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Abstract—This paper focuses on the meteorological data of
Qinghai Province in China and studies the simulation effects
of regression models on sea level pressure (SLP). To validate
the performance of the models, meteorological data from 2022
is used, and the data is divided into seasons: spring, summer,
autumn, and winter. The models are trained using SLP data
from different seasons to evaluate their simulation effects.
The results indicate significant differences in the performance
of the models across different seasons, with lower predictive
accuracy in spring and winter, while autumn and summer yield
relatively higher prediction performance. The model evaluation
metrics include the correlation coefficient R, RMSE, MAE, and
MAPE, which provide a comprehensive assessment of the model
performance.

Index Terms—sea level pressure, mutual information, regres-
sion model, day-by-day data, NOAA

I. INTRODUCTION

CLIMATE change and human activities have profound
impacts on ecosystems, making their scientific evalua-

tion and research critically important [1]. The relationships
among various climate variables are a key component of
climate change research. Compared to individual climate
variables, dependencies between climate variables may lead
to earlier and more substantial deviations from natural vari-
ability [2]. Modeling variable combinations that contribute
to extreme climate events is a complex interdisciplinary task.
To this end, some studies propose using influence diagrams
to define, map, analyze, model, and communicate the risks
associated with such combinations [3]. Among numerous
climate variables, the mean sea level pressure (MSLP), its
spatiotemporal variability, and the occurrence of extreme
events are essential for understanding the complexity of the
climate system [4]. Sea level pressure has significant practi-
cal applications in climate system characterization, weather
forecasting, and meteorological disaster warning. It is a key
parameter reflecting atmospheric pressure and is influenced

Manuscript received October 19, 2024; revised July 4, 2025. This work
was supported in part by the College Student Innovation Training Program
of Qinghai Normal University in 2025 (Project Nos. qhnucxcy2025022,
qhnucxcy2025026).

Kaifang Mu is a Postgraduate Student at the School of Geographical
Sciences, Qinghai Normal University, Xining 810008, China (e-mail:
kaifang.mu@aliyun.com).

Qiang Ai is a Postgraduate Student at the College of Computer, Qinghai
Normal University, Xining 810008, China (Corresponding author to provide
phone: +8617813140425; e-mail: qiang.ai@outlook.com).

Xize Lu is a Postgraduate Student at the School of Environmental Science
and Engineering, Shandong University, Qingdao 266237, China (e-mail:
202212875@mail.sdu.edu.cn).

Rui Zhang is a Computer Scientist at the Aisess (Dalian) Computer
Services Co., Ltd., Dalian, China (e-mail: zhangrui@essays.ltd).

by factors such as altitude, latitude, temperature, and humid-
ity, capturing the circulation patterns and variations in the
lower troposphere [5]. Its changes have notable impacts on
precipitation and temperature [6]. Studies have shown that
SLP in the Western Pacific and East Asia significantly affects
sea level changes, precipitation, and temperature in East Asia
[7]. Therefore, continued research on the relationship be-
tween surface temperature and sea level pressure is necessary
[8]. Sea level changes are closely related to global warming,
which in turn affects sea level pressure in various regions.
Additionally, regional sea level pressure is closely associated
with air quality. Air quality reflects the chemical state of
the atmosphere at specific times and locations. Like weather,
air quality impacts everyone. Air pollutants include gases
and particulates that may cause non-carcinogenic and/or
carcinogenic adverse health effects [9]. Currently, studies
have been conducted on sea level pressure, such as research
in Istanbul and Turkey, which revealed the spatiotemporal
variations of MSLP and identified relationships between
MSLP and oceanic data such as sea surface temperature
(SST) and sea level anomalies (SLA) [8]. However, there
are still limited studies on the simulation and prediction of
sea level pressure, requiring further exploration. In response,
we conducted research on the simulation and prediction of
sea level pressure.

