ൏ 8 , our previous 

discussion only imply that xଶ ൏  ,ଵ. We recall Equation (5.6)ݔ
based on 6 ൏ ଵ, we derive that 6ݔ ൏  ଶ such that we showݔ
that 6 ൏ ୩ݔ ൏ 8, for k ൌ 1,2, …, and ሺx୩ሻ is a deccreasing 
sequence. 
We will begin to prove that the sequence ሺx୩ሻ will converge 
to 6. We compute that 

x୩ାଵ െ 6 ൌ ሺx୩
ଶ െ 36ሻ 14⁄ , 

ൌ ሺx୩ െ 6ሻሾሺx୩ ൅ 6ሻ 14⁄ ሿ, 
൏ ሺx୩ െ 6ሻሾሺxଵ ൅ 6ሻ 14⁄ ሿ.                  (5.12) 

Referring to Equation (5.12), we obtain that 
x୩ାଶ െ 6 ൏ ሺx୩ାଵ െ 6ሻሾሺxଵ ൅ 6ሻ 14⁄ ሿ, 

൏ ሺx୩ െ 6ሻሾሺxଵ ൅ 6ሻ 14⁄ ሿଶ.                 (5.13) 
We can abstractly express the finding of Equation (5.13) as 
follows, 

x୩ାଵ െ 6 ൏ ሾሺxଵ ൅ 6ሻ 14⁄ ሿ୩ሺxଵ െ 6ሻ.         (5.14) 
We take the limit on the both sides of Equation (5.14) to 
imply that 

ሺlim୩՜ஶ x୩ሻ െ 6 ൌ 0.                      (5.15) 
For the case (iv), with xଵ ൌ 8 , we obtain that every 

x୩ ൌ 8, such that ሺx୩ሻ is a constant which will converge to 8. 
For the case (v), with 8 ൏ ଵݔ , we already derive that 

xଶ ൐ xଵ , and then directly we know that 8 ൏ ଶݔ . 
Consequently, for k ൌ 1,2, …, we obtain that 8 ൏  .୩ݔ
We begin to show that ሺx୩ሻ will deverge to ∞. We compute  

x୩ାଵ െ 8 ൌ ሺx୩
ଶ െ 64ሻ 14⁄ , 

ൌ ሺx୩ െ 8ሻሾሺx୩ ൅ 8ሻ 14⁄ ሿ, 
൐ 8ሺx୩ െ 8ሻ 7⁄ .                          (5.16) 

Based on Equation (5.16), we obtain that 
x୩ାଶ െ 8 ൌ ሺx୩ାଵ

ଶ െ 64ሻ 14⁄ , 
ൌ ሺx୩ାଵ െ 8ሻሾሺx୩ାଵ ൅ 8ሻ 14⁄ ሿ, 

൐ ሺ8 7⁄ ሻଶሺx୩ െ 8ሻ.                       (5.17) 
We can abstractly express the finding of Equation (5.17) as 
follows, 

xଵା୩ െ 8 ൐ ሺ8 7⁄ ሻ୩ሺxଵ െ 8ሻ.              (5.18) 
We take the limit on the both sides of Equation (5.18) to 
imply that 

ሺlim୩՜ஶ x୩ሻ െ 8 ൌ ∞.                  (5.19) 
Based on our above discussion, for cases (i), (ii), (iii), the 

sequences will converge to 6. Under the case (v), the 
sequences will diverge to infinite. Only for case (iv), the 
constant sequence will converge to 8. 

For the objective function, fሺxሻ, of Equation (5.1), it have 
a local maximum point at x ൌ 6, and a local minimum point 
at x ൌ 8. If researchers tried to apply the iterative algorithm 
to find a local minimum point, unless in the initial setting to 
assume xଵ ൌ 8 (the desired result), the other initial point will 
not converge to the desired result. 

The above discussion provides a solid motivation for our 
study to apply the bisection method to locate the optimal 
solution. 

Hence, in the following, we will provide another approach 

to solving the positive solutions of equation (3.9).

 
VI. OUR PROPOSED APPROACH  

Yang et al. [5] already showed that  Lf  is an increasing 

function where     5.123 MJLyJLLf  .  

From   00 f  and   


Lf
L
lim  so that   0Lf  

has a unique positive solution, say *L . In the following, we 

will construct a lower bound, lL  and an upper bound, uL  

with the following condition,  u
l LLL *0 . 

Under a reasonable condition of 1L , we find an 
auxiliary function, 

    5.122 MJLyJLLh  ,          (6.1)

 with    LfLh  . The auxiliary function,  Lh  also is an 

increasing function with   00 h  and   


Lh
L
lim  so 

that   0Lh  has a unique positive solution, say #L  such 

that #L  is an upper bound for *L . Hence, we will take #L  
where the assumed upper bound is denoted as

  yJyMJLu  5.1 .                      (6.2)

 Next, we try to solve   0Lf  with

     5.123 MJLyJLLf  .                  (6.3)

 We rewrite Equation (6.3) as

      5.13 1 MJyLJLLf   ,                 (6.4)

 and then plugged 1L  into Equation (12) to obtain a new 

equation to denote it as  Lg , and then

      5.13 1 MJyJLLg  .                   (6.5)

 We solved the positive root, say ^L , for   0Lg  to 

yield that

  3 5.1^ yJyMJL  .                       (6.6)

 In the following, we will prove that ^L  is a lower bound 

for the solution of   0Lf .

