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Abstract—Penalty functions have important applications in
solving constrained optimization problems. In this paper, a new
strategy is introduced for smooth approximation of l1 penalty
function. We further obtain error estimates between the optimal
objective function values of constrained problem and the ones
of new smooth penalty problem. As an example, we provide a
smooth penalty function for mathematical programming with
complementary constraints (MPCC)

Index Terms—Constrained problem, Penalty function,
Smooth penalty problem, Complementary constraints.

I. I NTRODUCTION

I N this paper we consider the nonlinear optimization
problem (NP):

min
z∈ℜn

f̄(z)

s.t. gt(z) ≤ 0, t = 1, ...,m,
ht(z) = 0, t = 1, ..., l,

(1.1)

where the functions in this model are all continuously
differentiable inℜn. Suppose in this paper the feasible set
is bounded and closed.

The above model has been widely used in industry, engi-
neering, management and other fields(see [1], [2], [3], [4]).
In many optimization methods to solve this problem, exact
penalty function has always taken an important role([5], [6],
[7] ). In [5] the l1 penalty function is given as

P1(z;σ) = f̄(z) + σ(‖h(z)‖1 + ‖g+(z)‖1), (1.2)

with the penalty parameterσ > 0, and g+(z) with the
componentsmax{0, gi(z)}. Here the norm‖ · ‖1 is the l1
norm. The corresponding penalty problem is

min
z∈ℜn

P1(z;σ). (1.3)

In [8], the authors use alp exact penalty function con-
structed by the norm‖ · ‖p to establish a global optimization
algorithm for the optimization problem with general inequal-
ity constraints and simple convex inequality constraints.

For traditional exact penalty functions, when their penalty
parameters are large enough, the global optimal solutions
of unconstrained penalty problem are also the ones of the
constrained problem. This is the benefit of its exactness.
However, the non smoothness of traditional exact penalty
functions also makes it difficult for many efficient fast
algorithms based on function gradients to be effectively
applied.
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In order to reduce the adverse effects of the non smooth-
ness of penalty functions and achieve a certain degree of
exactness, many scholars have studied smoothing techniques
for traditional exact penalty functions([9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20]).

In most literatures, the smoothing of non-smooth penalty
function is mainly aimed at the optimization problem with
only inequality constraints. In this paper, we give an ap-
proximately exact penalty function for optimization problems
with both equality and inequality constraints. Our function
has good smoothness and is a good approximation of thel1
penalty function.

We give the arrangement of this article. A smoothing ap-
proach is proposed for (1.2) and the corresponding smoothed
penalty problem is given in Section 2. The degree of
approximation between the smooth penalty problem and
the exact penalty problem is discussed, and error estimates
between the corresponding optimal objective function values
are obtained. An approximate penalty algorithm is also given.
In Section 3, as an instance of our approximating technique, a
smooth penalty function is constructed for the mathematical
program with complementarity constraints. In Section 4 some
conclusions are given.

II. SMOOTH PENALTY FUNCTION AND ERROR ESTIMATES

We use in this section a smooth approximation to the
absolute value function|y| as

|y| ≈ ϕ1(y; ε) := ε(ln 2 + ln(1 + cosh(y/ε))), (2.1)

where

cosh(z) =
ez + e−z

2
,

and use another smooth function to approximate the function
y+ = max{0, y} by

y+ ≈ ϕ2(y; ε) := ε ln(1 + exp(y/ε)), (2.2)

where ε > 0 is a parameter used to control the degree of
approximation.

For ε > 0, the maximum difference between|y| and
ϕ1(y; ε) lies at the pointy = 0, which is 2ε ln 2. Further-
more, we can get the following error estimates

||y| − ϕ1(y; ε)| ≤
8

3
ε exp(−|y|ε). (2.3)

The maximum difference betweeny+ and ϕ2(y; ε) lies at
the pointy = 0, which is ε ln 2, and we can get that

|y+ − ϕ2(y; ε)| ≤
5

3
ε exp(−y+ε). (2.4)

Besides, the first derivative function ofϕ1(y; ε) is

ϕ′
1(y; ε) =

sinh(y/ε)

cosh(y/ε) + 1
∈ (−1, 1), (2.5)
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where

sinh(z) =
ez − e−z

2
,

and its second derivative function is

ϕ′′
1 (y; ε) =

1

ε(cosh(y/ε) + 1)
∈ (0,

1

2ε
). (2.6)

The first derivative function ofϕ2(y; ε) is

ϕ′
2(y; ε) =

exp(y/ε)

