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Abstract—We introduce a novel distributed skewed regression
that combines the flexibility of skewed distributions with the
efficiency of distributed computing, effectively addressing the
challenges associated with large-scale skewed datasets. Within
this framework, we propose an optimal subset selection cri-
terion named LIC. Comparative analysis with two widely
used metrics demonstrates that LIC achieves superior stability
and sensitivity in reducing estimation errors. In addition, we
evaluate the applicability of the LIC to various skewed regres-
sion models, with experimental data further corroborating its
robustness and stability.

Index Terms—Skewed distribution, Distributed skewed re-
gression, Optimal subset, LIC.

I. INTRODUCTION

IN traditional statistical analysis, normal distribution and t-
distribution are commonly employed for modeling and in-

ference. However, many real-world datasets exhibit substan-
tial skewness. Distributed skewed regression integrates the
adaptability of skewed distributions with the computational
efficiency of distributed algorithms, offering an effective
solution for large-scale skewed datasets.

We explore the theoretical foundations and implementa-
tion methods of two distributed skewed regression models:
distributed skew-normal regression and distributed skew-
t regression. Additionally, we introduce a model selection
criterion named LIC, specifically designed for distributed
skewed regression.

A. Current Research Status
Since Azzalini introduced skewed distributions in 1985,

they have attracted considerable attention and study. In dis-
tributed statistical learning, techniques such as averaging and
partitioning are widely used for large-scale data processing.
Optimal subset selection is also an effective strategy for man-
aging large datasets. Researchers have explored the subset
selection problem using the Pareto approach and developed
a distributed POSS algorithm with bounded approximation
guarantees.

B. Our Work
In this study, we introduce the distributed skewed regres-

sion model and propose a novel optimal subset selection
criterion named LIC. We compared the MAE of the three
methods: LIC, minimum information, and maximum gain
matrices (LIC, opt1, and opt2, respectively). The results show
that LIC consistently outperforms the others. We explore
the stability and sensitivity of these three methods for two
common skewed distributions.
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ISTRIBUTED SKEWED REGRESSION

A. Distributed Skewed Regression

Distributed skewed regression is a method that applies
skewed regression models to distributed data. It decomposes
computationally intensive problems into parallelizable sub-
problems. The procedure consists of the following steps:

1) Model Definition: The distributed partial skew-normal
regression model is defined as

YIk = XIkβ + εIk , εIk ∼ Skew −Normal(µIk , σ, λ), (1)

where µlk = Xlkβ is the mean of the regression equationk =
1, 2...Kn, β is the vector of regression coefficients, β =
(β1, · · · , βp)

T . σ is the difference in the standard deviation
and λ is the bias parameter.

The distributed partial skew-t regression model is defined
as

YIk = XIkβ + εIk , εIk ∼ Skew − t(µIk , σ, λ, ν). (2)

2) Maximum Likelihood Estimate:
a) Constructing the Likelihood Function: the likelihood

function can be expressed as

L = ΠKn

k=1f (YIk) . (3)

The logarithmic likelihood function is obtained by taking
the logarithm:

ℓ =

Kn∑
k=1

logf(YIk ;XIkβ, σ, α). (4)

b) EM Algorithm to Optimize the Parameters: The EM
algorithm approximates the optimal solution step by step
through the alternating execution of the E-step (expectation
step) and the M-step (maximization step).

Step E (Expectation Step): In this step, the expected value
of the hidden variable is calculated. For skewed distributions,
the hidden variable represents a potential component of the
error term.

Step M (Maximization Step): In this step, the likelihood
function is maximized to update the parameters β, σ, and α.

3) Local Estimation: The local regression coefficient βk

and the skewness parameter αk were independently cal-
culated at each computational node using the maximum
likelihood estimation (MLE) of the skewed distribution.

4) Aggregation: The local estimates from all computing
nodes were averaged and aggregated to obtain a global
estimate.

β̂ =
1

K
ΣK

k=1β̂k, (5)

α̂ =
1

K
ΣK

k=1α̂k. (6)
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B. Interval Estimation for Distributed Skewed Regression

Our goal is to obtain the confidence intervals for the
regression coefficients β̂Ik at a given confidence level 1−α
based on YIk at C(YIk).

P (β̂Ik ∈ C(YIk)|β̂Ik) = 1− α. (7)

We define w ∈ (0, 1) as the weight function, with
each function corresponding to a specific confidence domain
process. This process is thoroughly described in the study
by Yu and Hoff and has been applied to the Bayesian
optimal function. Next, we assume that Aw(β̂Ik) denotes the
acceptance region for each β̂Ik , and the function satisfies the
following conditions.

Aw(β̂Ik) =

{
Y Ik :

(
β̂Ik − tnIk

−p·1−αwσ̂Ik · CIk , β̂Ik

−tnIk
−p,α(1−w)σ̂Ik · CIk ,

)}
(8)

where C̄Ik =
∑nIk

i=1 CIk,xi

nIk
, xi ∈ XIk ,because CIk,xi

=

x⊤
i (X

⊤
Ik
Xik)

−1xi is the i-th diagonal element of the matrix
xIk(X

⊤
Ik
Xik)

−1x⊤
Ik

, it can be expressed as

diag{XIk(X
⊤
Ik
XIk)

−1X⊤
Ik
} =

(
CIk,x1

, CIk,x2
, · · · , CIk,xnIk

)
.