 Owing to Yang et al. [5], we already knew that   00 f  

and  Lf  is an increasing function. Hence, we will show 

that   0^ Lf . That is,

     JyMJyJMyyM   315.03231 .    (6.7)

 Therefore, we derive that

    yMJJyJMyJ 5.2313232  .             (6.8)

 We simplify Equation (6.8) as follows

   31213131 yJMJy  .                    (6.9)

 We can simplify the result of equation (6.9) in a compact 
expression,

 5.1MyJJy  .                         (6.10)

 For further discussion, we rewrite equation (6.10) as 
follows,

     5.011 MJJy  .                    (6.11)
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Table 1. Results from bisection method. 
 

iteration 1 2 3 4 5  6  7 8  9  10 
L 5.1226  5.9080  5.5153  5.7117 5.6135 5.6626 5.6380 5.6258  5.6196  5.6166 

L-bound 3.5517  5.1226  5.1226  5.5153 5.5153 5.6135 5.6135 5.6135  5.6135  5.6135 
U-bound 6.6935  6.6935  5.9080  5.9080 5.7117 5.7117 5.6626 5.6380  5.6258  5.6196 

IL 3.1418  1.5709  0.7854  0.3927 0.1964 0.0982 0.0491 0.0245  0.0123  0.0061 
L: Bus route length; L-bound: Low bound; U-bound: upper bound; IL: Interval length. 
 
From the examples in Chang and Schonfeld [3] and Yang 

et al. [5], with 51.5M , ܻ ൌ 2, and ܬ ൌ 20, so that we 
claim that the following three conditions,

 y1 ,                               (6.12)

 J1 ,                               (6.13)

 and 
M2 ,                             (6.14)

 satisfied.

 Based on the conditions of equations (6.12-6.14), we show 
that

     5.0211 MJMJy  .              (6.15)

 We provide analytical proof to show that   0^ Lf  that 

was supported by the conditions of equations (6.12-6.14), 

such that ^L  is a lower bound.

 Hence we will take the lower bound as ^L . Therefore, the 
lower bound is denoted as 

lL  3 5.1 yJyMJ  .                   (6.16)

 Consequently, we will use the derivations of equations (6.2) 
and (6.16) as the upper bound and lower bound to run the 
bisection method.

 
VII. NUMERICAL EXAMPLES 

Under the same parameter setting as Chang and Schonfeld 
[3] and Yang et al. [5] with the following data:Bଵ ൌ 50, 
Bଶ ൌ 25 , Bଷ ൌ 25 , g ൌ 2.5 , J ൌ 20 , qଵ ൌ 120 , qଶ ൌ 48 , 
qଷ ൌ 12, Tଵ ൌ 3, Tଶ ൌ 3, Tଷ ൌ 4, v ൌ 5, vଵ ൌ 10, vଶ ൌ 12, 
vଷ ൌ 15, w ൌ 10, x ൌ 10, y ൌ 2, z୵ ൌ 0.5, andz୶ ൌ 0.25 
to execute our numerical example. 

We stop our iterative process when the difference between 
two consecutive terms in the derived length is less than 0.01. 

Based on the findings of Table 1, our increasing sequence 
converges to the optimal solution, 5.617, which is the same 
optimal solution for the service area length which was 
proposed by Yang et al. [5] to show the effectiveness and 
efficiency of our proposed solution approach. 

VIII. DIRECTION FOR FUTURE RESEARCH 

There are several papers, for example, Wang et al. [13], 
Luo [11], Yang et al. [9], Lin and Julian [7], and Yang et al. 
[5], that have worked on iterative approaches to find the 
optimal solution. After we point out the possible dilemma 
that may cause by the iterative algorithm. Researchers may 
reconsider those above-mentioned papers to apply our 
proposed solution method to find the optimal solution. 

Moreover, Chen and Julian [12], Lin and Hopscotch [10], 
Tung et al. [8], Hung and Julianne [6], Imam [4], Chang and 
Schonfeld [2, 3], and Kocur and Hendrickson [1] also studied 

transit bus models with a rectangular service zone. Our study 
will provide a new solution procedure for those models. 

There are some related articles that are recently published 
to indicate the hot research directions such that we list them 
in the following for practitioners: Ismail, and Al-Gounmeein 
[33], Octarina et al. [34], Fang et al. [35], Yayah et al. [36], 
Liu et al. [37], and Yendri et al. [38]. Ismail and 
Al-Gounmeein [33] provided a review for financial and 
economic time series models with related time series and 
long memory. Octarina et al. [34] developed heuristic 
algorithms and models to deal with discrete place issues in 
Palembang City with temporary disposal locations. Fang et al. 
[35] considered single species logistic models through 
bifurcation and qualitative analysis with feedback control and 
Allee effect. Yayah et al. [36] examined classification 
methods to carry out Telco customer dataset for trouble 
tickets. According to second-hand university platform, Liu et 
al. [37] developed E-sporas models to learn reputation 
mechanism. Yendri et al. [38] worked out rectangle 
partitioning problems by dynamic programming approach. 
Moreover, we recall that Yu et al. [39] dealt with data 
classification problems through support vector machine by 
Archimedes optimization algorithm and Henry gas solubility 
optimization algorithm. By quality factor and center 
frequency, Wai et al. [40] examined voltage mode biquad 
filter with electronic and independent control. With an 
inclined non-uniform channel, Gudekote et al. [41] 
considered Eyring Powell fluid with peristaltic transport 
under mass and heat transfer effects. Based on those referred 
papers, we provide several research directions for future  
development. 