1 + exp(y/ε)
∈ (0, 1), (2.7)

and its second derivative function is

ϕ′′
2(y; ε) =

1

2(cosh(y/ε) + 1)ε
∈ (0,

1

4ε
). (2.8)

By the above smoothing functions, we now give a smooth
approximation to thel1 exact penalty function (1.2). The
new smooth and approximately exact penalty function for
nonlinear constrained optimization problem (1.1) is given as
follows,

ψ(z;σ, ε) = f̄(z) + σε(
m∑
t=1

ln(1 + exp(gt(z)/ε))

+
l∑

t=1
(ln 2 + ln(1 + cosh(ht(z)/ε)))),

(2.9)
and the corresponding penalty problem

min
z∈ℜn

ψ(z;σ, ε). (2.10)

From the above discussion, we can get the following
conclusion

Theorem 2.1:For anyσ > 0, ε > 0, and z ∈ ℜn, we
have

−γ1σε ≤ ψ(z;σ, ε)− P1(z;σ) ≤ γ1σε,

where
γ1 =

8

3
l +

5

3
m.

Theorem 2.2:If for any σ > 0 andε > 0, ẑ andz∗ are the
optimal solution of the problem (2.10) and (1.1) respectively,
then

−γ1σε ≤ ψ(ẑ;σ, ε)− P1(z
∗;σ) ≤ γ1σε.

Proof. By the condition and Theorem 2.1, we know that

−γ1σε ≤ ψ(ẑ;σ, ε)− P1(ẑ;σ)
≤ ψ(ẑ;σ, ε)− P1(z

∗;σ)
≤ ψ(z∗;σ, ε)− P1(z

∗;σ) ≤ γ1σε.

�

Definition 2.3: zε is anε-feasible solution of (1.1), if

gt(zε) ≤ ε, i = 1, ...,m,

|ht(zε)| ≤ ε, j = 1, ..., l.

Based on this definition,the conclusion below is given.
Theorem 2.4:If for any σ > 0 andε > 0, ẑ and z̃ are the

optimal solution of the problem (2.10) and (1.3) respectively,
z̃ is a feasible solution of (1.1), and̂z is anε-feasible solution
of (1.1), then there exists a constantγ2 > 0, such that

−γ2σε ≤ f̄(ẑ)− f̄(z̃) ≤ γ1σε.

Proof. Since that̂z is anε-feasible solution of (1.1), then

gt(ẑ) ≤ ε, t = 1, ...,m,

|ht(ẑ)| ≤ ε, t = 1, ..., l,

and

m∑
t=1

ln(1 + exp(gt(ẑ)/ε))

+
l∑

t=1
(ln 2 + ln(1 + cosh(ht(ẑ)/ε)))

≤ l(ln 2 + ln(1 + e+e−1

2 )) +m(ln(1 + e))
=: γ3.

From Theorem 2.2 we know that

−γ1σε ≤ ψ(ẑ;σ, ε)− P1(z̃;σ) ≤ γ1σε,

and

−γ2σε ≤ f̄(ẑ) + σε(
m∑
t=1

ln(1 + exp(gt(ẑ)/ε))

+
l∑

t=1
(ln 2 + ln(1 + cosh(ht(ẑ)/ε))))

−(f̄(z̃) + σ(
m∑
t=1

g+t (z) +
l∑

t=1
|ht(z)|) ≤ γ1σε,

whereγ2 = γ1 + γ3. Thus,

−γ2σε ≤ f̄(ẑ)− f̄(z̃) ≤ γ1σε.

�

From Theorem 2.4 we know that whenε > 0 is sufficiently
small, if the optimal solution of (2.10) is anε-feasible
solution of (1.1), then it approximately solves (1.1).

Definition 2.5: ([6]) We call the problem (1.1) is a convex
constrained optimization problem if the functions̄f and gi
are all convex functions, and the functionsht are all affine
functions.

Definition 2.6: ([6]) The KKT conditions hold atz∗, if

∇f̄(z∗) +

m∑

t=1

µ∗
t∇gt(z

∗) +

l∑

t=1

ν∗t ∇ht(z
∗) = 0,

µ∗
t gt(z

∗) = 0, µ∗
t ≥ 0, gt(z

∗) ≤ 0, t = 1, ...,m,

ht(z
∗) = 0, t = 1, ..., l,

whereµ∗
t , ν∗t are the corresponding Lagrangian multipliers.

From the above definitions, we have the following conclu-
sion.

