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Abstract—This study aims to develop a novel approximation
algorithm for estimating fixed points of weak contraction
mappings in Banach spaces. We propose an iterative method
that demonstrates strong convergence and stability for weak
contraction mappings in closed and convex subsets of Banach
spaces. Theoretical analysis proves that the proposed algorithm
achieves a faster convergence rate compared to existing iterative
schemes, thereby improving upon previous results. Additionally,
we apply our results to estimate solutions for integral equa-
tions as its practical utility. Finally, numerical simulations are
provided to validate the theoretical findings and highlight the
efficiency of the algorithm.

Index Terms—fixed point, weak contraction, iterative method,
convergence rate, integral equation.

I. INTRODUCTION

F IXED point theory is a fundamental and useful math-
ematical concept that provides useful techniques to

solve various problems in many different fields. A deep
understanding of fixed points allows to make good prediction
of complex behavior in real problems such as economics
[1], [2], game theory [3], [4], [5], engineering [6], [7], and
applied mathematics [8], [9], [10], [11], [12], etc. In fixed
point theory, research focuses on showing the existence and
then proving the uniqueness of fixed points of various kinds
of contractive mappings and modification metric spaces. Af-
terward, once the existence of fixed points has been proved,
we have to determine the fixed point of related mapping.
However, finding a fixed point is a difficult task, especially
for nonlinear operators. Hence, approximation theory appears
to deal with this problem.

The first iterative method was introduced by Picard to
find the fixed point of Banach contraction mapping. Since
the rapid development and complexity of contraction map-
ping, many researchers have proposed some new iteration
processes, such as Mann iteration [13], two-step iteration by
Ishikawa [14], and Agarwal methods [15]. In 2000, Noor
[16] proposed a three-step iteration process with a better
convergence rate than previous methods. Afterward, the
authors continue to compete to find better iterative schemes
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with fast convergence rates, so that fixed points can be
obtained quickly. For more iteration processes can be seen
in [17], [18], [19], [20], [21].

Over the last few years, some researchers have proposed
new iteration processes with high-rate convergence to ap-
proximate fixed points of weak contraction mapping [8].
Some authors are interested in weak contraction mapping in
closed convex Banach spaces because it provides concepts
to approximate the solution of integral equations. Integral
equations can be formulated in the form of an operator or
mapping in metric space whose solutions are in the form
of fixed points. Hammad and Kattan [22] use fixed point
of weak contraction to study the solution Volterra integral
equations with delay. Also, Saif et.al. [23] used the Thakur
algorithm scheme to obtain the approximate solution to
boundary value problems. The use of integral equations in
various fields encourages many researchers to study, develop,
and prove new types of fixed points and estimate the solution
[24], [25].

Based on the description, it is important to define a new
iteration method that can be used to estimate the fixed point
of weak contraction mapping. The strong convergence prop-
erty and stability theorems will be investigated and studied.
In addition, we compare the convergence rate with some
other iteration schemes. The results obtained were applied
to estimate the solution of integral equation problems. Also,
some illustrative numerical simulations are given to support
our main results.

II. PRELIMINARIES

As the foundational knowledge, we give some definitions
and theorems related to iterative fixed points of weak con-
tractions mapping. Also, we assume that A is closed and
convex Banach space and B is a subset of A and not empty.
Consider J be self-mapping defined on B and Fix(J ) is
the set that contains all of fixed points from mapping J .

Berinde [26] proposed a new definition of a new type of
contraction mapping called weak contraction mapping. The
concept of weak contraction mapping is given as follows.

Definition II.1. [26] Suppose that A is Banach spaces. A
mapping J : A → A is defined as weak contraction mapping
if there exist number k ∈ (0, 1) and K ≥ 0 satisfied the
following conditions

∥J r − J s∥ ≤ k∥r − s∥+K∥s− J r∥ (1)

for all r, s ∈ A.

Some authors called weak contraction mapping with al-
most contraction mapping. This mapping type does not have
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a single fixed point unless the condition of the following
theorems is satisfied. The following theorem shows that
almost contraction mapping just has a single fixed point with
particular conditions.

Theorem II.1. [26] Consider that A is Banach spaces and
J : A → A is defined as weak contraction mapping that
satisfied (1). If mapping J satisfying

∥J r − J s∥ ≤ k∥r − s∥+K∥r − J s∥ (2)

for any r, s ∈ A, then weak contraction J has fixed point
in A. Furthermore, the self-mapping J just has single fixed
point.

Example II.1. Given R equipped with usual norm. The pair
(R, |.|) is a Banach spaces. Supposed B = [0, 100] and J :
Y → Y be a mapping defined by J a = a − 1 + e−a. For
any a, b ∈ B, we obtain

|J a− J b| ≤ (1− e−a)|a− b|+ 0|b− (a− 1 + e−a)| (3)

Hence, J a is weak contraction mapping on Y . Furthermore,
we get

|J a− J b| ≤ 1

2
|a− b|+ |a− (a− 1 + e−b)| (4)

So, J has fixed point on B.