IX. A Related Problem 

In this section, we study fuzzy controller design proposed 
by Guan and Zhao [42] to apply similarity measures among 
vague sets that had been examined by Li et al. [43], Hong and 
Choi [44], and Gau and Buwhrer [45]. They worked to 
analyze among vague sets the reasoning of similarity 
measures. 
Gau and Buwhrer [45] claimed that the fuzzy value along 
with the evidence of item in the family and the evidence of 
item not in the family is not sufficient to show that how much 
is the accuracy of those values, and then Gau and Buwhrer 
[45] construct a new approach to solve this dilemma. Gau and 
Buwhrer [45] developed vague sets to provide an alternative 
approach besides fuzzy sets that arouse attentions among 
researchers. Vague sets has the distinct character than fuzzy 
sets owing to the development of the membership function is 
easier than that proposed by fuzzy sets. 
We recall the fuzzy set, 

   8.0,5.01,  AA ft ,                    (9.1) 
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to indicate the among ten votes, five votes is favor the 
resolution, two votes are against the resolution, and the votes 
do not express their attention. 
Hence, the membership function is denoted as the lower 
bound in the favor of the proposal, and one minus the 
non-membership function is expressed as the lower bound if 
the against the proposal. 
Guan and Zhao [42] constructed the vague set, 

    iAiA ufut 1, ,                      (9.2) 

to show the exact grade, under the condition that sometimes 
the membership function is unknown. Guan and Zhao [42] 
assumed that 

     iAiAiA ufuut  1 ,               (9.3) 

with the restriction, 

    1 iAiA ufut .                     (9.4) 

The ith rule is defined as a column vector, its transport row 
vector is expressed in the following, 

Pi ൌ ൣሾt1i , 1 െ f1
i ሿ, … , ሾtmi , 1 െ fm

i ሿ൧,            (9.5) 
The "fact", denoted as "R" is expressed as 

R ൌ ൣሾtଵ, 1 െ fଵሿ, … , ሾt୫, 1 െ f୫ሿ൧.             (9.6) 
The main issue is to construct the procedure to defuzzy a 
vague set to a crisp set such that research can compare among 
vague sets. 
Guan and Zhao [42] considered the universe of discourse, 
denoted as E to represent the error, 

 neeE ,...,1 ,                          (9.7) 

where "a" is defined as the maximum among then, then 

 neea ,...,max 1 .                      (9.8) 

The vague set with domain E is to express the largest error, 
then 

 
 

a

ae
et

i

iA 2

1

1




 ,                    (9.9) 

and 

                       
 

 
1

1

1
2

2











a

ae
a

ae

ef
i

i

iA .               (9.10) 

X. OUR REVISIONS 

In this section, we will provide our improvements. We 
can rewrite Equations (9.9) and (9.10) as follows, 

tAሺeiሻ ൌ a ሺሺa െ eiሻ2 ൅ aሻ⁄ ,                 (10.1) 
and 

fAሺeiሻ ൌ ሺa െ eiሻ2 ሺሺa െ eiሻ2 ൅ a ൅ 1ሻ⁄ .    (10.2) 
Based on our expressions of Equation (10.1) and (10.2), we 
begin to compute  

 iA et    iA ef , 

 2aea

a

i 

 
 

1
2

2







aea

ae

i

i .         (10.3) 

However, we need that an extra restriction, 
0a ,                                 (10.4) 

to guarantee that 

  0iA et .                            (10.5) 

In the following, we provide an example, 
E ൌ ሼെ2,െ1,െ0.5, െ0.2, െ0.1 
െ0.05,0,0.05,0.1,0.2,0.5,1,2ሽ,              (10.6) 

to imply that 

21 e ,                               (10.7) 

then we obtain 

 
  9

1

22

2
2

1

1 



e

et A ,            (10.8) 

and 

   
  19

16

212

2
2

1

2
1

1 





e

e
ef A .        (10.9) 

The cardinal number of E is 13.  

The entries of 1313Mat  are 

ሼെ2, െ2, െ2, െ1, െ1, െ1, െ0.5, െ0.2, 
െ0.1, െ0.1, െ0.1, െ0.05,0,0.05, 
0.1,0.1,0.1,0.2,0.5,1,1,1,2,2,2ሽ.           (10.10) 

Hence, we know that in first row 
ሼെ2, െ2, െ2, െ1, െ1, െ1, 

െ0.5, െ0.2, െ0.1, െ0.1, െ0.1, െ0.05,0ሽ,    (10.11) 
and in the 13th row, 

ሼ0,0.05,0.1,0.1,0.1,0.2, 
0.5,1,1,1,2,2,2ሽ.                       (10.12) 

We may conclude that the membership value of this type of 
controller is more simpler to guarantee than traditional fuzzy 
controller. Consequently, more information can be preserved 
in the vague sets.  

XI. Examination of Interior Optimal Solution 

After an inventory model is constructed, how to derive the 
optimal solution becomes the important issue to solve the 
replenishment policy. We recall the following two research 
trends.  

First, Ho [46] developed an inventory system with 
constant rate defective items and stochastic crashable lead 
time. on the other hand, she could not decide how many 
solutions for the first partial derivative system. Lin et al. [47] 
found a pair of bounds to prove that the first partial derivative 
system has a unique solution. Nevertheless, Lin et al. [47] 
overlooked the local minimum on the boundary when the 
safety factor reduces to zero. Tung and Deng [48] completed 
the solution procedure proposed by Lin et al. [47] to prove the 
interior minimum value, if it exists, is less than the boundary 
minimum value.  

Second, Wu and Ouyang [49] constructed an inventory 
model with two holding costs and a probability distribution 
for defective items, but Wu and Ouyang [49] only provide an 
iterative procedure to search for the optimal solution. Tung et 
al. [50] pointed out the iterative procedure proposed by Wu 
and Ouyang [49] did not work and then they presented 
revision. Moreover, Tung et al. [50] obtained two reasonable 
conditions to prove the interior optimal solution exists and is 
unique. However, Tung et al. [50] ignored to check the two 
boundary local minimums. Lin et al. [51] provided a patch 
work for Tung et al. [50] to compare (i) An interior local 
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minimum, and (ii) Two boundary local minimums to verify 
the interior minimum is the global minimum.   