Our study area is located in the Tibetan Plateau of China,
where the high-altitude features are more sensitive to climate
change [10]. This region has unique topography with non-
zonal plateau climate characteristics, significantly impacting
global climate [11]. The degradation of permafrost in this
area is dramatically altering the hydrological conditions on
a regional and even continental scale, attracting the attention
of hydrologists, climatologists, ecologists, engineers, and
policymakers [12]. Even small fluctuations in the climate of
the Tibetan Plateau strongly affect the terrestrial ecosystem
responses [13]. Therefore, it is essential to study climate
indicators of the Tibetan Plateau. Sea level pressure in
this region shows distinct regional and seasonal character-
istics. Currently, limited studies exist on the interactions
and responses between sea level pressure and other climate
indicators in this area, necessitating further research. This
study thus selects climate indicators from meteorological
stations in Xining and surrounding areas to analyze them
over time.

Climate simulation research primarily uses statistical
methods and numerical models. For example, Nan Lyu et al.
applied the maximum entropy model to assess the potential
impact of climate change on Chinese grouse, predicting
outcomes across three time periods under two greenhouse
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Fig. 1. Meteorological station location schematic.

gas emission scenarios [14]. Taylor et al. used the time
series forecasting algorithm Prophet to examine temporal
data characteristics and trends, projecting future dynamics
[15]. Joanna et al. used a random forest-based ensemble
data mining approach to identify features linearly related
to air quality concentration, establishing a regression model
for effective classification and prediction of air pollutants
[16]. Other studies include machine learning-based tropical
cyclone generation prediction models [17] and deep neural
network models that automatically extract data features,
achieving high predictive skill [18].Feature selection methods
also include the correlation coefficient method [19] and
principal component analysis (PCA) [20], but the former
requires feature variables to be independent, and PCA is
mainly applied to linear problems. SLP (Sea Level Pressure)
serves as a core indicator of the atmospheric dynamic system,
yet traditional physical models for its simulation exhibit
high complexity, rendering real-time prediction challeng-
ing. Given that non-linear relationships may exist between
climate indicators[21], this study uses mutual information
analysis to select optimal features and applies an improved
CatBoost [22], model to construct a regression model for
predicting mean sea level pressure.Enhancing SLP simulation
accuracy and achieving intelligent meteorological modeling
are essential for advancing meteorological prediction capa-
bilities.

II. METHODOLOGY
A. Overview of Study Area

This study focuses on Qinghai Province, China, as the
research area. Fig. 1 illustrates the study area, highlighting
its geographical features and significance.

Qinghai Province is located in the northeastern part of
the Tibetan Plateau, characterized by its diverse topography
and climatic conditions. The province is known for its high
altitude, vast grasslands, and numerous lakes, including the
famous Qinghai Lake. The unique geographical and meteoro-
logical characteristics of Qinghai make it an ideal location for
studying the impacts of climate variability on environmental
and ecological systems.

The region experiences a complex climate influenced by its
altitude and geographical location, with significant variations
in temperature and precipitation across different areas. This
variability presents an opportunity to analyze meteorological
data and its correlation with various environmental indica-
tors.

In this study, we will utilize meteorological data collected
from various stations across Qinghai Province to explore the
relationships between sea level pressure and other meteoro-
logical indicators, contributing to a better understanding of
climatic patterns in this unique region.

B. Data Details and Pre-processing

The meteorological station data used in this study is
sourced from the National Centers for Environmental Infor-
mation (NCEI) under the National Oceanic and Atmospheric
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Administration (NOAA). The data used are the daily meteo-
rological data from all meteorological stations in Qinghai
Province in 2022, which includes various meteorological
features summarized in the Table I

These features are essential for analyzing the relationships
between sea level pressure and other meteorological indica-
tors in the context of this study.

C. Mutual Information-Based Selection of Features

Feature extraction is a crucial step in the data prepro-
cessing pipeline, particularly in the context of supervised
learning. The goal is to select the most informative features
that contribute significantly to the prediction of the target
variable. One effective method for measuring the relevance
of features is Mutual Information (MI).