Fixed points of weak contraction mapping can usually
be gained numerically using an iterative process. Some
researchers have introduced and investigated some iterative
algorithms to find the approximate value of fixed points of
weak contraction mapping. Suppose that given three positive
real sequences {τn}, {σn}, {ρn} on the interval (0, 1) and
u1 ∈ B as initial value. Thakur, at. al. [27] proposed a new
three-step iteration algorithm with definition below:

u1 ∈ B
wn = (1− τn)un + τnJ um

vn = J ((1− σn)un + σnwn)
un+1 = J vn.

(5)

Afterward, Ali, et. al. [28] defined a two-step iteration
algorithm and called F ∗ iteration process with sequence
{un} defined by u1 ∈ B

vn = J (1− τn)un + τnJ un)
un+1 = J vn.

(6)

Jubair, et. al. [29] also defined a new kind of estimation
process to obtained fixed point of almost contraction map-
ping. The algorithm was developed by following sequences

u1 ∈ B
wn = (1− τn)un + τnJ un

vn = (1− σn)J un + σnwn

un+1 = J ((1− ρn)J vn + ρnJ vn).

(7)

Piri, et. al. [30] introduced another iteration process as
follows 

u1 ∈ B
wn = J (1− τn)un + τnJ un

vn = Jwn

un+1 = (1− ρn)Jwn + ρnJ vn.

(8)

In 2021, Hussain, et. al. [31] proposed D iteration process
according to sequences defined by

u1 ∈ B
wn = J ((1− τn)un + τnJ un)
vn = J ((1− σn)J un + σnJwn)
un+1 = J vn.

(9)

The convergence rate of the iteration process can be
investigated using the definition below.

Definition II.2. [32] Let sequences {τn}, {σn} ⊂ R are
sequences that converges to τ and σ, respectively. Consider
that

lim
n→∞

|τn − τ |
|σn − σ|

= L (10)

1) The number L = 0, implies that sequence {τn}
converges to τ faster than {σn} to σ;

2) The number 0 < L < ∞, implies that sequence {τn}
and {σn} have the same rate of convergence.

Definition II.3. [32] Supposed {qn} and {pn} are two
estimation process that converges to the similar point p and
satisfied

|qn − p| ≤ τn and |pn − p| ≤ σn

If lim
n→∞

τn
σn

= 0, then {qn} converges to point p faster than
{pn} to point p.

The stability of the iteration process can be investigated
using a definition by Ostrowoski that states as follows:

Definition II.4. [33] Supposed B be a nonempty subset of
Banach spaces A and J : B → B is a mapping that has
fixed point p. Consider that p0 ∈ B and un+1 = H(T, un)
is an algorithmic process related to H. Consider {xn} be a
sequence that estimated {un} . If µn = ∥xn+1−H(T, xn)∥,
then un+1 = H(T, un) stable in respect to T (T -stable) if
satisfied

lim
n→∞

µn = 0 ⇐⇒ lim
n→∞

xn = p.

Afterward, Osilike proposed the notion of almost stable of
iteration methods which generalised the notion of stability
from Ostrowski. The definition is as follows.

Definition II.5. [34] Supposed B be a nonempty subset of
Banach spaces A and J : B → B is a mapping that has
fixed point p. Consider that p0 ∈ B and un+1 = H(T, un)
is an algorithmic process related to H. Consider {xn} be a
sequence that estimated {un} . If µn = ∥xn+1−H(T, xn)∥,
then un+1 = H(T, un) stable in respect to T (T -stable) if
satisfied

∞∑
n=0

µn < ∞ =⇒ lim
n→∞

xn = p.

The result from Berinde gives a powerful tool to show the
stability of the iteration process in the main theorems.

Lemma II.2. [35] Suppose {τn} and {σn} be nonegatives
real sequences and 0 ≤ c < 1, such that for all nonnegatives

integer number n satisfied τn+1 ≤ cτn + σn. If
∞∑

n=0
σn = 0

then
∞∑

n=0
τn = 0.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2881-2890

 
______________________________________________________________________________________ 



III. CONVERGENCE AND STABILITY RESULTS

We start our discussion by defined a new method of
iterative scheme and show that it strongly converges to a
unique fixed point of contraction mapping. We also prove
that our iteration method has a better convergence rate than
the previous iteration methods mentioned before by many
authors.

First, the new iteration process to estimate the fixed point
of weak contraction mapping is defined as follows and we
called as A-plus iteration.

u1 ∈ B
wn = J ((1− τn)un + τnJ un)
vn = J ((1− σn)J un + σnJwn)
un+1 = J ((1− ρn)Jwn + ρnJ vn)

(11)

Using the iteration algorithm (11), we prove that the A-
plus iteration algorithm has a higher convergence rate than
some other iteration methods. We also prove that the iteration
A-plus iteration process has a stable property with respect
to J . Furthermore, we give some numerical examples and
simulations to show that A-plus iteration is better than others
in approximate fixed points of weak contraction mapping.

Theorem III.1. Suppose that B be a nonempty closed and
convex subset of Banach space A and J : B → B be weak
contraction mapping that satisfied (2). If {un} be a sequnce
defined by A-plus iterative scheme with {τn}, {σn}, {ρn} are
real sequences in (0, 1), then {un} converges strongly to
unique fixed point of J .