Based on our above discussion, to compare interior and 
boundary minimums is a significant problem in inventory 
systems. 

XII. Information Entropy 

Information entropy is to discuss the evaluate of 
vagueness. If there is only one possible result then the matter 
is completely decided and then the evaluation of hesitation is 
defined as zero. On the other hand, if there are many possible 
different results, and then the uncertainty should be bigger. 
We suppose that there are n possible events with the 
probability p୩ that will occur, with the restriction, 

∑ p୩ ൌ 1୬
୩ୀଵ .                           (12.1) 

Shannon [52] assumed the information entropy as follows, 
gሺpଵ, pଶ, … , p୬ሻ ൌ െ∑ p୩lnp୩

୬
୩ୀଵ ,          (12.2) 

which will attain its maximum when those n events have the 
identical probability, with 

pଵ ൌ pଶ ൌ ڮ ൌ p୬ ൌ 1 n⁄ .               (12.3) 
We plug the restriction of Equation (12.1) into the objective 
mapping of Equation (12.2) to convert from gሺpଵ, pଶ, … , p୬ሻ 
to gሺpଵ, pଶ, … , p୬ିଵሻ as follows, 

gሺpଵ, pଶ, … , p୬ିଵሻ ൌ െ∑ p୩lnp୩
୬ିଵ
୩ୀଵ , 

െሺ1 െ ∑ p୩
୬ିଵ
୩ୀଵ ሻlnሺ1 െ ∑ p୩

୬ିଵ
୩ୀଵ ሻ.            (12.4) 

Based on Equation (12.4), we compute the partial derivative 
of gሺpଵ, pଶ, … , p୬ିଵሻ in the following, for s ൌ 1,2, … , n െ 1, 

ப

ப୮౩
gሺpଵ, pଶ, … , p୬ିଵሻ ൌ െ lnpୱ െ pୱ ቀ

ଵ

୮౩
ቁ, 

lnሺ1 െ ∑ p୩
୬ିଵ
୩ୀଵ ሻ ൅ 1.                       (12.5) 

According to Equation (12.5), we solve 
ப

ப୮౩
gሺpଵ, pଶ, … , p୬ିଵሻ ൌ 0, to imply that 

lnሺ1 െ ∑ p୩
୬ିଵ
୩ୀଵ ሻ ൌ  lnpୱ,                    (12.6) 

for s ൌ 1,2, … , n െ 1. 
Referring to Equation (12.6), we derive that 

lnpଵ ൌ lnpଶ ൌ ڮ ൌ lnp୬ିଵ ൌ  lnሺ1 െ ∑ p୩
୬ିଵ
୩ୀଵ ሻ.   (12.6) 

We recall that the logarithmic mapping is a one to one 
function, such that we obtain that 

pଵ ൌ pଶ ൌ ڮ ൌ p୬ିଵ ൌ   ሺ1 െ ∑ p୩
୬ିଵ
୩ୀଵ ሻ.     (12.7) 

Owing to Equation (12.7), we show that  
pଵ ൌ pଶ ൌ ڮ ൌ p୬ିଵ ൌ 1 n⁄ .            (12.8) 

We plug our findings of Equation (12.8) into Equation (12.1) 
to yield that 

p୬ ൌ 1 n⁄ .                                   (12.9) 
Based on Equations (12.8) and (12.9), we show that the 
assertion of Equation (12.3) is valid. 

XIII. REVIEWING OF AN INEXACT INVENTORY MODEL  

We examine the inventory model developed by Covert 
and Philip [53], and extended by Misra [54], and then 
generalized by Jalan et al. [55] to find the exact holding cost 
to construct an exact inventory model. We will prove the 
optimal solution exists and is unique. Jalan et al. [55] 
assumed that the inventory holding cost might not be 
computed exactly as adopted by Covert and Philip [53] and 
Misra [54]. However, in this section, we will try to compute 
the exact holding cost and then derive the optimal solution. 
We recall the Equations (1) and (2) of Jalan et al. [55] so the 

system governing the inventory level,  tq , satisfying the 

following two equations: 

     btatqttq
dt

d
 1 ,        (13.1) 

for 10 tt  , and 

   btatq
dt

d
 ,                  (13.2) 

for Ttt 1 , with   01 tq .  

Jalan et al. [55] derived that 

    
t

xt dxebxaqtqe
0

0

  ,     (13.3) 

for 10 tt  . 

 00 qq   is the beginning inventory level. Based on 

Equation (13.3) with   01 tq , Jalan et al. [55] implied that 

  
1

0

0

t
x dxebxaq
 .              (13.4) 

Jalan et al. [55] combined Equations (13.3) and (13.4) to 
obtain that 

     
1t

t

xt dxebxaetq
  ,          (13.5) 

for 10 tt  , and it is trivial from Equation (13.2) to get 

      222
11 ttbttatq  ,           (13.6) 

for Ttt 1 . Jalan et al. [55] knew that the deteriorated 

items were 

  
1

0

0

t

dxbxaq .                 (13.7) 

However, we may rewrite the deteriorated items in a compact 
expression as follows, 

   
1

1
t

t

x dxebxa
 .              (13.8) 

For the inventory carrying cost, they followed the 
approximated method as Covert and Philip [53] and Misra 
[54] such that they did not compute the exact carrying cost. 
Instead, they only considered the inventory level as a straight 
line so they used the average of the beginning inventory level, 

 0q , and the ending inventory level,  1tq , as  

       2020 1 qtqq  ,                      (13.9) 

to represent the inventory level during 10 tt  . Hence, 

the carrying cost is   2011 qtC . We can claim that their 

model is not accurate when the deterioration rate is 
significant, the relative error for the carrying cost may 
considerable influence the optimal solution. Therefore, in this 
section, we will derive the exact carrying cost such that our 
average carrying cost per unit time will indicate the exact 
cost. 