1) Introduction to Mutual Information: Mutual Informa-
tion quantifies the amount of information obtained about one
random variable through another random variable. It mea-
sures the dependency between variables and is particularly
useful when dealing with non-linear relationships. For two
random variables X and Y , the mutual information I(X;Y )
can be defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(1)

Where:
• P (x, y) is the joint probability distribution of X and Y ,
• P (x) and P (y) are the marginal probabilities of X and

Y .
A higher MI value indicates a greater amount of shared

information, suggesting a stronger relationship between the
variables.

2) Feature Selection Process: In this study, we employed
mutual information to evaluate the relevance of meteoro-
logical features in predicting sea level pressure (SLP). The
following steps outline our feature selection process:

1) Data Preparation: We began by collecting a
dataset containing various meteorological indicators
along with SLP. The features selected for anal-
ysis included ‘ELEVATION‘, ‘TEMP‘, ‘DEWP‘,
‘STP‘, ‘VISIB‘, ‘WDSP‘, ‘MXSPD‘, ‘GUST‘, ‘MAX‘,
‘MIN‘, ‘PRCP‘, ‘SNDP‘, and ‘FRSHTT‘.

2) Calculating Mutual Information: We computed
the mutual information between each feature
and the target variable (SLP) using the
mutual_info_regression function from
the sklearn library. This function evaluates the
mutual information score for each feature relative to
SLP.

3) Feature Ranking: The features were ranked based on
their mutual information scores. Features with higher
scores were considered more informative and relevant
for predicting SLP.

4) Visualization: To provide a clear understanding of
the relationship between features and SLP, a mutual
information matrix was generated and visualized using
a heatmap. This graphical representation highlighted
the strength of associations between each feature and
the target variable.

3) Results: The results show in Fig. 2, indicated that
the heatmap presents mutual information scores as color-
coded tiles in a multi-column horizontal layout, making
the mutual information distribution of each feature readily
apparent. Darker regions (e.g., columns TEMP, MAX, MIN)
correspond to the highest scores, while lighter areas (e.g.,
SNDP, MXSPD) indicate lower information content. This
figure intuitively demonstrates the differences in mutual
information strength between features, assisting readers in
understanding why features with low mutual information
values were excluded from modeling, thus simplifying the
model structure and mitigating the curse of dimensionality.
Fig. 3, a bar plot, displays the mutual information scores
between candidate meteorological features (TEMP, MAX,
MIN, DEWP, STP, FRSHTT, etc.) and sea level pressure
(SLP), ranked from highest to lowest. Temperature (TEMP)
exhibits the highest mutual information score, indicating that
it contains the richest information for SLP prediction. This
is followed by maximum temperature (MAX) and minimum
temperature (MIN), reflecting that temperature fluctuations
significantly influence air pressure. Dew point temperature
(DEWP), sea level standard pressure (STP), and frost indi-
cation (FRSHTT) also show secondary but still significant
information content. This result validates the rationality of
focusing on these six factors during the feature selection
phase, providing a solid data foundation for subsequent
model training.

By employing mutual information as a feature selection
technique, we ensured that our predictive model was built
on the most relevant meteorological indicators, thereby en-
hancing the accuracy and interpretability of the results.

D. Regression Models-Based Numerical Simulation of SLP

CatBoost (Categorical Boosting) is an open-source ma-
chine learning library released in 2017, belonging to the fam-
ily of Boosting algorithms. Like XGBoost and LightGBM,
CatBoost is regarded as one of the significant improvements
in gradient boosting decision tree methods. However, unlike
the other two Boosting algorithms, CatBoost specifically
handles categorical features and uses oblivious trees as its
base model, supporting categorical variables. This algorithm
mitigates the risk of overfitting by balancing the structure
of the trees. In oblivious trees, the index of each leaf node
can be encoded using a binary vector of the same length
as the tree’s depth. The CatBoost algorithm first performs
binary transformation on all floating-point features, statistical
information, and one-hot encoded features, and then uses
these binary features for model predictions. Additionally,
CatBoost effectively addresses gradient shift and prediction
issues, demonstrating superior model performance compared
to LightGBM and XGBoost. The complete tree-building
process of the CatBoost algorithm is illustrated in Table II.

