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Abstract—The main aim of this research is to develop fuzzy
delta graphs and its product graphs. The delta graph is a graph
whose vertices are weighted by ratio of generalized extorial
function and the edges are identified by the differentiation and
integration of generalized extorial function. Also we discuss all
types of regularity and irregularity properties of fuzzy product
graphs with examples.

Index Terms—Delta graph, Extorial function, Fuzzy graph,
Fuzzy degrees of vertices and edges, Highly irregular fuzzy
graph, Irregular fuzzy graph, Regular fuzzy graph, Totally
regular fuzzy graph.

I. INTRODUCTION

THE authors, Santhimaheswari N.R and Sekar C (2016),
focus on the behaviours of irregular fuzzy graphs

and explore the concept of the dm degree of vertices
[16]. Moreover, the introduction of (m, k) regular fuzzy
graphs and further investigations into totally (m, k) regular
fuzzy graphs have opened avenues for comparing different
classes of fuzzy graphs. By defining key concepts like the
dm degree and exploring regularity conditions, the field
continues to evolve, offering insights into the complexities of
uncertain information in graph theoretical frameworks. In[7],
author clarifies how two different types of irregular fuzzy
graphs neighbourly and highly irregular can be considered
equivalent and establishes foundational results for the study
of neighbourly irregular fuzzy graphs. To better understand,
how these different types of fuzzy graphs interact and differ
in their support neighbourly properties. The basic concepts of
fuzzy graph is discussed in [10]. The transmission problem
on graphs and digraphs are studied in[9]. In[3], the authors
discussed how to investigate the solution of the difference
equation. Also, the authors explore the properties of a newly
defined extorial function and use it to solve a higher order
difference equation with constant coefficients within the
framework of discrete calculus. The paper includes examples
to validate the results. Furthermore, the authors introduce
a novel function, called the extorial function, which is
defined by polynomials with polynomial factorials. Here
we introduce generalized extorial function by adding shift
values. We derive identities involving difference operators

Manuscript received January 10, 2025; revised June 30, 2025.
This work was supported in part by the Carreno Grant Fellowship
(SHC/Fr.Carreno Research Grant/2023/03), Sacred Heart Fellowship
(SHC/SHFellowship/2024/19), Don Bosco Research Grant (SHC/DB
Grant/2024/03) and DST for the FIST Fund (SR/FST/College-2017/130(c)).

Iruthayaraj S is a PhD candidate at the Department of Mathematics,
Sacred Heart College (Autonomous), Tirupattur-635 601, Tamil Nadu, India.
Affiliated to Thiruvalluvar University, Serkaddu, Vellore-632 115, Tamil
Nadu, India. (e-mail: iruthayarajsh@gmail.com)

John Borg S is an Assistant Professor at the Department of Mathematics,
Sacred Heart College (Autonomous), Tirupattur-635 601, Tamil Nadu, India.
Affiliated to Thiruvalluvar University, Serkaddu, Vellore-632 115, Tamil
Nadu, India. (e-mail: sjborg@gmail.com)

Britto Antony Xavier G is an Associate Professor at the Department
of Mathematics, Sacred Heart College (Autonomous), Tirupattur-635 601,
Tamil Nadu, India. Affiliated to Thiruvalluvar University, Serkaddu,
Vellore-632 115, Tamil Nadu, India. (e-mail : brittoshc@gmail.com)

and generalized extorial function. Some interesting results on
the relationship among generalized extorial function, as well
as its sums are obtained. This study also describes how to
use the generalized extorial function to arrive at fuzzy delta
graphs and their product graphs. By choosing the right value
on x, such as for electron charge in molecular structures,
we can obtain applications in the field of physical science
because the generated graph’s structure is similar to chemical
bonds.

II. BASIC DEFINITIONS AND THEOREMS

In this section, we present the necessary basic definition
and related theorems which will be used in the subsequent
sections.

Definition II.1. [1] Let V and E be the set of vertices and
edges of a graph G respectively. Let α and β be two functions
from the vertex set V into [0,1] and edge set E into [0,1]
satisfying the condition β(v, w) ≤ α(v) ∧ α(w). Then the
pair G̃ = (α, β) is called as a fuzzy graph on G. G̃ = (α, β)
may be denoted as G̃ = (V,E, α, β) for our convenient. The
fuzzy vertex degree v is defined by dG̃(v) =

∑
(v,w)

β(v, w),

for (v, w) ∈ E and β(v, w) = 0 for (v, w) not in E, where
the summation runs over the non loop edges (v, w). For a
vertex v ∈ V , the total fuzzy vertex degree is defined as
tdG̃(v) = dG̃(v) + α(v).