XIV. Solution of Our Exact Inventory Model 

The average carrying cost per unit time is  dttq
T

C t


1

0

1 . 

We change the order of integration to rewrite it as 
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      
1 11

0

1

0

1

t t

t

xt
t

dxdtebxae
T

C
dttq

T

C   , 

   
1

0 0

1

t x
t dtdxeebxa

T

C x  .             14.1) 

The average system cost,  TtC ,1 , is composed of ordering 

cost (set-up cost), carrying cost, shortage cost, and 
deterioration cost such that 

  TtC ,1    
1

0 0

1
t x

tx dtdxeebxa
T

C   , 

   1
2

1
2 23

6
btbTatT

T

C
  


T

C3    
1

0

4 1
t

x dxebxa
T

C  .       (14.2) 

We found that 

  



TtC
T

,1    
 1

0 0
2

1
t x

t dtdxeebxa
T

C x 

 

   3
1

3
2

22
1

2
2

2

32
tT

T

bC
tT

T

aC
  


2
3

T

C    
1

0
2
4 1

t

dxebxa
T

C x ,       (14.3) 

and  

   
 



 1

1

0

1
1

1
1

,
t

tt dteeC
T

bta
TtC

t

 
, 

      11
412

1 



 teCtTC

T

bta
.      (14.4) 

Based on Equation (14.3), if we solve   0,1 



TtC
T

 

then it implies that 

  3

0 0

1

1

CdtdxeebxaC
t x

tx

   

 

   
1

0

4 1
t

dxebxaC
x  

   3
1

322
1

22

32
tT

bC
tT

aC
 .         (14.5) 

On the other hand, referring to Equation (14.4), if we 

consider   0,1
1





TtC
t

, then it yields 

   124

0

1 11

1

1 tTCeCdteeC t
t

tt    
.  (14.6) 

Motivated by Equation (14.5), we assume an auxiliary 

function, say  1tg , as follows 

   11

1

1

2

4

02

1
11      t

t
tt e

C

C
dtee

C

C
ttg ,  (14.7) 

such that  1tgT   satisfies the first partial derivative 

condition   0,1
1





TtC
t

. With the help of  1tg , if we 

combine Equations (14.5) and (14.6), and then it yields a 

function in only one variable 1t . Hence, we assume a second 

auxiliary function, say  1th , as follows 

         3
1

3
1

22
1

2
1

2
1 32

ttg
bC

ttg
aC

th  , 

   
1

0 0

1

t x
t dtdxeebxaC

x   

   
1

0

43 1
t

dxebxaCC
x .         (14.8) 

To solve the system of equations for the first partial 

derivatives of  TtC ,1  is equivalent to solve   01 th . In 

the following, we provide a possible solution approach to 
prove that  

(a)   00 h ,  

(b)  1th  is an increasing function,  

and  

(c)   
 1

1

lim th
t

.  

Consequently, following our proposed solution approach, 

researchers will obtain that there is a unique value, say *t , 

that satisfies   0* th  and then researchers will prove that 
*t  is the optimal point. 

XV. A Related Problem of Imam 

Imam [4] also studied bus transit system with a 
rectangular service zone which is motivated by Chang and 
Schonfeld [2,3]. however, in Chang and Schonfeld [2,3], the 
combination of cost and profit is the weighted arithmetic 
mean. On the other hand, in Imam [4], the combination of 
cost and profit is the weighted geometric mean that will result 
in the calculation of the optimal solution for the maximum 
profit problem becomes a severely difficult challenge.  

We study the optimal solution for a traffic model under an 
exponential relation and rectangular service zones. There are 
two papers; Yang et al. [9] and Lin and Hopscotch [10] both 
have tried to solve the same problem. However, their solution 
procedure contained questionable results that will be 
explained in this paper. The same numerical example in Yang 
et al. [9] and Lin and Hopscotch [10] will be used to 
demonstrate their doubtful findings. 

Yang et al. [9] pointed the formulated solution of Imam [4] 
is not workable and then Yang et al. [9] provided their 
formulated optimal solution for the service route length. 
However, Lin and Hopscotch [10] showed that Yang et al. [9] 
committed mathematical derivation mistakes such that their 
findings need revisions. In this paper, we will point out that 
Imam [4], Yang et al. [9] and Lin and Hopscotch [10] 
overlooked a fundamental criterion in the second model of 
Imam [4]. We will provide a detailed explanation for their 
negligence. The same numerical example in Yang et al. [9] 
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and Lin and Hopscotch [10] is adopted to demonstrate their 
negligence. We adopt the same notation and assumptions of 
Imam [4], Yang et al. [9] and Lin and Hopscotch [10], in the 
following notation. 
W  stands for the width of bus service zone measured in 

miles. 

T  stands for the time interval with bus service. 

P  stands for the local transit travelers conceded over area 

LW  and time T .  

L  stands for the length of examined zone measured in miles. 

F  stands for the charge for the local bus service. 

 a  stands for the coefficient of each mode choice. 

v  stands for the average bus velocity measured in miles. 

t  stands for the transit type divide. 

s  stands for the distance between two adjacent bus routes 

measured in miles. 

q  stand for the bus capacity. 

p  stands for journey density with all other modes. 

ln  stands for the mapping of natural logarithms. 

k  stands for the proportion of expected user waiting period 

to the headway. 

j  stands for the average on foot velocity per mile for per 

minute. 

h  stands for the headway on bus course measure in minutes. 

d  stands for the average passenger journey length measured 

in miles. 

c  stands for the bus operating fee for each hour. 

b  stands for the distance between bus stops along each route 

measured in miles. 