The CatBoost algorithm features a powerful gradient
boosting framework that automatically handles categorical
features in a special way. This capability makes CatBoost
particularly convenient and efficient when dealing with
datasets that contain many categorical features. It employs
a sorting-based approach, which reduces the need for hyper-
parameter tuning and mitigates the risk of overfitting, thereby
enhancing the model’s performance. Additionally, CatBoost
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TABLE I
METEOROLOGICAL FEATURES COLLECTED

Feature Description
STATION Station identifier

DATE Date of the observation
LATITUDE Latitude of the station

LONGITUDE Longitude of the station
ELEVATION Elevation of the station (meters)

NAME Name of the weather station
TEMP Air temperature (°C)

TEMP ATTRIBUTES Attributes of the temperature measurement
DEWP Dew point temperature (°C)

DEWP ATTRIBUTES Attributes of the dew point measurement
SLP Sea level pressure (hPa)

SLP ATTRIBUTES Attributes of the sea level pressure measurement
STP Station pressure (hPa)

STP ATTRIBUTES Attributes of the station pressure measurement
VISIB Visibility (kilometers)

VISIB ATTRIBUTES Attributes of the visibility measurement
WDSP Wind speed (m/s)

WDSP ATTRIBUTES Attributes of the wind speed measurement
MXSPD Maximum sustained wind speed (m/s)
GUST Wind gust (m/s)
MAX Maximum temperature (°C)

MAX ATTRIBUTES Attributes of the maximum temperature measurement
MIN Minimum temperature (°C)

MIN ATTRIBUTES Attributes of the minimum temperature measurement
PRCP Precipitation (mm)

PRCP ATTRIBUTES Attributes of the precipitation measurement
SNDP Snow depth (cm)

FRSHTT Frost condition

Fig. 2. Mutual Information Heatmap.

TABLE II
CATBOOST ALGORITHM PROCESS

Algorithm: CatBoost
Input: x, y, I , L, s, Mode
Initialization: n, i, i, i, {(xi, yi), ...}, α
1: σ ← any permutation of [1, n], r = 0, . . . , s;
2: M(i)← 0 for i = 1, . . . , n;
3: If Mode = Plain, then

M(i)← 0 for r = 1, . . . , s;
4: If Mode = Ordered, then

for j ← 1 to [logn] do
M(i)← 0 for r = 1, . . . , s;

5: for t← 1 to I
Tt ← build tree (M, {(x, y)}, L, σ,Mode);
for i← 1, . . . , n do
leafi ← GetLeaf(xi);
(0, 0) grad← CalcGradient(L,M, y);
foreach leaf j in Tt do
bavg(gradj)←

1
|i:leafi=j|

∑
i:leafi=j gradi;

Mi ←Mi + a · bavg(gradj) for i = 1, . . . , n;
Return: {(x, y, leaf)}n1 ;

GetLeaf(x, T ) ApplyMode j;

utilizes a computation method that arranges multiple learning
datasets, allowing it to calculate statistical data for categori-
cal features during the training process.

1) Improving CatBoost Algorithm with Stacking Model
Ensemble Method: Ensemble learning accomplishes learn-

ing tasks by constructing and combining multiple learners.
Ensemble classification methods process different individual
classifiers similarly to enhance classification efficiency. This
scenario is regarded as the precise assignment of objects, and
this combination is achieved by aggregating the classification
results obtained from various classifiers, resulting in a final
classifier with optimal predictive capability. To improve the
model’s accuracy in predicting the meteorological dataset,
this study employs the Stacking model fusion method to
enhance the CatBoost algorithm. The first layer uses Ran-
dom Forest, XGBoost, and CatBoost as base learners for
prediction. The second layer takes the predictions from the
base learners as input for a multiple linear regression model,
ultimately generating the prediction results for the meteo-
rological data. The Stacking algorithm flow is illustrated in
Table III.

