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Abstract—Penalty functions have important applications in In order to reduce the adverse effects of the non smooth-
solving constrained optimization problems. In this paper, anew ness of penalty functions and achieve a certain degree of
strategy is introduced for smooth approximation of i, penalty  gyactness, many scholars have studied smoothing techniques

function. We further obtain error estimates between the optimal . .
objective function values of constrained problem and the ones for traditional exact penalty functions([9], [10], [11], [12],

of new smooth penalty problem. As an example, we provide a [13], [14], [15], [16], [17], [18], [19], [20]).

smooth penalty function for mathematical programming with In most literatures, the smoothing of non-smooth penalty
complementary constraints (MPCC) function is mainly aimed at the optimization problem with
Index Terms—Constrained problem, Penalty function, Only inequality constraints. In this paper, we give an ap-
Smooth penalty problem, Complementary constraints. proximately exact penalty function for optimization problems
with both equality and inequality constraints. Our function
|. INTRODUCTION has good smoothness and is a good approximation of; the

enalty function.
We give the arrangement of this article. A smoothing ap-

I N this paper we consider the nonlinear optimizatioﬁ
proach is proposed for (1.2) and the corresponding smoothed

problem (NP):

mg}t f(2) penalty problem is given in Section 2. The degree of
Z.Et. gi(2) <0, t=1,...m (1.1) approximation between the smooth penalty problem and
ho(2) — 0 t—1 1 the exact penalty problem is discussed, and error estimates

between the corresponding optimal objective function values
where the functions in this model are all continuouslyre optained. An approximate penalty algorithm is also given.
Qiﬁerentiable inR". Suppose in this paper the feasible sk section 3, as an instance of our approximating technique, a
is bounded and closed. smooth penalty function is constructed for the mathematical

The above model has been widely used in industry, engjrogram with complementarity constraints. In Section 4 some
neering, management and other fields(see [1], [2], [3], [4Ronclusions are given.

In many optimization methods to solve this problem, exact
penalty function has always taken an important role([5], [6}y
[7]1 ). In [5] the I, penalty function is given as

SMOOTH PENALTY FUNCTION AND ERROR ESTIMATES
We use in this section a smooth approximation to the

Pi(z;0) = f(2) + a(||h(2)|l1 + g7 (2)]1), (1.2) absolute value functiofy| as
with the penalty parametesr > 0, and g*(z) with the ly| = ¢1(y;€) :=e(In2 +1In(1 4 cosh(y/e))),  (2.1)
componentanax{0, g;(z)}. Here the norm| - ||; is thely h
norm. The corresponding penalty problem is where e 4 e 7
cosh(z) = ——,
méiRn Pi(z;0). (1.3) (=) 2
zeRn"

and use another smooth function to approximate the function
In [8], the authors use §, exact penalty function con- ,+ = max{0, y} by

structed by the nornjj - ||, to establish a global optimization N

algorithm for the optimization problem with general inequal- Y R pa(yie) ==eln(l + exp(y/e)), (2.2)

ity constraints and simple convex inequality constraints. \yherez > 0 is a parameter used to control the degree of
For traditional exact penalty functions, when their pena"prproximation.

parameters are large enough, the global optimal solutionszg, » 0, the maximum difference betweely| and

of unconstrained penalty problem are also the ones of the(, . - jies at the pointy = 0, which is 2¢ In 2. Further-
constrained problem. This is the benefit of its exactnesgore, we can get the following error estimates

However, the non smoothness of traditional exact penalty

functions also makes it difficult for many efficient fast Iyl — 1(y;€)| < §5exp(—|y|5). (2.3)
algorithms based on function gradients to be effectively 3
applied. The maximum difference betweent and s (y;¢) lies at

the pointy = 0, which iseIn2, and we can get that
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where Proof. Since that is ane-feasible solution of (1.1), then
e —e ”?
h(s) = &€ "
. (Z) 2 , gt(2> <eg t=1,...,m,
and its second derivative function is
1 1 [he(2)| <e, t=1,..,1,
Yy e) = ——r~— 0, —). 2.6
991(?/75) €(COSh(y/€)+1) € ( 728) ( ) g
an
The first derivative function of.(y; <) is
m
exp £ Z hl(]. + exp(gt( )/8))
i) = =W o), @ &
1+ exp(y/e) ! R
and its second derivative function is + ; (In2 +In(1 + cosh(hy(2)/e)))