The confidence interval is derived by inverting the accep-
tance region associated with the level of α. The confidence
interval for the regression coefficient β̂Ik when w = 1

2 is
defined as

C(YIk) =

{
β̂Ik : Y Ik + tnIk

−p,α2
σ̂Ik · CIk ≤ β̂Ik

≤ Y Ik + tnIk
−p,1−α

2
σ̂Ik · CIk

}
.

(9)
Among them: E(σ̂2

Ik
) = σ2

Ik
.Notes:

σ̂2
Ik

=
1

nIk − p
ε̂⊤Ik ε̂Ik =

1

nIk − p
Y ⊤
Ik

(
InIk

×nIk
−HIk

)
YIk ,

(10)
where ε̂Ik = YIk − ŶIK = (InIk

×nIk
−HIk)YIk .

For the full-rank submatrix X⊤
Ik
XIk , we have

HIk = XIk(X
⊤
Ik
XIk)

−1X⊤
Ik
. (11)

In the special case where the matrix is not invertible, we
have

HIk = XIk(X
⊤
Ik
XIk + λIn×n)

−1X⊤
Ik
, (12)

where λ is the interference term, and In×n is the original
matrix of n × n . Then, the shortest interval length for βIk

can be obtained as follows:

L(C(YIk)) = 2σ̂Ik · CIk · tnIk
−p,1− a

2
. (13)

In addition, when nIk is large enough, we use the Z
distribution instead of the t distribution to compute the length
of the interval, which is also mentioned in Javanmard and
Yuchen Zhang et al. The length satisfies.

2σ̂Ik · CIk · tnIk
−p,1− a

2
.

III. LIC FOR DISTRIBUTED SKEWED REGRESSION

In the first step, for the subset sequence {Ik}Kn

k=1 , the
optimal indicator subset is selected based on the shortest
interval length of I1opt , such that

I1opt = argmin
Ik

{
σ̂Ik · CIk · tnIk−1,1−α

2

}
, (14)

where σ̂Ik , CIk and tnIk−1,1−α
2

are derived from the formula
L(C(YIk)) = 2σ̂Ik · CIk · tnIk

−p,1− a
2

.
In the second step, it is possible to prove the least-squares

estimate of βIk and the variance of β̂Ik .

β̂Ik = (X⊤
Ik
XIk)

−1X⊤
Ik
YIk , var(β̂Ik) = σ̂2

Ik
(X⊤

Ik
XIk)

−1,
(15)

where E(σ̂2
Ik
) = σ2

Ik
. Based on the maximization informa-

tion matrix X⊤
Ik
XIk , the optimal indication subset I2opt is

obtained:

I2opt = argmax
Ik

|X⊤
Ik
XIk |. (16)

The second step of the algorithm mirrors the method used
in the IBOSS algorithm under the D-optimality criterion
proposed by Haiying Wang. Specifically, it involves selecting
a subset of i data points from the dataset containing Kn two-
dimensional variables (YIk , XIk) to maximize the following
equation.

δDopt = argmax
δ

∣∣∣∣∣
Kn∑
k=1

δkXIkX
⊤
Ik

∣∣∣∣∣ ,
Kn∑
k=1

δk = 1, (17)

where, δk is an indicator variable. When δk = 1, the pair
(YIk , XIk) is included in the subset, whereas when δk = 0,
(YIk , XIk) is excluded from the subset.

In the third step, to further eliminate redundant information
and reduce the size of the subset, the following calculation
is performed to obtain the final optimal subset.

Iopt = I1opt ∩ I2opt. (18)

Therefore, the optimal subset QIopt = (YIopt , XIopt) is
selected from all possible subsets {Q = (YIk , XIk)}

Kn

k=1.
This criterion, which is related to the length of the interval
and the information matrix, is referred to as the LIC. For
this optimal subset, the shortest interval length of βIopt was
achieved.

L(C(YIopt)) = σ̂Iopt · CIopt · tnIopt−1,1−α/2. (19)

In the problem discussed above, we use the LIC to select
the optimal subset of indications.

IV. NUMERICAL ANALYSIS

To evaluate the performance of the proposed LIC, simula-
tions were carried out. We also analyzed the performance of
two other metrics. opt1 and opt2 under the same conditions.

A. Prepare

By using three indicator subsets Iopt,I1opt and I2opt, we have
β̂Iopt , β̂I1

opt
, β̂I2

opt
. The MAE was chosen as an indicator of the

estimation.
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B. Stability analysis

1) Analog Background: It is assumed that the error term
obeys a skew-normal distribution and a skew-t distribution,
we analyze the stability and sensitivity of the LIC.

The generated dataset (X,Y ) varies depending on the
distribution of the error term.