In the Stacking method, there are two stages of models.
The first-stage model consists of base models that take the
original training set as input, allowing for multiple base
models to be selected for training. In the second-stage
model, the training set for the meta-model is derived from
the predictions of the base models on the original training
set, while the test set consists of the predictions of the
base models on the original test set. To avoid the risk of
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Fig. 3. Mutual Information Score Bar Plot.

TABLE III
ALGORITHM FLOW OF THE STACKING MODEL FUSION METHOD

Algorithm: Stacking
Input: Training data D = {(x1, y1), (x2, y2), . . . , (xm, ym)}
Process: Given the ensemble classifier H
1: Step 1: Learn the first-level classifiers
2: for t = 1, 2, . . . , T
3: Learn a base classifier ht based on D
4: End of Step 1
5: Step 2: Construct a new dataset D′

6: for i = 1, 2, . . . ,m
7: Construct a new dataset containing {(x′i, yi)}, where x′

i = {h1(xi), h2(xi), . . . , hT (xi)}
8: End of Step 2
9: Step 3: Learn the second-level classifier
10: Learn a new classifier based on the newly constructed dataset
Output: H(x) = (h1(x), h2(x), . . . , hT (x))

overfitting during training, the dataset for the meta-learner
is generated from the base learners. Generally, to generate
training samples for the meta-learner, unused samples from
the base learners can be utilized through methods such as
cross-validation. In this study, k-fold cross-validation is one
of the sampling reuse methods adopted. The initial training
set D is randomly divided into k subsets of similar size
D1, D2, . . . , Dk. In each round of validation, the test set Dj

and training set D′
j are determined. To achieve the training

of the meta-learner, T base learning algorithms are selected,
and in each round, the base learner ht is trained on Dj

using the T -th learning algorithm and generates a model.
Specifically, for each sample xi in Dj , its training example
part is zi = (z1, z2, . . . , zT ), and the label part is yi. Thus,
at the end of the entire cross-validation process, the training
set for the meta-learner generated from these T base learners
is {(zi, yi)}mi=1, and then D′ will be used to train the meta-
learner.

2) Improving the Loss Function of the CatBoost Algo-
rithm: Focal loss (FL) was originally proposed by Kaiming
He [23] and is primarily used in the field of image processing
to address issues related to dense object detection tasks and
model performance problems caused by data imbalance. This
section starts with the cross-entropy loss function used in
CatBoost, analyzes the data imbalance problem, provides
the definition and formula of the focal loss function, and
describes the process of improving the CatBoost algorithm’s
loss function using focal loss. The formula for the cross-
entropy loss function is:

Loss = L(y, p̂) = −y log(p̂)− (1− y) log(1− p̂) (2)

Where p̂ is the predicted class probability and y is the true
label, corresponding to 0 and 1 in binary classification. The
formula for the cross-entropy loss function can be derived as
follows:
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L(y, p̂) =

{
− log(p̂) if y = 1

− log(1− p̂) if y = 0
(3)

By defining

p̂i =

{
p̂ if y = 1

1− p̂ if y = 0
(4)

we can express the cross-entropy loss function uniformly
as:

Lce = − log(p̂) (5)

First, we make an initial improvement to the cross-entropy
loss function by introducing a parameter adjustment factor
γ(1− p̂). This factor means that if the probability of correct
classification is higher, the adjustment factor γ(1 − p̂) be-
comes smaller, indicating that the loss weight for correctly
classified samples is reduced. Conversely, if the classification
is incorrect, the loss weight for those samples increases. The
formula for this first improvement is as follows:

Lfl(y, p̂) =

{
−γ(1− p̂) log(p̂) if y = 1

−γ(1− p̂) log(1− p̂) if y = 0
(6)

Next, we proceed with a second improvement to the cross-
entropy loss function by introducing a weight factor αi. The
purpose of adding the weight factor αi is to reduce the weight
of certain samples, primarily to address the issue of sample
imbalance. The formula for this second improvement is as
follows:

Lfl(y, p̂) =

{
−γiαip̂ log(p̂) if y = 1

−γiαi(1− p̂) log(1− p̂) if y = 0
(7)

Similarly, we can express the Focal Loss function uni-
formly as:

Lfl = (1− p̂) log(p̂)− γiαip̂ (8)

E. Mode results Construction: Stacking Regression

To harness the complementary strengths of multiple algo-
rithms, we employ a two-stage stacking ensemble:

First-Stage Base Learners: The first layer consists
of three distinct regression models, each trained
on the six features selected by mutual information:
{TEMP, MAX, MIN, DEWP, STP, FRSHTT}.

leftmargin=1.5em
• Random Forest (RF)

An ensemble of decision trees using bootstrap aggre-
gation. RF mitigates overfitting and captures complex
nonlinear relationships.

• XGBoost
An optimized gradient-boosting framework with built-
in regularization and column sampling. It offers rapid
convergence and robust generalization.

• Gradient Boosting Decision Trees (GBDT)
A classical boosting tree model that excels at fitting
complicated patterns but requires careful tuning to pre-
vent overfitting.

Each base learner is configured with 100 trees (or boosting
rounds) and fitted on the training set. Their out-of-fold
predictions on validation splits become inputs to the meta-
learner.

Second-Stage Meta Learner: The second layer stacks the
predictions from the base learners, ŷRF, ŷXGB, ŷGBDT, and
applies a multiple linear regression:

ŷ = β1 ŷRF + β2 ŷXGB + β3 ŷGBDT + β0.

Using 2022 data, the fitted coefficients are:

ŷ = 1.673 ŷRF + 1.215 ŷXGB − 3.198 ŷGBDT + 1357.312.

Interpretation: The positive weights on RF and XGBoost
indicate their strong predictive contributions, whereas the
negative weight on GBDT serves to correct its system-
atic overestimation. The intercept 1357.312 represents the
baseline SLP when the base-learner outputs are zero. This
stacking framework combines the robustness of RF, the
efficiency of XGBoost, and the flexibility of GBDT, yielding
improved forecasting accuracy overall.

III. EXPERIMENTS

A. Evaluation Metrics

In this study, the correlation coefficient R, Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) are selected as
evaluation standards for the model simulation results.

The correlation coefficient R is defined as:

R =
cov(yi, ŷi)√

var(yi) · var(ŷi)
(9)

The formula for Root Mean Square Error (RMSE) is:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

The formula for Mean Absolute Error (MAE) is:

MAE =
1

N

N∑
i=1

|yi − ŷi| (11)

The formula for Mean Absolute Percentage Error (MAPE)
is:

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (12)

Where yi is the observed value; ŷi is the simulated
value; N is the total number of samples; cov(yi, ŷi) is the
covariance between yi and ŷi; var(yi) denotes the variance
of yi; and var(ŷi) denotes the variance of ŷi.
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B. Experimental Analysis of Model Validation Results

1) Model Evaluation: Leave-One-Season-Out (LOSO)
Method: To thoroughly investigate the cross-seasonal gen-
eralization capability of the model, this study employs the
”Leave-One-Season-Out (LOSO)” cross-validation method.
The specific approach is as follows: in each iteration, the
data from one season (spring, summer, autumn, or winter) is
designated as the test set, while the data from the remaining
three seasons serve as the training set. This process is
repeated four times, and finally, the results of the four sets of
tests are aggregated. This strategy simulates the real-world
scenario where only meteorological data from the past three
seasons are available for predicting the SLP of the next
season, effectively evaluating the model’s stability and adapt-
ability under different seasonal meteorological conditions.