Proof: We know that J is weak contraction mapping
that satisfied (2), so J has one fixed point in B. Let t ∈
Fix(J ). So, for all n ∈ N, we have

∥J un − t∥ = ∥J un − J t∥
≤ k∥un − t∥+K∥t− J un∥
= k∥un − t∥ (12)

According to definition of A-plus iteration process (11),
then

∥wn − t∥ = ∥J ((1− τn)un + τnJ un)− J t∥
≤ k∥(1− τn)un + τnJ un − t∥
= k∥(1− τn)(un − t) + τn(J un − t)∥
≤ [(1− τn)∥un − t∥+ τn∥J un − t∥]
≤ [(1− τn)∥un − t∥+ τnk∥un − t∥]
= k(1− τn(1− k))∥un − t∥ (13)

Using the last inequality (13), we have

∥vn − t∥ = ∥J ((1− σn)J un + σnJwn)− J t∥
≤ k [(1− σn)∥J un − t∥+ σn∥Jwn − t∥]
≤ k [(1− σn)k∥un − t∥+ σnk∥wn − t∥]
≤ k2 [(1− σn)∥un − t∥+

σnk(1− τn(1− k))∥un − t∥]
≤ k2 [1− (σn + kστn)(1− k)] ∥un − t∥

Also, it follows from A-plus iteration, we get

∥un+1 − t∥ =∥J ((1− ρn)Jwn + ρnJ vn)− J t∥
≤k∥(1− ρn)Jwn + ρnJ vn − t∥
≤k [(1− ρn)∥Jwn − p∥+ ρn∥J vn − t∥]
≤k [(1− ρn)k∥wn − t∥+ ρnk∥vn − t∥]
≤k2[(1− ρn)k(1− τn(1− k))∥un − t∥+
ρnk

2 [1− (σn + kστn)(1− k)] ∥un − t∥
=k3[(1− ρn)(1− τn(1− k))∥un − t∥+
ρnk [1− (σn + kστn)(1− k)] ∥un − t∥

Since 0 < k < 1 and sequences {τn}, {σn}, {ρn} ∈
(0, 1), then (1 − τn(1 − k)) < 1 and also
[1− (σn + kστn)(1− k)] < 1. Therefore, we get

∥un+1 − t∥ ≤ k3[(1− ρn) + ρnk]∥un − t∥
= k3(1− ρn(1− k))∥un − t∥ (14)

Now, by using the last inequalities (14), we have

∥un − t∥ ≤ k3[1− ρn−1(1− k)]∥un−1 − t∥
∥un−1 − t∥ ≤ k3[1− ρn−2(1− k)]∥un−2 − t∥

...

∥u2 − t∥ ≤ k3[1− ρ1(1− k)]∥u1 − t∥
∥u1 − t∥ ≤ k3[1− ρ0(1− k)]∥u0 − t∥

Hence, the inequality (14) becomes

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥
n∏

i=0

[1− ρi(1− k)] (15)

Since ρi(1− k) < 1 and using inequalities 1− λ ≤ e−λ for
all λ ∈ [0, 1], we get

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥e−(1−k)
∑n

i=0 ρi (16)

So,

lim
n→∞

∥un+1 − t∥ ≤ lim
n→∞

k3(n+1)∥u0 − t∥e−(1−k)
∑n

i=0 ρi

(17)

or lim
n→∞

∥un − t∥ = 0. Thus, sequences {un} converges
strongly to a unique fixed point of J .

The following result proves that the A-plus iteration pro-
cess (11) has property almost stable with respect to a weak
contraction mapping J .

Theorem III.2. A self-mapping A and J : B → B be weak
contraction mapping that satisfied (2) with B be a nonempty
closed and convex subset of Banach space , then A-plus
iterative scheme (11) is almost stable with respect to a weak
contraction mapping J .

Proof: Consider a sequance {un} that generated by
A-plus iteration scheme (11) and {sn} be a sequence that
approximate sequence {un}. Consider that

un+1 = G(J , un)

and

λn = ∥sn+1 − G(J , un)∥
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for all n ∈ N. In this context, we will show that
∞∑

n=0

λn < ∞ implies lim
n→∞

sn = t

We have

∥sn+1 − t∥ ≤ ∥sn+1 − G(J , sn)∥+ ∥G(J , sn)− t∥
= λn + ∥sn+1 − t∥
≤ λn + k3(1− ρn(1− k))∥sn − t∥

Since (1− ρn(1− k)) < 1, then

∥sn+1 − t∥ ≤ k3∥sn − t∥+ λn

Since
∞∑

n=0
λn < ∞, then

∞∑
n=0

∥sn − t∥ < ∞. Hence,

lim
n→∞

∥sn − t∥ = 0 or lim
n→∞

sn = t

Therefore, A-plus iteration process (11) is almost stable with
respect to weak contraction J .

The following theorem investigates the rate of convergence
of A-plus iteration algorithm compared with iteration process
mentioned before for almost contraction mapping.