Definition II.2. [7] Consider the fuzzy graph
G̃ = (V,E, α, β) defined in II.1. If atleast one pair of
adjacent vertices have distinct fuzzy vertex degree then the
fuzzy graph is called irregular. If all the pairs of vertices have
distinct fuzzy vertex degree then the fuzzy graph is known as
strongly irregular. If every vertex adjacent to the vertices have
distinct fuzzy vertex degrees then fuzzy graph is considered
as highly irregular. If every pair of adjacent vertices is have
distinct fuzzy vertex degree then fuzzy graph is said to be a
neighbourly irregular.

Definition II.3. [16] Consider the fuzzy graph
G̃ = (V,E, α, β) defined in II.1. For (v, w), the fuzzy edge
degree is dG̃(v, w) = dG̃(v) + dG̃(w)− 2β(v, w).
The minimum fuzzy edge degree is
δE(G̃) = min

{
dG̃(v, w) : (v, w) ∈ E

}
.

The maximum fuzzy edge degree is
∆E(G̃) = max

{
dG̃(v, w) : (v, w) ∈ E

}
. The total fuzzy

edge degree is tdG̃(v, w) = dG̃(v) + dG̃(w)− β(v, w). The
minimum total fuzzy edge degree is
δtE(G̃) = min

{
tdG̃(v, w) : (v, w) ∈ E

}
.

The maximum total fuzzy edge degree is
∆tE(G̃) = max

{
tdG̃(v, w) : (v, w) ∈ E

}
.

Definition II.4. [1] In fuzzy graph G̃ = (V,E, α, β),
a sequence of distinct vertices v0, v1 · · · , vm, with
β(vj−1, vj) > 0, j = 1, 2, · · ·m, is called a path P of length
m and the degree of membership of a weakest arc is defined

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2931-2936

 
______________________________________________________________________________________ 



as its strength. If v0 = vm and m is greater than 3 then P
is called a fuzzy cycle. The connectedness strength between
two vertex v and w is the strength of maximum of all paths
from v to w denoted as CONNG̃(v, w). If for all v, w ∈ V,
βG̃(v, w) = CONNG̃(v, w) > 0 then the fuzzy graph G̃ is
called fuzzy connected.

Definition II.5. [13] Consider a fuzzy connected graph
G̃ = (V,E, α, β). If fuzzy edge degrees of all
pair of adjacent edges are distinct then the graph
is called neighbourly edge irregular. If total fuzzy
edge degree of all pairs of adjacent edges are
distinct then the graph is called as totally irregular. If
β(v, w) = α(v) ∧ α(w) = min {α(v), α(w)} ∀ v, w ∈ V
then it is called complete. The values p =

∑
v∈V

α(v) and

q =
∑

(v,w)∈V×V
β(v, w) are called order and size of the

fuzzy complete graph. The scalar cardinality of S is defined
as
∑
v∈S

α(v), denoted as |S|.

Definition II.6. [16] Consider a connected fuzzy graph
G̃ = (V,E, α, β). If fuzzy edge degrees are distinct for all
pairs then it is called strongly edge irregular. If total edge
degrees are distinct for all pairs, then it is called strongly
edge totally irregular. If dG̃(v) = constant, ∀ v ∈ V , then
G̃ is called regular fuzzy graph of degree constant. If each
vertex has the constant total vertex degree, then G̃ is said to
be the totally regular fuzzy graph of total degree constant.

Remark II.7. [16] Consider a connected fuzzy graph
G̃ = (V,E, α, β). If G̃ is strongly edge irregular fuzzy graph
and strongly edge totally irregular fuzzy graph then it is need
not be a constant function. A complete fuzzy graph need not
be neighbourly irregular.

Definition II.8. [17] Consider a fuzzy graph
G̃ = (V,E, α, β). The dm degree of a vertex
v in G̃ is defined by dm(v) =

∑
βm(v, w),

where the value of βm(v, w) is taken by
βm(v, w) = sup {β(v, v1) ∧ β(v1, v2) · · · ∧ β(vm−1, w)}
where, (v, v1, v2 · · · vm−1, w) is the shortest path connecting
v and w of length m. The minimum fuzzy dm vertex degree
of G̃ is δm(G̃) = min {dm(v) : v ∈ V }.