1 1 < e+e
€ (0, ). (2.8) :l( n2+In(1+ <)) + m(In(1 +¢))
2(cosh(y/e) + 1)e e
By the above smoothing functions, we now give a smootfom Theorem 2.2 we know that
approximation to the/; exact penalty function (1.2). The

5 (y;e) =

1l
2

new smooth and approximately exact penalty function for —moe <P(Z0,¢) — Pi(Z0) < moe,
nonlinear constrained optimization problem (1.1) is given as
follows, and
U(zi006) = flz) + E(tzl In(1 + exp(g(2)/¢)) —vaoe < f(2) +oe(> In(1 + exp(g:(2)/¢))
= t=1
! !
2 (In2 + In(1 + cosh(h¢(2)/€)))), + 32 (In2 + In(1 + cosh(hs(2) /2))))
) (2.9) o m z
and the corresponding penalty problem —(f(2) + (X g (2) + X [lu(2)]) < moe,
t=1 t=1
zrg;%n ¥(z0:€). (2.10) wherevs = v1 + ~3. Thus,
From the above discussion, we can get the following o .
conclusion —y20e < f(2) = f(Z) < moe.
Theorem 2.1:For anyo > 0, ¢ > 0, andz € R", we O
have o < W(z50,6) — Py(2:0) < yroe From Theorem 2.4 we know that when> 0 is sufficiently
MoE =Y 1#%:9) = Moe, small, if the optimal solution of (2.10) is an-feasible
where 8 5 solution of (1.1), then it approximately solves (1.1).
v = §Z + 3m- Definition 2.5: ([6]) We call the problem (1.1) is a convex

constrained optimization problem if the functiofisand g;

R are all convex functions, and the functiohs are all affine
Theorem 2.2:If forany o > 0 ande > 0, Z andz* are the functions

optimal solution of the problem (2.10) and (1.1) respectively, Definition 2.6: ([6]) The KKT conditions hold at*, if
then o '
—y10e < Y(2;0,e) — Pi(2";0) < moe. m

+Zutv9t +Zutvm =0,

Proof. By the condition and Theorem 2.1, we know that

—moe <(3;0,6) — Pi(3;0) Hige(z") =0, pif >0, g(2%) <0, t=1,..m,
<Y(%30,6) = Pi(z%50)
<(z*50,6) — Pi(z*;0) < y10¢. hi(z*) =0, t=1,..,1,
U

whereyp;, v; are the corresponding Lagrangian multipliers.

From the above definitions, we have the following conclu-
gt(ze) <e, i=1,....,m, sion.

Theorem 2.7:Let the problem (1.1) be convex, and the
KKT conditions hold atz* with the corresponding La-
Based on this definition,the conclusion below is given.  grangian multiplier(x*, v*). If

Theorem 2.4:f for any o > 0 ande > 0, Z andz are the

Definition 2.3: z. is ane-feasible solution of (1.1), if

|ht(z<€)| <e j=1,..,1

optimal solution of the problem (2.10) and (1.3) respectively, o> Inax{l?rgmf( s r?élx 5]},
Z is a feasible solution of (1.1), aridis ans-feasible solution B B
of (1.1), then there exists a constapt> 0, such that then

—yp0e < f(é) — f(g) < vyi0¢. Y(z"50,6) < p(z50,¢) + 27108,

for any z € R™.
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Proof. Since the problem (1.1) is convex, and the KKTwhere

conditions hold at*, we have that* is an optimal solution N(zm) ={z e R" | ||z —2"|| <7}
of (1'1()’ ar;d for any: € %" By Theorem 2.1, we have that
Pi(z;0 . y
> F) 4 VI 20+ ollg* ()l + IhE)) V" Hndio,e) < A+ ndio) + mos,
= (") — Zﬂ g (27 (2 — 2%) Pi(z%0) <(z%0,e) + o€
=t m l On the other side, sincel”) is feasible for (1.1), we know
= X V() (2 = 2) +0(X g (2) + X [ha(2)]) N
i=1 N t=1 =1 0 <g™(z*+mnd)
" = max{0, g(=* + nd)}
> f(2") - lluz (9¢(2) — g9¢(2 ri) l < max{0, (177])g(2*)+7'g(2(0))}
= S v (=) = ha(=) + (3 7 (2) + X [he(2)) < max{0, (1~ n)g(=")} + max{0, ng (=)}
a0 S = (1=n)g* ("),
=f(*) = X nige(2) and
! = m ! h(z* +nd) = h[(1—n)z* +nz]
= X vithi(z) + o (3 g/ (2) + 3 Ihe(2)]). = (1= mh(z*) + nh(z)
i=1 i=1 =1 = (1 —n)h(z*).
Then,