We directly quote the findings of Lin and Hopscotch [10] 

as the starting point for a review of previous results. Lin and 

Hopscotch [10] obtained the objective function in two 

variables: headway, h  and service route width s , 

  shmP , , 

122

32

2

44

B

q

j

b

j

s
khsh

B

sh

B
a































    (15.1) 

with the following abbreviations, 

  543 1
12

aaa dFvdTpWaB  ,             (15.2) 

vWTcB 23  ,                          (15.3) 

and  

  543

11
aaa dFvdpaB  .                (15.4) 

XVI. Our Improvements 

In Imam [4], Yang et al. [9], and Lin and Hopscotch [10], 

they considered traffic models for a rectangular service zone 

with length L  and width W . Researchers uniformly 

partition width W  into N  parts such that we know the 

relationship,  

s
N

W
 .                                 (16.1) 

Hence, we derive that 

N
s

W
 ,                              (16.2) 

must be a natural number. 

We use the numerical example of Yang et al. [9] and Lin and 

Hopscotch [10] that is cited from Kocur and Hendrickson [1] 

with the following data: 38.01 a , 0081.02 a , 

0033.03 a , 0014.04 a , 0328.05 a , 

2.0b , 5.0c , 3d , 05.0j , 4.0k , 

59.3p , 45q , 60T , 167.0v , 74.0F  

and 4W . In Yang et al. [9], they obtained that  

142.9* h ,                            (16.3) 

731.0* s ,                            (16.4) 

and  

885.4* L .                            (16.5) 

In Lin and Hopscotch [10], they derived that  

9695.0* s ,                           (16.6) 

1187.12* h ,                         (16.7) 

7859.2* L ,                           (16.8) 

and 

 *** ,, LhsmP 4508.339 .               (16.9) 

We recall the results in Yang et al. [9] with 4W  and 

731.0* s  such that 

47.5
*


s

W
,                             (16.10) 
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which is not a natural number. When 4W , in Lin and 

Hopscotch [10], they found that 9695.0* s  so that 

13.4* 
s

W
.                                 (16.11) 

Both of the results in Equations (14.7) and (14.8) are not a 
natural number which is violated the restriction for the 
partition number must be a natural number. 

We may point out several possible directions for the 
future study that is motivated by Yepes and Medina [56].  

The most possible research direction is to solve 

  NNhmP
dN

d
,  by Equation (16.4) with  Nh

dN

d
 

derived by Equation (16.3), and then we expect that  

   0, NNhmP
dN

d
,               (16.12) 

has a unique positive solution, which was denoted as N . 
We predict that  

   0, NNhmP
dN

d
,                  (16.13) 

for  NN0  and  

   0, NNhmP
dN

d
,                  (16.14) 

for  NN , such that N  is the optimal solution for 
continuous restricted domain as mentioned in Spiegel [57]. 

For the discrete restriction, then  N  and   1N  are 

two candidates for the maximum solution for the natural 
number. 

XVII. Conclusion 

In this paper, we first provide an example to illustrate that 
sometimes the convergent sequence generated by an iterative 
method will converge to a solution that is not the desired goal. 
Moreover, we illustrate a new solution method that will use 
the bisection method to search for the optimal solution. We 
provide a pair of upper bound and lower bound to execute the 
convergent process. Our approach is examined by the same 
example used in Chang and Schonfeld [3] and Yang et al. [5] 
to indicate our approach can derive the optimal solution. 

We also examined Guan and Zhao [42] to derive the matrix 
representation by Equation (10.10-10.12). We derive the 
exact carrying cost to revise Jalan et al. [55], and then for our 
proposed model, we prove the existence and uniqueness of 
the optimal solution.  

We studied the bus transit system proposed by Imam [4], 
Yang et al. [9], and Lin and Hopscotch [10], to point out their 
negligence to check whether or not the rectangular width 
divide by their derived the route width will result in a natural 
number. 

REFERENCES 
[1] G. Kocur, C. Hendrickson, "Design of local bus service with demand 

equilibration," Transportation Science, vol. 16, pp. 149-170, 1982. 
[2] S. K. Chang, P. M. Schonfeld, "Multiple period optimization of bus 

transit systems. Transportation Research Part B-Methodological, vol. 
25, pp. 453-478, 1991. 

[3] S. K. Chang, P. M. Schonfeld, "Optimal dimensions of bus service 
zones," Journal of Transportation Engineering, vol. 119, no. 4, pp. 
567-584, 1993. 

[4] M. O. Imam, "Optimal design of public bus service with demand 
equilibrium," Journal of Transportation Engineering, vol. 124, pp. 
431-436, 1998. 

[5] G. K. Yang, J. Lin, P. Julian, "Solution structure for an analytic model 
of bus service zones," Journal of Transportation Engineering, vol. 140, 
06013001, 2014. 

[6] K. C. Hung, P. Julianne, "An Improved Solution Method for Bus 
Service Zones," Journal of Interdisciplinary Mathematics, vol. 18, pp. 
629-637, 2015. 

[7] S. C. Lin, P. Julian, "Monotonic Approach for Optimal Route Length 
of Bus Service Zoom Model," Journal of Interdisciplinary 
Mathematics, vol. 18, pp. 417-425, 2015. 

[8] C. T. Tung, C. H. Chu, K. C. Hung, P. S. Deng, "Improved Analytic 
Model of the Optimum Dimensions Designated for Transit Bus Service 
Zones," Journal of Transportation Engineering, vol. 141, 04014095, 
2015. 

[9] G. K. Yang, C. T. Tung, C. Hopscotch, "Rectangular Bus Service Zone 
without Capacity Constraint," Journal of Interdisciplinary 
Mathematics, vol. 18, pp. 649-656, 2015. 

[10] S. C. Lin, C. Hopscotch, "Bus service model with rectangular service 
zone under exponential relation," International Journal of Information 
and Management Sciences, vol. 27, pp. 61-72, 2016. 