The maximum fuzzy dm vertex degree of
G̃ is ∆m(G̃) = max {dm(v) : v ∈ V }.
If dm(v) = constant, ∀v ∈ V , then G̃ is said to be (m, c)
regular fuzzy graph. The total fuzzy dm vertex degree of a vertex
v in V is tdm(v) =

∑
βm(v, w) + α(v) = dm(v) + α(v).

The minimum fuzzy tdm total vertex degree of G̃ is
tδm(G̃) = min {tdm(v) : v ∈ V }. The maximum fuzzy tdm total
vertex degree of G̃ is t∆m(G̃) = max {tdm(v) : v ∈ V } .

Definition II.9. [17] (Totally (m, c)-Regular Fuzzy Graph)
If each vertex of G̃ has the same total dmvertex degree c,
then G̃ is said to be totally (m, c)-regular fuzzy graph. The
following example illustrate (2, c) regular fuzzy graph.

Theorem II.10. [1] Consider a fuzzy graph
G̃ = (V,E, α, β). Then α is constant function iff the
following conditions are equivalent.
(i) G̃ is (2, c) regular fuzzy graph.
(ii) G̃ is totally (2, c) regular fuzzy graph.

III. DELTA GRAPHS

In this section by employing fuzzy vertex values and
difference of generalized extorial function, we developed
new type of fuzzy delta graph and present basic concepts
of the construction of delta graphs. Here we use the notation
N(a) = {a, a+ 1, a+ 2 · · · }

Lemma III.1. For the positive integer’s’ we have

∆sx(m) = m(s)x(m−s), (1)

where m(s) = m(m− 1)(m− 2) . . . (m− (s− 1)).

Definition III.2. For x ∈ R and m,κ ∈ N(0), the
generalized extorial function, denoted as E(κ, x(m)), is
defined as ∞∑

r=0

x(m+rκ)

(m+ rκ)!
= E(κ, x(m)) (2)

Here, m and κ denote the initial power and the shift value
of generalized extorial function(2)

Lemma III.3. For m ∈ N(1), we have
x(m−1)

(m− 1)!
= ∆

x(m)

m!
.

Proof: The proof follows from (1) and
m

m!
=

1

(m− 1)!

Lemma III.4. For m = 0, 1, 2 · · ·κ, κ ∈ N(2), and
0 ≤ r ≤ m, r ∈ N(0), we have

∆rE(κ, x(m)) =

{
E(κ, x((m−r)modκ)), r > m

E(κ, x(m−r)), r ≤ m
(3)

Proof: Since E(κ, x(m)) is convergent for each x ∈ R
and (−κ)! = ∞ for N(1), operating ∆ to each term of
E(κ, x(m)) in (2), we get

∆E(κ, x(m)) =

(
x(m−1)

(m− 1)!
+

x(m+κ−1)

(m+ κ− 1)!
+ · · ·

)
= E(κ, x(m−1)).

Applying ∆2 on E(κ, x(m)), we get

∆2E(κ, x(m)) =

(
x(m−2)

(m− 2)!
+

x(m+κ−2)

(m+ κ− 2)!
+ · · ·

)
= E(κ, x(m−2))

...
In general applying ∆r on E(κ, x(m)), we derive(3)

Theorem III.5. Let
κ−1∑
r=0

∆ry = ex has a solution as

y = E(κ, x(0))
Proof: Consider y = E(κ, x(0)), defined by (2),

∆0E(κ, x(0)) = E(κ, x(0)), ∆1E(κ, x(0)) = E(κ, x(4)),
∆2E(κ, x(0)) = E(κ, x(3)), ∆3E(κ, x(0)) = E(κ, x(2)) · · · ,
∆κ−1E(κ, x(0)) = E(κ, x(1)).
By adding all the above expressions, we get
∆0E(κ, x(0)) + ∆1E(κ, x(0)) · · ·+ ∆κ−1E(κ, x(0))
= (∆0 + ∆1 + ∆2 · · ·+ ∆κ−1)E(κ, x(0)) = ex

The proof is complete.