Theorem III.3. Consider that B ⊂ A with A is a closed
and convex subset of Banach space and J : B → B be weak
contraction mapping that satisfied (2). Suppose that {u(1);n},
{u(2);n}, {u(3);n}, and {u(4);n} be sequences defined by
Thakur (5), Ali, et. al. (6) (F ∗ iteration), Jubair, et.al. (7),
Piri, et.al. (8) respectively and {un} be a sequence defined
by A-plus algorithm (11) with {τn}, {σn}, {ρn} ∈ [0, 1]. If t
is a fixed point of J , then A-plus iteration method converges
to t faster than other iteration processes mentioned before.

Proof: Consider the inequalities (15) in Theorem III.1,
so

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥
n∏

i=0

[1− ρi(1− k)]

Since 1− ρi(1− k) < 1 for all 0 ≤ i ≤ n, then

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥

Let τn = k3(n+1)∥u0 − p∥.
From iteration process defined by Thakur, et.al. (5), then

∥u(1);n+1 − t∥ ≤ k2[1− τnσn(1− k)]∥u(1);n − t∥

≤ k2(n+1)∥u(1);0 − t∥
n∏

i=0

[1− τnσn(1− k)]

Since [1− τnσn(1− k)] < 1 for all 0 ≤ i ≤ n, then

∥u(1);n+1 − t∥ ≤ k2(n+1)∥u(1);0 − t∥

Let τ(1);n = k2(n+1)∥u(1);0 − t∥. Therefore,

lim
n→∞

τn
τ(1);n

= lim
n→∞

k3(n+1)∥u0 − t∥
k2(n+1)∥u(1);0 − t∥

= 0

Therefore, according to Definition II.3, sequence {un} has
better convergence rate than sequence {u(1);n} to fixed point
t.
Next, as showed by Ali, et.al. (6), gives

∥u(2);n+1 − t∥ ≤ k2(1− (1− k)τn)∥u(2);n − t∥

Since (1− (1− k)τn) < 1, show

∥u(2);n+1 − t∥ ≤ k2(n+1)∥u(2);0 − t∥

Let τ(2);n = k2(n+1)∥u(2);0 − t∥. We get

lim
n→∞

τn
τ(2);n

= lim
n→∞

k3(n+1)∥u0 − t∥
k2(n+1)∥u(2);0 − t∥

= 0

It shows that sequence {un} converges faster than sequence
(u(2);n)n≥1 to fixed point t. Also, from Jubair, et. al. (7), we
get

∥u(3);n+1 − t∥ ≤ k2(1− (1− k)ρn)(1− (1− k)τnσn)

∥u(3);n − t∥

Since (1− (1− k)ρn) < 1 and (1− (1− k)τnσn) < 1, then

∥u(3);n+1 − t∥ ≤ k2(n+1)∥u(3);0 − t∥

Let τ(3);n = k2(n+1)∥u(3);0 − t∥. We get

lim
n→∞

τn
τ(3);n

= lim
n→∞

k3(n+1)∥u0 − t∥
k2(n+1)∥u(3);0 − t∥

= 0

It shows that iterative scheme defined by {un} has better
convergence rate than sequence {u(3);n} to fixed point t.
Result from Piri, et. al. (8), gives

∥u(4);n+1 − t∥ ≤ k2(1− (1− k)τn)(1− (1− k)σn)

∥u(4);n − t∥

Since (1− (1− k)τn) < 1 and (1− (1− k)σn) < 1, then

∥u(4);n+1 − t∥ ≤ k2(n+1)∥u(4);0 − t∥

Let τ(4);n = k2(n+1)∥u(4);0 − t∥. We get

lim
n→∞

τn
τ(4);n

= lim
n→∞

k3(n+1)∥u0 − t∥
k2(n+1)∥u(4);0 − t∥

= 0

It means that iterative scheme defined by {un} is better than
the sequence {u(4);n} in relation to convergence rate to fixed
point t. Therefore, A-plus iteration method converges to fixed
point of J faster than algorithms defined by Thakur, et. al.,
Ali, et.al., Jubair, et.al., Piri, et.al. related to weak contraction
mapping.

The following theorem aims to compare the rate of con-
vergence between A-plus scheme in (11) and D iterative
method defined by Hussain et. al.

Theorem III.4. Suppose that B be a nonempty closed and
convex subset of Banach space A and J : B → B be weak
contraction mapping that satisfied (2). Suppose that {u(5);n}
is D iteration process proposed by Hussain et. al. [31] and
{un} be A-plus iteration scheme with {τn},{σn}, {ρn} ∈
(0, 1) are control sequnces and satisfying ρn > τnσn for all
natural numbers n. Then A-plus iteration method is faster
than D iteration process.