So we have that

£l % * d O')
Pi(z;0) > f(z")+ o—ud)gl (2)+ o—|vi|)|h Pi(z" +n .
1(z0) 2 F) 4D (o —uilal @+ o= W@l e T g a4 G + )
< flz )+77L Ly +o(1—n)(lg™ (2l + 1R(z*)[]1)

m =P — L1L
JZmaX{maxuf,mlaxh/ﬂ}, (2% 0) = ome(z) +nlaLs,

=1 = and
we have that for any for any € ",

V(" +nd;o,e) <Y(2%;0,€) + 2y10e —one(z™) + 1Ly Lo.

Pi(z;0) > f(2%). (2.11)
From (2.14), we know thatn € (0,7,
From Theorem 2.1 and (2.11), we know that for any R, I 5
ande > 0, e(z*)g%Jr%a
—yi0e < Y(z;0,e) — Pi(z;0) < yr0¢e. (2.12) So for o — O(%), we get that
Then <
8509 ~ (0 (=
< (z*;0, 5) Pi(z;0) 4+ y10¢ where )
< Y(z*;0,¢) f(z*) + vyi0¢€ (2.13) k> L1Lo + %
=(z*0,e) — P1(2*;0) + y10¢ N
< 2’}/10'5 O

Theorem 2.8 shows that when the constraint functions

S%tISerS certain convexity and is sufficiently large while

Theorem 2.7 shows that when the penalty parameter
SHOWs W P y P is sufficiently small, the local optimal solution of (2.10) is

greater than a threshold value related to the Lagrangfé
multiplier of the primal optimal solution*, the suboptimal
property of any global optimal solution of the conve
programming problem (1.1) can be defined by a functio
composed of penalty parameter and smooth parameter.

>{_:at we do not require the objective functigrto be convex

The above properties are shown thdt:; o, ) is a good
approximation ofP; (z; o).

Theorem 2.8:Suppose in the problem (1.1y, are all We now give an approximate algorithm for (1.1).

convex, andy; are all affine. Ifz* is a local optimal solution

Algorithm 2.1
of (2.10), then :
( ) Stepl.Sef > 0, >0,0< p< 1< 7,andgives; > 0,
e(z*) == |lgt (29|l + ||h(z")]1 < ke ando; > 0. Setk := 1.
Step 2. Solve

for o = O(2), where the constant > 0.

Proof. Let z() be feasible for (1.1), thea(z(®) = 0. Set ani%iw(z Th: £k);
d:= 2 —2* andL; := ||d||;. We consider* +nd, where
n € [0,1]. Sincez* is a local solution of (2.10) , it follows
that there is ay; > 0,

Y(=" +nds0,8) > (=" 0,€), (2.14) (2 = llg™ Ol + G < e,

andej < 9, stop. Otherwise, adjust, ande; as follows:
If e(2%) < agy, butey, > 4, Setopy1 = o andegyq :=

Ly = max{[|[Vf(&)| | £ € N(z";7)}, 05k,

and get the optimization solutiogf’.
Step 3. If

for anyn € (0,7;]. Set; = min{1,7,}, and
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If e(2*) > aey, setoyy := 701, and Our future work will focus on the establishment of penalty
algorithms for MPCC and the discussion of convergence.
In addition, we will also explore the uses of our penalty
algorithms in other special optimization models.

— k k
€rr 1= max{ max g,(27), max [h(z")]}.

Setk := k+ 1, and turn to Step 2.
When we use Algorithm 2.1 to solve the convex program-
ming problem (1.1), we can obtain the following conclusion o o _ _ _
by the error estimation analysis. " Approximation o Sgnal Restoration'. IAENG miermational Joura
Theorem 2.9:We consider the convex problem (1.1). If  of Applied Mathematics, vol.43, no.4, pp226-232, 2014.
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. . . . Algorithm for Solving Optimization Problems,” IAENG International
is not empty, then Algorithm 2.1 can obtainsjgeasible Journal of Computer Science, vol.43, no.3, pp336-343, 2016.

solution after finite iterations. [3] W. Zhang, D. Qiu and M.L. Dong, “Optimizations of Convex and
Generalized Convex Fuzzy Mappings in the Quotient Space of Fuzzy
Numbers”, IAENG International Journal of Applied Mathematics,
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