From the generalized extorial function defined by (2), we
introduce a delta graph for any κ ≥ 2 and m = 0, 1 · · ·κ−1.

Definition III.6. The rth order delta
graph arrived from the generalized extorial
function is a pair. Grκ = (Vκ, E

+r
κ ), where

Vκ =
{
E(κ, x(m))|m = 0, 1 · · ·κ− 1

}
is the vertex set.
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E+r
κ =

{
(E(κ, x(m))→ E(κ, x((m−r)modκ))|m = 0, 1, · · ·κ− 1

}
is the edge set. Here each extorial function E(κ, x(m))
is vertex, and E(κ, x(m)) → E(κ, x(m−r)) is the label of
directed edge in Grκ. Note that Vκ having κ vertices. The
integral graph is obtained from difference graph by reversing
the direction. The directed edge of κth order integral graph
is given below,
E−r
κ =

{
(E(κ, x((m−r)modκ))→E(κ, x(m)))|m = 0, 1, · · ·κ− 1

}
Definition III.7. The rth order delta graph with κ vertices
is obtained by replacing each directed edges into usual
edge in the delta graph Grκ. This graph is denoted as
Grκ = (Vκ, E

+r
κ ). Let Grp = (Vp, E

r
p), Gsq = (Vq, E

s
q ) be

the two delta graphs.

Consider Vp =
{
E [p, x(0)], E [p, x(1)], · · · E [p, x(p−1)]

}
Vq =

{
E [q, x(0)], E [q, x(1)], · · · E [q, x(q−1)]

}
Vpq =

{
(E [p, x(0)], E [q, x(0)]), (E [p, x(0)], E [q, x(1)]) · · · ,

(E [p, x(0)], E [q, x(q−1)]), (E [p, x(1)], E [q, x(0)]) · · · ,
(E [p, x(1)], E [q, x(q−1)]) (E [p, x(p−1)], E [q, x(0)]) · · · ,
(E [p, x(p−1)], E [q, x(q−1)])

}
Ers

pq =
{
(E[p, x(a)], E[q, x(b)]) → (E[p, x((a−r)modp)], E[q, x((b−s)modq)]

}
as edge set. The product of Grp and Gsq is a graph defined
as Gr,sp,q = (Vpq, E

rs
pq).

IV. FUZZY DELTA GRAPHS

In this section, we construct fuzzy delta graph. The fuzzy
values of vertex, vertex degrees, total vertex degrees, edge
values, edge degrees and total edge degrees are given in the
Table I and II.

Definition IV.1. Let G1 = (V1, E1) be a graph with vertex
set V1 = {v0, v1, v2, · · · vn−1} and G2 = (V2, E2) be another
graph of with vertex set V2 = {u0, u1, u2, · · ·um−1}.
The m-multi-copies of G1 with G2 is a graph G = (V ,E)
where V = V2 ∪m× V1 and edge set
E = E2 ∪m× E1 ∪ {u0v0, u1v0, u2v0 · · ·um−1v0}.

Definition IV.2. Let G̃1 = (V1, E1, σ1, µ1) be the fuzzy
graph and G̃2 = (V2, E2, σ2, µ2) be the fuzzy graph.
Let G = (V ,E) be multi-copies graph of G1 with repect to
G2. Let σ = σ1∪σ2 and µ = µ1∪µ2 then G̃ = (V ,E, σ, µ)
is called multi-copies fuzzy graph.

Definition IV.3. Consider the delta graph of
extorial function is Grk = (Vk, E

r
κ), where

Vκ =
{
E(κ, κ(m))|m = 0, 1, 2 · · ·κ− 1

}
is the vertex

set and the edge set is
Erκ=

{
(E(κ, κ(m))− E(κ, κ((m−r)modκ))|m = 0, 1, 2 · · ·κ− 1

}
.

Define α : Vk → [0, 1] by α(E(κ, κ(m))) =
E(κ, κ(m))

E(1, κ(0))
,

β(E(κ, κ(m)), (E(κ, κ(n))) = α(E(κ, κ(m))) ∧ α(E(κ, κ(n)))

= min
{
α(E(κ, κ(m))), α(E(κ, κ(n)))

}
. Then

G̃ = (Vκ, E
r
κ, α, β) is fuzzy delta graph of extorial function.