Based on LOSO validation, the R2, RMSE, MAE, and
MAPE for each season were calculated, with results shown in
Table IV.For summer and autumn, the R2 values both exceed
0.7, RMSE is below 5 hPa, and MAPE is lower than 0.4%,
indicating the model exhibits excellent fitting performance
for SLP in warm seasons. In contrast, winter and spring
show R2 values below 0.04, RMSE exceeding 10 hPa, and
MAPE ranging between 1% and 1.5%. This suggests the
model has a weak response under extreme and cold climatic
conditions, struggling to capture complex atmospheric pres-
sure variations.The model’s superior performance in summer
and autumn may be attributed to the larger variability and
more pronounced trendiness of SLP during this period, which
provides the model with stronger signal training capability.
Additionally, the significant amplitude of changes in some
factors during this period (such as temperature and dew
point) significantly influences the model, making their im-
pacts more pronounced.This seasonal discrepancy indicates
that SLP exhibits greater regularity in warm seasons, with
feature variables demonstrating stronger explanatory power
for SLP. In cold seasons, however, atmospheric pressure
changes are more complex, influenced by sudden weather
events and boundary layer processes.

TABLE IV
MODEL EVALUATION METRICS BY SEASON

Season R2 RMSE MAE MAPE

1 Winter 0.0002 326.68 24.77 1.38
2 Spring 0.0340 9.13 7.38 0.73
3 Summer 0.7276 3.13 2.47 0.25
4 Autumn 0.7572 4.10 3.11 0.31

2) Model Error and Stability Analysis: The residual dis-
tribution of the test set is shown in Fig. 4 .The histogram
displays the frequency distribution of prediction errors (pre-
dicted value minus true value) for all test samples (across
all four seasons), overlaid with a kernel density estimation
curve. This figure is used to examine whether the residuals
follow a normal approximation and whether systematic bias
exists. The error distribution is generally bell-shaped and
symmetric, with a slight positive skew, indicating that the
model slightly overestimates SLP in most cases. However,
the overall errors are concentrated within the range of
±10 hPa, and extremely large errors (|error| > 50 hPa)
occur with extremely low frequency, demonstrating good
model stability. This result suggests that although errors are

relatively large in individual seasons, the overall residual
structure of the model remains stable, and no significant
overfitting or underfitting is observed.

3) Explanation of Seasonal Differences: As shown in Fig.
5, the box plots of predicted values across different seasons
reveal the seasonal differences in the model output. This box
plot compares the predicted SLP distributions of the stacking
model in four seasons: winter (1), spring (2), summer (3), and
autumn (4). The predicted medians in summer and autumn
are close to the observed medians, with smaller box heights
and shorter whiskers, indicating lower volatility and more
stable predictions in these two seasons. In contrast, the boxes
are taller and the whiskers are longer in winter and spring,
suggesting a wider error distribution and occasional large
deviations in these two seasons. Thus, there are obvious
differences in the model’s seasonal adaptability, with the
best performance in summer and autumn. Considering the
climatic characteristics of Qinghai Province, the atmospheric
stratification is relatively stable in summer and autumn,
and the pressure field is more continuously influenced by
temperature and humidity. In winter and spring, however, the
significant influence of the southward movement of cold air
and the topographic lifting effect leads to rapid and drastic
changes in air pressure, increasing the prediction difficulty.

Additionally, the overall performance of the model sim-
ulation follows a pattern of gradually decreasing effective-
ness from cold to warm seasons. When combined with the
study’s climatic indicators, mutual information results show
that temperature-related metrics and seasonal characteristic
indices (such as meteorological condition indicators) play
a dominant role. Further considering the impact of sea-
sonal activities like sand-dust events—under the influence
of Qinghai Province’s four-season meteorological charac-
teristics—on sea level pressure (SLP), the discrepancies in
the SLP simulation model may also be attributed to such
seasonal activity patterns.

4) Fitting Performance of the Model in Common Pressure
Ranges: As shown in Fig. 6, to rigorously assess the fit of the
model within the typical SLP range, we applied an automatic
zoom on the ’Observed vs. Predicted’ scatter plot: the 1st and
99th percentiles of both observed and predicted values define
the core domain, within which points are plotted along with
the reference line y = x.