Proof: From inequalities 15 in Theorem III.1, we get

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥
n∏

i=1

(1− ρi(1− k))

For some i ∈ {0, 1, 2, ..., n}, then

∥un+1 − t∥ ≤ k3(n+1)∥u0 − t∥(1− ρi(1− k))(n+1)
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Let τn = k3(n+1)∥u0 − t∥(1− ρi(1− k))(n+1).
As shown by Hussain, et.al. (9), we have

∥u(5);n+1 − t∥ ≤ k3[(1− σn) + σnk(1− τn + τnk)]

∥u(5);n − t∥
≤ k3[(1− σn) + σn(1− τn + τnk)]

∥u(5);n − t∥
= k3[1− σnτn + τnσnk)]∥u(5);n − t∥
= k3[1− τnσn(1− k)]∥u(5);n − t∥

Hence,

∥u(5);n+1 − t∥ ≤ k3(n+1)∥u(5);0 − t∥
n∏

i=0

(1− τiσi(1− k))

For some i ∈ {0, 1, 2, ..., n}, we have

∥u(5);n − t∥ ≤ k3(n+1)∥u(5);0 − t∥(1− τiσi(1− k))n+1

Let τ(5);n = k3(n+1)∥u(5);0 − t∥(1− τiσi(1− k))n+1.
Therefore,

τn
τ(5);n

=
∥u0 − t∥(1− ρi(1− k))(n+1)

∥u(5);0 − t∥(1− τiσi(1− k))n+1

Since ρn > τnσn for all n ∈ N, then

(1− ρi(1− k)) < (1− τiσi(1− k))

Taking limit for n → ∞, we get lim
n→∞

τn
τ(5);n

= 0. So, for

given conditions, A-plus iteration scheme converges faster
than D iteration process to fixed point of T .

From the above theorem, A-plus iteration process and
D iteration are three-step iteration algorithms. The selected
sequences must satisfy the condition ρn > τnσn in order to
reach the fixed point of mapping quickly.

The example below supports our previous result.

Example III.1. Let B = [0, 50] be subset of all real numbers
with usual norm. The set B is a Banach space. If J : B → B
be a self-mapping such that for all u ∈ B satisfied J u =
u + 1 − lnu. Then J is a weak contraction mapping that
satisfied (2). The number e is a fixed point of J [36].

We will estimate the fixed point e ≈ 2.718282 of weak
contraction J and show that A-plus iteration process con-
verges faster to the point 2.718282 than the others iteration
scheme mentioned before. Choose initial value u0 = 40 and
sequences (τn)n≥1 = 0.5, (σn)n≥1 = 0.4, (ρn)n≥1 = 0.6
are sequences in (0, 1). All conditions in Theorem III.3 and
Theorem III.4 are satisfied. Therefore, we can approximate
the fixed point of J using iterative methods in III.3 and III.4.
The result from numerical simulation is shown in Table I and
Figure 1.

From Table I, the A-plus iteration process demonstrates
a superior convergence rate compared to other iterative
algorithms. Specifically, the A-plus method requires only
15 iterations to converge to the fixed point of T , whereas
the D iteration needs 17 iterations, and the method by
Piri et. al. requires 20 iterations. The remaining algorithms
(Thakur et al., F ∗ Iteration, Jubair et al.) exhibit slower
convergence, exceeding 20 iterations. Also, Figure 1 supports
these findings by illustrating the stability of all iterative

methods under the weak contraction mapping J . The graph
confirms that the values stabilize without significant change
as the number of iterations increases, ultimately converging
to the fixed point.

IV. APPLICATIONS TO INTEGRAL EQUATION

The application of fixed point theory often encounters
problems with integral equations. Integral equations can be
defined as an operator that satisfies certain conditions that
can be investigated to determine the existence of a fixed
point which is the solution of integral problems. We will use
results from the iteration process (11) to obtain the estimation
solution of the following type integral equations

H(t) = F(t) +

∫ y

x

G(t, p,H(p)) dp (18)

for all t, p ∈ [x, y], where F : [x, y] → R and H :
[x, y]2 × R → R are continuous functions.
Let X be the set of all functions that continuous on interval
[x, y] and written as C[x, y]. Suppose the norm ∥.∥∞ defined
by ∥G − J ∥∞ = sup

t∈[a,b]

{|G(t) − J (t)|}. Clearly, (X, ∥.∥∞)

is Banach spaces. The following theorem shows that A-
plus scheme converges to the solution mapping that satisfied
conditions (1) and (2).

Theorem IV.1. Let X be Banach space and Y be a nonempty
closed and convex subset of X and {un} be a sequence
defined by A-plus iteration scheme (11). Suppose that T :
Y → Y is an operator defined by

T (H(t)) = F(t) +

∫ y

x

G(t, p,H(p)) dp (19)

Consider that the conditions below hold:
1) the function F(t) and G : [x, y]2 × R → R are

continuous functions;
2) there is constant number τ > 0 such that

|G(t, p,H(p))− G(t, p,J (p))| ≤ τ |H(p)− J (p)|
(20)

3) for all t, p ∈ [x, y], τ(y − x) < 1

Then the integral equation (18) has a single solution p∗ ∈
C[x, y]. If T is a operator that hold conditions (1) and (2),
then {un} converges to solution of integral equations (18).