[11] X. R. Luo, "Transit network models with rectangular service zone 
revisit," Journal of Discrete Mathematical Sciences and Cryptography, 
vol. 20, pp. 503-514, 2017. 

[12] P. S. Chen, P. Julian, "Bus model with a rectangular service zone 
revisit," Journal of Transportation Engineering, vol. 144, 04017080, 
2018. 

[13] B. Wang, E. Lin, Z. Chen, "Improved Solution for Traffic Model with a 
Rectangular Service Zone," International Journal of Scientific & 
Engineering Research, vol. 10, pp. 72-84, 2019. 

[14]  P. G. Furth, "Zonal route design for transit corridors," Transportation 
Science, vol. 20, pp. 1-62, 1986. 

[15] G. K. Kuah, J. Perl, "Optimization of feeder bus routes and bus-stop 
spacing," Journal of Transportation Engineering, vol. 114, pp. 
341-354, 1988. 

[16] G. K. Kuah, J. Perl, "The feeder-bus network-design problem," Journal 
of the Operational Research Society, vol. 40, pp. 751-767, 1989. 

[17] H. Yang, M. G. H. Bell, "Models and algorithms for road network 
design: a review and some new developments," Transport Reviews, vol. 
18, pp. 257-278, 1998. 

[18] S. Yan, H. L. Chen, "A scheduling model and a solution algorithm for 
inter-city bus carriers," Transportation Research Part A-Policy and 
Practice, vol. 36, pp. 805-825, 2002. 

[19] A. Ceder, Y. Israeli, "User and operator perspectives in transit network 
design," Transportation Research Record, vol. 1623, pp. 3-7, 1998. 

[20] V. M. Tom, S. Mohan, "Transit route network design using frequency 
coded genetic algorithm," Journal of Transportation Engineering, vol. 
129, pp. 186-195, 2003. 

[21] S. Jara-Díaz, A. Gschwender, "Towards a general microeconomic 
model for the operation of public transport," Transport Reviews, vol. 
23, pp. 453-469, 2003. 

[22] J. Agrawal, T. V. Mathew, "Transit route network design using parallel 
genetic algorithm," Journal of Computing in Civil Engineering, vol. 18, 
pp. 248-256, 2004. 

[23] Z. Gao, H. Sun, L. L. Shan, "A continuous equilibrium network design 
model and algorithm for transit systems," Transportation Research 
Part B-Methodological, vol. 38, pp. 235-250, 2004. 

[24] K. Kepaptsoglou, M. Karlaftis, "Transit route network design problem: 
Review," Journal of Transportation Engineering, vol. 135, pp. 
491-505, 2009. 

[25] A. Mauttone, M. E. Urquhart, "A route set construction algorithm for 
the transit network design problem," Computers and Operations 
Research, vol. 36, pp. 2440-2449, 2009. 

[26] S. A. Bagloee, A. Ceder, "Transit-network design methodology for 
actual-size road networks," Transportation Research Part 
B-Methodological, vol. 45, pp. 1787-1804, 2011. 

[27] A. Ranjbari, A. Shariat-Mohaymany, S. M. M. Amiripour, "Transit 
network design: The necessity of elastic demand consideration," 
Applied Mechanics and Materials, vol. 97-98, pp. 1117-1122, 2011. 

[28] A. Tirachini, D. A.; Hensher, "Bus congestion, optimal infrastructure 
investment and the choice of a fare collection system in dedicated bus 
corridors," Transportation Research Part B-Methodological, vol. 45, 
pp. 828-844, 2011. 

[29] E. Cipriani, S. Gori, M. Petrelli, "Transit network design: A procedure 
and an application to a large urban area," Transportation Research 
Part C-Emerging Technologies, vol. 20, pp. 3-14, 2012. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2871-2880

 
______________________________________________________________________________________ 



 

[30] M. Roca-Riu, M. Estrada, C. Trapote, "The design of interurban bus 
networks in city centers," Transportation Research Part A-Policy and 
Practice, vol. 46, pp. 1153-1165, 2012. 

[31] J. Xiong, W. Guan, L. Song, A. Huang, C. Shao, "Optimal routing 
design of a community shuttle for metro stations," Journal of 
Transportation Engineering, vol. 139, pp. 1211-1223, 2013. 

[32] A. Fielbaum, S. Jara-Diaz, A, Gschwender, "Beyond the Mohring 
effect: Scale economies induced by transit lines structures design," 
Economics of Transportation, vol. 22, 100163, 2020. 

[33] M. T. Ismail, R. S. Al-Gounmeein, "Overview of long memory for 
economic and financial time series dataset and related time series 
models: A review study," IAENG International Journal of Applied 
Mathematics, vol. 52, no. 2, pp. 261-269, 2022. 

[34] S. Octarina, F. M. Puspita, S. S. Supadi, "Models and heuristic 
algorithms for solving discrete location problems of temporary 
disposal places in Palembang city," IAENG International Journal of 
Applied Mathematics, vol. 52, no. 2, pp. 278-288, 2022. 

[35] K. Fang, J. Chen, Z. Zhu, F. Chen, X. Chen, "Qualitative and 
bifurcation analysis of a single species logistic model with Allee effect 
and feedback control," IAENG International Journal of Applied 
Mathematics, vol. 52, no. 2, pp. 320-326, 2022. 

[36] F. C. Yayah, K. I. Ghauth, C. Y. Ting, "The performance of 
classification method in Telco customer trouble ticket dataset," IAENG 
International Journal of Computer Science, vol. 49, no. 2, pp. 325-334, 
2022. 

[37] Q. Liu, Z. Yang, Y. Li, X. Qiao, C. Wei, "Study of reputation 
mechanism of second-hand university platform based on E-sporas 
model," IAENG International Journal of Computer Science, vol. 49, no. 
2, pp. 385-392, 2022. 