Case 1 (Skew-Normal distribution):
Y1 = X1β + ε1, ε1 ∼ Skew −Normal(5, 2, 0.05),
Case 2 (Skew-t distribution):
Y1 = X1β + ε1, ε1 ∼ Skew − t(5, 2, 0.05),

where X consists of (X1, X2) and Y consists of (Y1, Y2).
The definitions are as

X1 = (Xij) ∈ Rn1×p, X1j ∼ N(0, 4),

X2 = (Xij) ∈ Rn2×p, X2j ∼ Beta(2, 1),
Y1 = X1β + ε1, n1 = n− nr,

Y2 = X2β + ε2, n2 = nr.

Note that β ∼ Unif(1, 5) and ε = (ε1, ε2), where β ∼
Laplace(0, 8) runs our simulation.

2) Simulation Analysis: The stability of LIC under skew-
normal distribution and skew-t distribution is investigated by
varying the values of n and p.

When n varies over the set {2000,3000,4000,5000,6000},
{p, K, α, σ1, σ2, nr} = {8, 10, 0.05, 1, 8, 10}.

When p varies over the set {8,9,10,11,12}, {n, K, α, σ1,
σ2, nr} = {2000, 10, 0.05, 1, 8, 10}.

Case 1: Stability analysis of LIC under the skew-normal
distribution.

i. Effect of n-value on the stability of the LIC
Fig. 1 shows that under the skew-normal distribution, the

MAE of all three criteria decreases as n increases, The
LIC fluctuates the smallest fluctuation and achieves the best
performance when n = 3000 and p = 8.

Fig. 1. Stability analysis of LIC for n-value variations under skew-normal
distribution.

ii. Effect of p-value on the stability of the LIC
Fig. 2 shows that under the skew-normal distribution, the

MAE of all criteria initially decreases, then increases, and
finally falls again as p varies from 8 to 12. The LIC achieves
the lowest MAE at p = 12, making it the best option.

Fig. 2. Stability analysis of LIC for p-value variations under skew-normal
distribution.

Case 2: This case studies the stability of the LIC under a
skew-t distribution.

i. Effect of n-value on the stability of the LIC

Fig. 3 shows that under the skew-t distribution, the MAE
curves of the LIC differ from opt1 and opt2 as n increases.
Although the LIC’s MAE values trend upward. it achieves
its best performance with the lowest error at n = 3000 and
p = 8.

Fig. 3. Stability analysis of LIC for n-value variations under skew-t
distribution.

ii. Effect of p-value on the stability of the LIC

Fig. 4 shows that under the skew-t distribution, notable
performance differences are observed across criteria. The
LIC achieves the lowest MAE at p=11, demonstrating its
optimal performance.
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Fig. 4. Stability analysis of LIC for p-value variations under Skew-t
distribution.

3) Sensitivity Analysis: The sensitivity of the LIC under
skewed-normal and skewed-t distributions is examined by
varying the values of K and nr.

When K varies over the set {5,10,15,20,25}, {p, n, α, σ1,
σ2, nr} = {8, 2000, 0.05, 1, 8, 10}.

When nr varies over the set {50,60,70,80,90}, {p, n, α,
σ1, σ2, K} = {8, 2000, 0.05, 1, 8, 10}.

Case 3: This case studies the sensitivity of the LIC under
skew-normal distribution conditions.

i. Effect of K-value on the sensitivity of the LIC
Fig. 5 shows that under the skew-normal distribution, the

LIC maintains stable performance with remains relatively
stable when K ranges from 5 to 15. However, as K increases
beyond 15, variability rises, and the LIC achieves the lowest
MAE at K = 20, indicating sensitivity to larger K values.

Fig. 5. Sensitivity analysis of LIC for K-value variations under skew-
normal distribution.

ii. Effect of nr-value on the sensitivity of the LIC
Fig. 6 shows that under the skew-normal distribution,

the LIC is sensitive to changes in nr, exhibiting greater
fluctuation in MAE compared to opt1 and opt2. Despite this
variability, the overall error remains relatively low.

Fig. 6. Sensitivity analysis of LIC for nr -value variations under skew-
normal distribution.

Case 4: This case studies the sensitivity of the LIC under
a skew-t distribution.

i. Effect of K-value on the sensitivity of the LIC

Fig. 7 shows that under the skew-t distribution, the LIC
exhibits great sensitivity to the choice of K, especially in the
range of 10 and 25. Nevertheless, the overall MAE remains
within a low range.

Fig. 7. Sensitivity analysis of LIC for K-value changes under skew-t
distribution.

ii. Effect of nr-value on the sensitivity of the LIC

Fig. 8 shows that under the skew-t distribution, the LIC is
sensitive to changes in nr. The MAE of the LIC fluctuates
with changes in nr, with notable local peaks around nr =
60. This indicates that while the LIC’s performance can be
affected by nr changes, it generally maintains a low error
level.
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Fig. 8. Sensitivity analysis of LIC for nr-value variations under skew-t
distribution.

V. CONCLUSION

The proposed distributed skewed regression and the LIC
offer an efficient and reliable solution for large-scale skewed
data. Its applicability to various distributions has been con-
firmed. Future research will focus on practical applications
and its potential in complex data scenarios.
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