Proof: Consider any t, p ∈ [x, y] and mapping H,J ∈
Y , then

|T (H(t))− T (J (t))|

=

∣∣∣∣F(t) +

∫ y

x

G(t, p,H(p)) dp− (F(t)+∫ y

x

G(t, p,J (p)) dp

)∣∣∣∣
≤

∫ y

x

|G(t, p,H(p)) dp− G(t, p,J (p))| dp

≤ τ

∫ y

x

|H(p)− J (p)| dp

= τ

∫ y

x

sup
t∈[a,b]

|H(t)− J (t)| dp

= τ(y − x)∥H(t)− J (t)∥∞
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Fig. 1. Graphical representation of convergence rate behavior of some iteration methods for Example III.1

TABLE I
CONVERGENCE RATE OF SOME ITERATIVE ALGORITHM TO FIXED POINT OF WEAK CONTRACTION MAPPING IN EXAMPLE III.1

No. Thakur, et. al. F ∗ Iter Jubair, et.al. Piri, et.al. D Iter A-plus
1 40.000000 40.000000 40.000000 40.000000 40.000000 40.000000
2 34.181739 33.417327 32.662207 32.413697 30.675096 29.313403
3 28.719542 27.301102 25.918257 25.467707 22.371145 20.029232
4 23.652489 21.710676 19.854400 19.258920 15.288624 12.475957
5 19.026713 16.717534 14.576334 13.906610 9.679942 7.059590
6 14.896217 12.406176 10.208676 9.550581 5.806661 4.055887
7 11.322473 8.870418 6.879647 6.328003 3.729241 2.996176
8 8.370361 6.196074 4.664199 4.293443 2.967886 2.765450
9 6.095226 4.413779 3.466752 3.279066 2.771837 2.725895
10 4.513480 3.423229 2.964073 2.890725 2.729315 2.719500
11 3.559663 2.976471 2.792513 2.767830 2.720534 2.718476
12 3.072267 2.806398 2.740002 2.732193 2.718741 2.718313
13 2.857217 2.747478 2.724574 2.722161 2.718375 2.718287
14 2.770956 2.727853 2.720099 2.719361 2.718301 2.718283
15 2.737961 2.721408 2.718806 2.718582 2.718286 2.718282
16 2.725592 2.719302 2.718433 2.718365 2.718283 2.718282
17 2.720991 2.718615 2.718325 2.718305 2.718282 2.718282
18 2.719285 2.718390 2.718294 2.718288 2.718282 2.718282
19 2.718653 2.718317 2.718285 2.718284 2.718282 2.718282
20 2.718419 2.718293 2.718283 2.718282 2.718282 2.718282
21 2.718333 2.718286 2.718282 2.718282 2.718282 2.718282
22 2.718301 2.718283 2.718282 2.718282 2.718282 2.718282
23 2.718289 2.718282 2.718282 2.718282 2.718282 2.718282
24 2.718284 2.718282 2.718282 2.718282 2.718282 2.718282
25 2.718283 2.718282 2.718282 2.718282 2.718282 2.718282

Since τ(b − a) < 1, then T is contraction mapping and
has one fixed point. Hence, the integral equation (18) has
a single solution in C[x, y]. Next, we will prove that the
sequence {un} defined by (11) converges to a solution of
the integral equation. Suppose that

|T (H(t))− T (J (t))|
≤ |T (H(t))−H(t)|+ |H(t)− T (J (t))|

= |T (H(t))−H(t)|+
∣∣∣∣F(t) +

∫ y

x

G(t, p,H(p)) dp−

F(t) +

∫ y

x

G(t, p,H(p)) dp

∣∣∣∣
≤ sup

t∈[x,y]

|T (H(t))−H(t)|+ τ

∫ y

x

sup
p∈[x,y]

|H(p)− J (p)|

Therefore, we obtain

|T (H(t))− T (J (t))|

≤ ∥T (G(t))− J (t)∥∞ + τ

∫ b

a

sup
t∈[a,b]

|G(t)− J (t)| dp

= ∥T (H(t))− J (t)∥∞ + τ

∫ y

x

∥H(t)− J (t)∥∞ dp

= ∥T (H(t))− J (t)∥∞ + τ(y − x)∥H(t)− J (t)∥∞

Clearly, that mapping T is weak contraction mapping
and satisfied condition (2). According to Theorem III.1, the
sequence {un} defined by (11) converges to the solution of
integral equation (18).

The following an example are given to show that the
previous theorem is a very powerful method to gain the
solution of integral problems.
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Example IV.1. Suppose the following integral equation

H(t) = (1− 2t2) +

∫ 1

0

1

3
t2pH(p) dp (21)

We will approximate the solution of integral equation using
iterative algorithm defined in (11).

This integral equation is an example of integral equa-
tion (18) with F(t) = 1 − 2t2 and G(t) = 1

3 t
2pH(p) for

all t, p ∈ [0, 1]. The exact solution of above integral (21) is
H(t) = 1− 2t2 for t ∈ [0, 1]. Consider that T be a mapping
with definition as follow

T (H(t)) = (1− 2t2) +

∫ 1

0

1

3
t2pH(p) dp (22)

Now, for arbitrary continuous functions H,J on [0, 1] and
t, p ∈ [0, 1], we have

|G(t, p,H(p))− G(t, p,J (p))| =
∣∣∣∣13 t2pH(p)− 1

3
t2pJ (p)