[38] S. Yendri, R. Soelaiman, U. L. Yuhana, S. Yendri, "Dynamic 
programming approach for solving rectangle partitioning problem," 
IAENG International Journal of Computer Science, vol. 49, no. 2, pp. 
410-419, 2022. 

[39] J. S. Yu, S. K. Zhang, J. S. Wang, S. Li, J. Sun, R. Wang, "Support 
vector machine optimized by Henry gas solubility optimization 
algorithm and Archimedes optimization algorithm to solve data 
classification problems," Engineering Letters, vol. 31, no. 2, pp. 
531-543, 2023.   

[40] M. P. P. Wai, W. Jaikla, A. Chaichana, C. Chanapromma, P. Suwanjan, 
W. Sunthonkanokpong, "Voltage-mode biquad filter using three 
LT1228s with independent and electronic control of center frequency 
and quality factor," Engineering Letters, vol. 31, no. 2, pp. 681-688, 
2023. 

[41] M. Gudekote, R. Choudhari, W. Prathiksha, B. Hadimani, H. Vaidya, 
K. V. Prasad, J. Shetty, "Heat and mass transfer effects on peristaltic 
transport of Eyring Powell fluid through an inclined non-uniform 
channel," Engineering Letters, vol. 31, no. 2, pp. 833-847, 2023. 

[42] X. Guan, X. Zhao, "Fuzzy controller design based on measures of 
similarity reasoning using vague sets," Proceeding of the 6th World 
congress on Intelligent control and automation, June 21-23, 2006, 
Dalian, China. 

[43] F. Li, Z. Xu, Z. Lv. "A approximate reasoning theory on the similarity 
measures of Vague sets," Computer Science and Engineering, vol. 24, 
no. 5, pp.107-110, 2002. 

[44] D. H. Hong, C. H. Choi, "Multicriteria fuzzy-making problems based 
on vague set theory," Fuzzy Sets and Systems, vol. 114, no. 1, pp. 
103-113, 2000. 

[45] W. L. Gau, D. J. Buwhrer, "Vague sets," IEEE Transactions on 
Systems, Man, and Cybernetics, vol. 23, pp. 610-614, 1993. 

[46] C. H. Ho, "A minimax distribution free procedure for an integrated 
inventory model with defective goods and stochastic lead time 
demand," International Journal of Information and Management 
Sciences, vol. 20, pp. 161-171, 2009. 

[47] S. W. Lin, Y. W. Wou, P. Julian, "Note on minimax distribution free 
procedure for integrated inventory model with defective goods and 
stochastic lead time demand," Applied Mathematical Modelling, vol. 
35, pp. 2087-2093, 2011. 

[48] C. T. Tung, P. S. Deng, "Improved solution for inventory model with 
defective goods," Applied Mathematical Modelling, vol. 37, pp. 
5574–5579, 2013. 

[49] K. S. Wu, L. Y. Ouyang, "(Q, r, L) Inventory model with defective 
items," Computers and Industrial Engineering, vol. 39, no. 1-2, pp. 
173–185, 2001. 

[50] C. T. Tung, Y. W. Wou, S. W. Lin, P. Deng, "Technical note on (Q, r, L) 
inventory model with defective items," Abstract and Applied Analysis, 
vol. 2010, pp. 1-8, 2010. 

[51] J. Lin, K. C. Hung, D. Tang, "Solution process for inventory models 
with crashable lead time," Applied Mathematics and Computation, vol. 
227, pp. 335-340, 2014. 

[52] C. E. Shannon, "A mathematical theory of communication," The Bell 
System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948. 

[53] R. Covert, G. Phillip, "An EOQ model for items with Weibull 
distribution deterioration," AIIE Transactions, vol. 5, pp. 323-326, 
1973. 

[54] R. K. Mishra, Problems of working capital with special reference to 
selected public sector undertakings in India, Mumbai, Maharashtra: 
Somiya Publications Private Limited, 1975. 

[55] A. K. Jalan, R. R. Giri, K.S. Chaudhuri, "EOQ model for items with 
Weibull distribution deterioration, shortages and trended demand," 
International Journal of Systems Science, vol. 27, no. 9, pp. 851-855, 
1996. 

[56] V. Yepes, J. Medina, “Economic heuristic optimization for 
heterogeneous gleet VRPHESTW.” Journal of Transportation 
Engineering, vol. 132, no. 4, pp. 303-311, 2006. 

[57] M. P. Spiegel, Mathematical handbook of formulas and tables, 
McGraw-Hill, New York, 1968. 
 

Xiaolin Li received his master degree from the Department of Mechanical 
Design, Xi’an University of Science and Technology, in 2010. Currently, he 
is an Instructor at the School of Intelligent Manufacturing, Weifang 
University of Science and Technology. His research interests include 
Mechanical Design and Manufacturing, Operational research, and 
Mechanical System Dynamics. 
 
Junling Zhang received his Master degree of Engineering from the 
Department of Mechatronic Engineering, Shan Dong University, in 2006. 
Currently, he is an Associate Professor at the School of Intelligent 
Manufacturing, Weifang University of Science and Technology. Main 
research directions of Zhang are Mechanical design, Operational research, 
and Intelligent control. 
 
Ming-Li Chen is an Associate Professor, at the School of Intelligent 
Manufacturing, Weifang University of Science and Technology. Received 
his Ph.D. degree from the Department of Materials Engineering, Tatung 
University, in 2008. His research interest includes Management Science, 
Mechanical and Materials Science, Management Information Systems, 
Artificial Intelligence, Pattern Recognition, and Image Processing. 
 
 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2871-2880

 
______________________________________________________________________________________ 