The resulting point cloud concentrates between approx-
imately 990 and 1045 hPa, with most points lying just
above or below the line, indicating minimal overall bias.
Predictions mejor when observed SLP < 1030 hPa and
slightly overestimate or dampen when observed > 1030 hPa.

A horizontal band near 1010 hPa reveals a ’flat top’
effect, likely due to the convergence of certain base or
meta-learner outputs at that pressure. This approach cleanly
exposes residual structure and bias patterns within the most
relevant SLP interval.

IV. DISCUSSION

In this study, we propose a sea-level pressure (SLP)
prediction framework based on mutual information feature
selection and Stacking ensemble regression, and comprehen-
sively validate it using daily observational data from Qinghai
Province. The specific discussions are as follows:
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Fig. 4. Stacking LOSO error dist.

1) Feature Selection and Model Interpretability: Mutual
information analysis effectively reduced dimensionality by
selecting six key predictors of SLP (TEMP, MAX, MIN,
DEWP, STP, FRSHTT), balancing model simplicity and
performance. This step ensures that the subsequent stacking
framework operates on high-information variables, enhanc-
ing interpretability.

2) Ensemble Modeling Performance: The two-stage
stacking ensemble—combining RF, XGBoost, and GBDT
followed by a linear meta-learner—demonstrated robust per-
formance in summer and autumn, while yielding limited
accuracy in spring and winter. These seasonal disparities
underscore the model’s ability to capture non-linear depen-
dencies under stable warm-season conditions, but also its
challenges in highly volatile cold seasons.

3) Seasonal Variability and Climatic Interpretation: Sum-
mer and autumn in Qinghai feature relatively stable synoptic
conditions and gradual diurnal temperature changes, provid-
ing strong predictive signals. In contrast, winter and spring
are dominated by sudden cold-air outbreaks and orographic
lifting, leading to rapid pressure fluctuations that exceed the
model’s current explanatory capacity.

4) Error Structure and Model Stability: Residual distri-
butions are approximately symmetric and centered around
zero, indicating minimal systematic bias. The scarcity of
extreme residuals further attests to the model’s stability,
though elevated cold-season errors suggest the need for
additional predictors such as teleconnection indices or lagged
features.

5) Limitations and Future Work: The present framework
does not incorporate large-scale climate drivers (e.g., ENSO,
NAO) or advanced time-series architectures (e.g., LSTM).
Future research should explore these factors, along with
spatial correlation models, to enhance performance across
all seasons.

6) Practical Implications: The proposed approach pro-
vides an interpretable and efficient tool for regional SLP fore-
casting, particularly valuable for operational meteorological
services during high-impact warm-season events.

V. CONCLUSION

In this study, we developed a two-stage stacking regression
framework combined with mutual information–based feature
selection to simulate daily sea level pressure (SLP) in Qing-
hai Province. Key findings and contributions are as follows:

1) Feature Importance: Mutual information analy-
sis identified air temperature (TEMP), daily maxi-
mum temperature (MAX), daily minimum temperature
(MIN), and dew point temperature (DEWP) as the most
informative predictors of SLP. These variables capture
both thermal and moisture dynamics critical to pressure
variations.

2) Modeling Strategy: The stacking ensemble, compris-
ing Random Forest, XGBoost, and GBDT as first-
stage base learners, and a multiple linear regression
as the second-stage meta learner, effectively integrates
complementary strengths of each algorithm.
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Fig. 5. seasonal predictions boxplot.

3) Validation Scheme: Leave-One-Season-Out (LOSO)
cross-validation demonstrated strong predictive perfor-
mance in summer and autumn, while revealing limita-
tions in spring and winter. This emphasizes the need
for season-specific tuning in operational forecasting.

4) Practical Implications: The proposed approach offers
a robust and interpretable tool for regional SLP pre-
diction, aiding meteorological services in the Tibetan
Plateau region. Its demonstrated accuracy in warm
seasons suggests potential for real-time application
during high-impact weather periods.
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