∣∣∣∣
≤ 1

3
|H(p)− J (p)|

All assumptions in Theorems IV.1 are satisfied. So, the
sequence {un} defined by (11) converges to the solution
of integral equation above, so the solution of integral equa-
tion (21) can be approximated by A-plus iteration process.
Let approximate values of H(t) with initial guess H(t) =
t(1 − t) using sequences τn = 0.5, σn = 0.4, ρn = 0.6.
Table II and Figure IV show approximated value of H(t). In
Table II shows the exact solution and approximation solution
using some t ∈ [0, 1]. The number H1(t) describes the
estimation solution of integral equation using A-plus iteration
procedure (11) with just 1 iteration while H3(t) using 3
iteration process. Absolute error is defined as the absolute
value of difference between the exact solution and H3(t).
The absolute error from calculations gives information that
the proposed method can be used to estimate the solution of
integral equations. Also, from FigureIV, we can observe that
the approximation solution is very close to the exact solution.
It means that iterative methods defined in (11) is useful to
find the solution of integral equation problems in the form
of (18).

The following example gives an illustration for finding
a solution of integral type (18) with difficulty in finding
exact solution. The A-plus algorithm will be used to find
its solution.

Example IV.2. Given integral equation as follow

P(t) = 2 sin (
t

2
) +

∫ 2π

0

1

8
sin (

t

2
) sin (p)P(p) dp (23)

Consider that T be a mapping with definition as follow

T (P(t)) = 2 sin (
t

2
) +

∫ 2π

0

1

8
sin (

t

2
) sin (p)P(p) dp (24)

Now, for arbitrary continuous functions P,Q and t, p ∈
[0, 2π], then∣∣∣∣18 sin (

t

2
) sin (p)P(p)− 1

8
sin (

t

2
) sin (p)Q(p)

∣∣∣∣
≤ 1

8
|P(p)−Q(p)|

and we have 1
82π < 1. So, all assumptions in Theorems

IV.1 are satisfied. The solutions of above integral (23) can
obtained using the iterative method (11) with τn = 0.5, σ =
0.4, ρ = 0.6. From Table III, the solutions of P(t) are
given for some t ∈ [0, 2π] by applying A-plus scheme for 1
iterations, 3 iterations, and 10 iterations.

The following result shows that the A-plus iteration pro-
cess can be used to estimate the solution of the nonlinear
fractional differential equation (FDE). Given the non-linear
FDE

Dαg(t) = F(t, g(t)) (25)

with 0 < t < 1, 1 < α < 2, and integral boundary value
condition

g(0) = 0 and g(1) =

∫ η

0

g(s)ds (0 < η < 1)

where F is continuous function and Dα is Caputo fractional
derivative. Let (X , ∥.∥∞) be a Banach spaces where X is
spaces of continuous function from [0, 1] to R and ∥g∥∞ =
sup

0≤t≤1
|g(t)|.

The following results shows that solution of nonlinear FDE
can be estimated by iterative methods defined by (11).

Theorem IV.2. Let H : C[0, 1] → C[0, 1] be a self-mapping
defined by

H (g (t)) =

1

Γ (α)

t∫
0

(t− s)
α−1F (s, g (s)) ds−

2t

(2− η2) Γ (α)

1∫
0

(1− s)
α−1F (s, g (s)) ds+

2t

(2− η2) Γ (α)

η∫
0

 s∫
0

(s− k)
α−1F (k, g (k)) dk

 ds

for g(t) ∈ C[0, 1] and t ∈ [0, 1]. If |F(t, x) − F(t, y)| ≤
Γ(α+ 1)

5
|x− y| holds for t ∈ [0, 1] and x, y ∈ R, then the

A-plus iteration process (11) converges to a solution of FDE
(25).

Proof: From Baleanu, et.al. [37], g ∈ C[0, 1] is solution
of nonlinear FDE (25) if and only if it is solution of integral
equation

g (t) =

1

Γ (α)

t∫
0

(t− s)
α−1F (s, g (s)) ds−

2t

(2− µ2) Γ (α)

1∫
0

(1− s)
α−1F (s, g (s)) ds+

2t

(2− η2) Γ (α)

η∫
0

 s∫
0

(s− k)
α−1F (k, g (k)) dk

 ds

Therefore, we just need to find g∗ ∈ C[0, 1] such that
H(g∗) = g∗.
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TABLE II
SOLUTION OF INTEGRAL EQUATION (21) IN EXAMPLE IV.1 USING EXACT AND APPROXIMATION METHOD

t Exact Solution H1 H3 abs error
0 1 1 1 0
0.1 0.98 0.98025 0.980000000002621 2.62145860574492.10−12

0.2 0.92 0.921 0.920000000010486 1.04857234006772.10−11

0.3 0.82 0.82225 0.820000000023593 2.35929054070994.10−11

0.4 0.68 0.684 0.680000000041943 4.19428936027089.10−11

0.5 0.5 0.50625 0.500000000065536 6.55357990098082.10−11

0.6 0.28 0.289 0.280000000094372 9.43716216283974.10−11

0.7 0.02 0.03225 0.0200000001284504 1.2845024349728.10−10

0.8 −0.28 −0.264 −0.279999999832229 1.67771740944289.10−10

0.9 −0.62 −0.59975 −0.619999999787664 2.12336148663894.10−10

1 −1 −0.975 −0.999999999737857 2.62143307061535.10−10

t
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1
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3
)