Theorem 2.7:Let the problem (1.1) be convex, and the
KKT conditions hold atz∗ with the corresponding La-
grangian multiplier(µ∗, ν∗). If

σ ≥ max{
m

max
t=1

µ∗
t ,

l
max
t=1

|ν∗t |},

then

ψ(z∗;σ, ε) ≤ ψ(z;σ, ε) + 2γ1σε,

for any z ∈ ℜn.
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Proof. Since the problem (1.1) is convex, and the KKT
conditions hold atz∗, we have thatz∗ is an optimal solution
of (1.1), and for anyz ∈ ℜn

P1(z;σ)
≥ f̄(z∗) +∇f̄(z∗)T (z − z∗) + σ(‖g+(z)‖1 + ‖h(z)‖1)

= f̄(z∗)−
m∑
t=1

µ∗
i∇gt(z

∗)T (z − z∗)

−
l∑

t=1
ν∗∇ht(z

∗)T (z − z∗) + σ(
m∑
t=1

g+t (z) +
l∑

t=1
|ht(z)|)

≥ f̄(z∗)−
m∑
t=1

µ∗
i (gt(z)− gt(z

∗))

−
l∑

t=1
ν∗t (ht(z)− ht(z

∗)) + σ(
m∑
t=1

g+t (z) +
l∑

t=1
|ht(z)|)

= f̄(z∗)−
m∑
t=1

µ∗
t gt(z)

−
l∑

t=1
ν∗t ht(z) + σ(

m∑
t=1

g+t (z) +
l∑

t=1
|ht(z)|).

Then,

P1(z;σ) ≥ f̄(z∗)+

m∑

t=1

(σ−µ∗
t )g

+
t (z)+

l∑

t=1

(σ−|ν∗t |)|ht(z)|.

So for
σ ≥ max{

m
max
t=1

µ∗
t ,

l
max
t=1

|ν∗t |},

we have that for any for anyz ∈ ℜn,

P1(z;σ) ≥ f̄(z∗). (2.11)

From Theorem 2.1 and (2.11), we know that for anyz ∈ ℜn,
andε > 0,

−γ1σε ≤ ψ(z;σ, ε)− P1(z;σ) ≤ γ1σε. (2.12)

Then

ψ(z∗;σ, ε)− ψ(z;σ, ε)
≤ ψ(z∗;σ, ε)− P1(z;σ) + γ1σε
≤ ψ(z∗;σ, ε)− f̄(z∗) + γ1σε
= ψ(z∗;σ, ε)− P1(z

∗;σ) + γ1σε
≤ 2γ1σε.

(2.13)

�

Theorem 2.7 shows that when the penalty parameter is
greater than a threshold value related to the Lagrangian
multiplier of the primal optimal solutionz∗, the suboptimal
property of any global optimal solution of the convex
programming problem (1.1) can be defined by a function
composed of penalty parameter and smooth parameter.

Theorem 2.8:Suppose in the problem (1.1),gt are all
convex, andht are all affine. Ifz∗ is a local optimal solution
of (2.10), then

e(z∗) := ‖g+(z∗)‖1 + ‖h(z∗)‖1 ≤ κε

for σ = O(1
ε
), where the constantκ > 0.

Proof. Let z(0) be feasible for (1.1), thene(z(0)) = 0. Set
d := z(0)− z∗ andL1 := ‖d‖1. We considerz∗+ ηd, where
η ∈ [0, 1]. Sincez∗ is a local solution of (2.10) , it follows
that there is aη1 > 0,

ψ(z∗ + ηd;σ, ε) ≥ ψ(z∗;σ, ε), (2.14)

for any η ∈ (0, η1]. Setη = min{1, η1}, and

L2 := max{‖∇f(ξ)‖ | ξ ∈ N(z∗; η)},

where
N(z; η) = {z ∈ ℜn | ‖z − z∗‖ ≤ η}.

By Theorem 2.1, we have that

ψ(z∗ + ηd;σ, ε) ≤ P1(z
∗ + ηd;σ) + γ1σε,

P1(z
∗;σ) ≤ ψ(z∗;σ, ε) + γ1σε.

On the other side, sincez(0) is feasible for (1.1), we know

0 ≤ g+(z∗ + ηd)
= max{0, g(z∗ + ηd)}

≤ max{0, (1− η)g(z∗) + τg(z(0))}
≤ max{0, (1− η)g(z∗)}+max{0, ηg(z(0))}
= (1− η)g+(z∗),

and
h(z∗ + ηd) = h[(1− η)z∗ + ηz(0)]

= (1 − η)h(z∗) + ηh(z(0))
= (1 − η)h(z∗).