Fig. 2. Exact solution comparing with approximation solution in Example IV.1

Let g, h ∈ C[0, 1], so we have

|Hg (t)−Hh (t)|

=

∣∣∣∣∣∣ 1

Γ (α)

t∫
0

(t− s)
α−1F (s, g (s)) ds−

2t

(2− η2) Γ (α)

1∫
0

(1− s)
α−1

F (s, g (s)) ds+

2t

(2− η2) Γ (α)

η∫
0

 s∫
0

(s− k)
α−1F (k, g (k)) dk

 ds−

1

Γ (α)

t∫
0

(t− s)
α−1F (s, h (s)) ds−

2t

(2− η2) Γ (α)

1∫
0

(1− s)
α−1

F (s, h (s)) ds+

2t

(2− η2) Γ (α)

η∫
0

 s∫
0

(s− k)
α−1F (k, g (k)) dk

 ds

∣∣∣∣∣∣
Using the condition |F(t, x)−F(t, y)| ≤ Γ(α+ 1)

5
|x− y|,

we have

|Hg (t)−Hh (t)|

≤ 1

Γ (α)

t∫
0

|t− s|α−1Γ(α+ 1)

5
|g (s)− h (s)|ds+

2t

(2− η2) Γ (α)

1∫
0

|1− s|β−1Γ(α+ 1)

5
|g (s)− h (s)| ds

+
2t

(2− η2) Γ (α)
η∫

0

 s∫
0

|s− k|α−1Γ(α+ 1)

5
|g (k)− h (k)| dk

 ds

≤ Γ(α+ 1)

5
∥g − h∥∞ sup

0≤t≤1

 t∫
0

|t− s|α−1
ds+

2t

(2− η2) Γ (α)

1∫
0

|1− s|α−1
ds+

2t

(2− η2) Γ (α)

η∫
0

 s∫
0

|s− k|α−1
dk

 ds


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TABLE III
SOLUTION OF INTEGRAL EQUATION (23) IN EXAMPLE IV.2 USING A-PLUS ESTIMATION METHOD

t P(t)
1 iteration 3 iterations 10 iterations

0 0 0 0
π
3

1.19617062491707 0.999882669542861 0.999882669542861
π
2

1.69181820956047 1.41419599555358 1.41419599555358
3π
4

2.21040690258827 1.8476858639537 1.8476858639537
π 2.39253018912932 1.99992327401818 1.99992327401818
7π
6

2.31104232318298 1.93180731861806 1.93180731861806
3π
2

1.69181820956047 1.41419599555358 1.41419599555358
7π
4

0.915544710941122 0.765306613113932 0.765306613113932
2π 3.33066907387547.10−16 2.22044604925031.10−16 2.22044604925031.10−16

So, we obtain

|Hg (t)−Hh (t)| ≤ Γ(α+ 1)

5
|g(t)− h(t)|+

0.|h(t)−Hg(t)|

Since
Γ(α+ 1)

5
< 1, then H is weak contraction mapping.

Therefore,using Theorem III.1, the iterative method defined
by (11) converges to solution of nonlinear FDE (25).

Example IV.3. Consider the nonlinear FDE

D1.2g(t)− sin(2t) = 0, 0 < t < 1 (26)

with boundary value integral equation

g(0) = 0 g(1) =

∫ 0.1

0

g(s)ds

Using Theorem III.1, the solution of nonlinear FDE will be
estimated. Consider that H be a self-mapping

Hg(t) =
1

Γ (1.2)

t∫
0

(t− s)
0.2

sin(2s) ds−

2t(
2− 0.12

)
Γ (1.2)

1∫
0

(1− s)
0.2

sin(2s) ds+

2t(
2− 0.12

)
Γ (1.2)

0.1∫
0

 s∫
0

(s− k)
0.2

sin(2k) dk

 ds

All conditions in Theorem IV.2 is satisfied, so we can use
A-plus iteration process to estimate the solution of (26). By
choosing g(t) = t−t2 and control sequence τn = 0.65, σn =
0.2, ρn = 0.4 with 5 iteration process, then the solution of
(26) for some value of t ∈ [0, 1] is shown in Table IV.

TABLE IV
APRROXIMATION SOLUTION OF FRACTIONAL INTEGRAL EQUATION (26)

IN EXAMPLE IV.3

.
t Approximation solution
0 0
0.2 −0.0985450826193333
0.4 −0.139585804664431
0.5 −0.138837400272051
0.7 −0.102848660268232
0.9 −0.038170983263466
1 −0.00289216510638879

V. CONCLUSION

In this study, we introduced the A-plus iteration, a novel
algorithm for estimating fixed points of almost contraction
mappings in closed convex Banach spaces. We proved that
the A-plus iteration converges to a unique fixed point and
demonstrated its almost J -stable. Furthermore, comparative
analysis revealed that the A-plus method achieves a faster
convergence rate than existing iterative schemes. To illustrate
its practical utility, we applied the algorithm to approximate
solutions for integral equations. Numerical examples were
provided to validate the theoretical results and underscore
the efficiency of the proposed method.
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