So we have that

P1(z
∗ + ηd;σ)

= f̄(z∗ + ηd) + σ(‖g+(z∗ + ηd)‖1 + ‖h(z∗ + ηd)‖1)
≤ f̄(z∗) + ηL1L2 + σ(1 − η)(‖g+(z∗)‖1 + ‖h(z∗)‖1)
= P1(z

∗;σ)− σηe(z∗) + ηL1L2,

and

ψ(z∗ + ηd;σ, ε) ≤ ψ(z∗;σ, ε) + 2γ1σε− σηe(z∗) + ηL1L2.

From (2.14), we know that∀η ∈ (0, η],

e(z∗) ≤
L1L2

σ
+

2γ1
η
ε.

So for σ = O(1
ε
), we get that

e(z∗) ≤ κε,

where
κ ≥ L1L2 +

2γ1
η
.

�

Theorem 2.8 shows that when the constraint functions
satisfies certain convexity andσ is sufficiently large while
ε is sufficiently small, the local optimal solution of (2.10) is
an approximate feasible solution of(1.1). It is worth noting
that we do not require the objective function̄f to be convex
here.

The above properties are shown thatψ(z;σ, ε) is a good
approximation ofP1(z;σ).

We now give an approximate algorithm for (1.1).

Algorithm 2.1
Step 1. Setδ > 0, α > 0, 0 < ̺ < 1 < τ , and giveε1 > 0,

and σ1 > 0. Setk := 1.
Step 2. Solve

min
z∈ℜn

ψ(z;σk, εk),

and get the optimization solutionzk.
Step 3. If

e(zk) = ‖g+(zk)‖1 + ‖h(zk)‖1 ≤ αεk,

and εk ≤ δ, stop. Otherwise, adjustσk and εk as follows:
If e(zk) ≤ αεk but εk > δ, setσk+1 := σk and εk+1 :=

̺εk;
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If e(zk) > αεk, setσk+1 := τσk and

εk+1 := max{ max
1≤t≤m

gt(z
k), max

1≤t≤l
|ht(z

k)|}.

Setk := k + 1, and turn to Step 2.
When we use Algorithm 2.1 to solve the convex program-

ming problem (1.1), we can obtain the following conclusion
by the error estimation analysis.

Theorem 2.9:We consider the convex problem (1.1). If
for any σ ∈ [σ1,+∞), ε ∈ (0, ε1], the solution set of (2.10)
is not empty, then Algorithm 2.1 can obtains aδ-feasible
solution after finite iterations.

III. SMOOTH PENALTY FUNCTIONS FORMPCC

We now consider the MPCC model with the following
form,

min
z∈ℜn

f̄(z)

s.t. gt(z) ≤ 0, t = 1, ...,m,
ht(z) = 0, t = 1, ..., l,
ut(z) ≥ 0, t = 1, ..., p,
vt(z) ≥ 0, t = 1, ..., p,
ut(z)vt(z) = 0, t = 1, ..., p

(3.1)

The constraints of a MPCC problem not only consists of
standard inequality and equality constraints but also some
additional complementarity-type constraints.

Although the special structure of the problem constraints
has caused difficulties in solving, many different types of
algorithms have been proposed in recent decades such as
smoothing methods, the relaxation methods, and the penalty
methods ([21], [22], [23], [24]).

With the similar ideas in Section 2, our new smooth
penalty function for MPCC (3.1) is given as

φ(z;σ, ε) = f̄(z) + σε(
m∑
t=1

ln(1 + exp(gt(z)/ε))

+
l∑

t=1
(ln 2 + ln(1 + cosh(ht(z)/ε)))

+
p∑

t=1
ln(1 + exp(−ut(z)/ε))

+
p∑

t=1
ln(1 + exp(−vt(z)/ε))

+
p∑

t=1
(ln 2 + ln(1 + cosh(ut(z)vt(z)/ε)))),

(3.2)
and the corresponding penalty problem is

min
z∈ℜn

φ(z;σ, ε). (3.3)

Unlike the previous references([23], [24]), here we establish
an unconstrained penalty problem, while the penalty prob-
lems in [23] and [24] are still constrained.

IV. CONCLUSION

We give an approximately exact and smooth penalty func-
tion for the nonlinear programming problems with equality
and inequality constraints. This function has good smooth-
ness and is a good approximation of thel1 penalty function.

We also use this idea to construct a smooth penalty
function for mathematical program with complementarity
constraints.

Our future work will focus on the establishment of penalty
algorithms for MPCC and the discussion of convergence.
In addition, we will also explore the uses of our penalty
algorithms in other special optimization models.
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