The illustration for the definitionIV.3 is given below.
The 5-cycle u0u1u2u3u4u0 with the fuzzy vertex values,

calculated by α(ui) =
E(5, 5(i))

E(1, 5(0))
for i = 0, 1, 2, 3, 4

is shown in Figure 1. The calculations of fuzzy values for
5-cycles are illustrated as

β(ui, ui+1) = α(ui) ∧ α(ui+1)= min

{
E(5, 5(i))

E(1, 5(0))
,
E(5, 5(i+1))

E(1, 5(0))

}

i = 0, 1, 2, 3, u−1 = u4, u5 = u0, β(u4, u0) = α(u4) ∧ α(u0)

= min

{
E(5, 5(4))

E(1, 5(0))
,
E(5, 5(0))

E(1, 5(0))

}
.

The fuzzy vertex degree of our 5-cycle is calculated by
dG̃(ui) = β(ui−1, ui) +β(ui, ui+1), for i = 1, 2, 3 we have,
dG̃(u0)=β(u4, u0) + β(u0, u1), dG̃(u4)=β(u3, u4) + β(u4, u0).
For illustration
dG̃(u2) = β(u1, u2) + β(u2, u3) = 0.15 + 0.31 = 0.46.
The fuzzy total vertex degree of our 5-cycle is calculated
by tdG̃(ui) = dG̃(ui) + α(ui).
For illustration
tdG̃(u2) = dG̃(u2) + α(u2) = 0.46 + 0.31 = 0.77.
The fuzzy degree of an edge (ui, ui+1) is defined as
dG̃(ui, ui+1) = dG̃(ui) + dG̃(ui+1)− 2β(ui, ui+1).
For illustration
dG̃(u1, u2) = dG̃(u1) + dG̃(u2)− 2β(u1, u2)

= 0.21 + 0.46− 2(0.15) = 0.37.
The fuzzy total edge degree is defined as
tdG̃(ui, ui+1) = dG̃(ui) + dG̃(ui+1)− β(ui, ui+1).
For illustration
tdG̃(u1, u2) = dG̃(u1) + dG̃(u2)− β(u1, u2)

= 0.21 + 0.46− (0.15) = 0.53
All the fuzzy values are given in Table I and II

TABLE I
VERTEX VALUES, VERTEX DEGREES AND TOTAL VERTEX DEGREES OF

FUZZY 5-CYCLE DELTA GRAPH

V/D u1 u2 u3 u4 u0
α(ui) 0.15 0.31 0.31 0.15 0.06
d
G̃
(ui) 0.21 0.46 0.46 0.21 0.12

td
G̃
(ui) 0.36 0.77 0.77 0.36 0.18

TABLE II
EDGE VALUES, EDGE DEGREES AND TOTAL EDGE DEGREES OF FUZZY

5-CYCLE DELTA GRAPH

V/D (u0, u1) (u1, u2) (u2, u3) (u3, u4) (u4, u0)
β(ui, ui+1) 0.06 0.15 0.31 0.15 0.06
d
G̃
(ui, ui+1) 0.21 0.37 0.31 0.37 0.21

td
G̃
(ui, ui+1) 0.28 0.53 0.62 0.53 0.28

Example IV.4. The diagram representation of all fuzzy
values is shown in the Figure 1. From the Figure 1 there
exists vertex u4 ∈ G̃ such that u0, u3 are adjacent vertices
but dG̃(u0) 6= dG̃(u3) 6= dG̃(u4) the given graph is irregular
fuzzy. Also tdG̃(u0) 6= tdG̃(u3) 6= tdG̃(u4) the given graph
is totally irregular fuzzy. Since, dG̃(ui) = dG̃(uj) for some
i, j. So, given graph is not strongly irregular fuzzy. Here
vertex u3 adjacent to the vertex u2 have same vertex degrees.
So, given graph is not highly irregular fuzzy. Clearly, every
vertex adjacent to the vertices having distnct degrees. So,
given graph is highly irregular fuzzy graph.
Since, dG̃(u3) = dG̃(u2), given fuzzy graph is not
neighbourly irregular. Here, δE(G̃) = 0.21, ∆E(G̃) = 0.37,
δtE(G̃) = 0.28, ∆tE(G̃) = 0.62.

Here the pair of adjacent edges (u0, u1) and (u0, u4)
having same total degrees. G̃ is not neighbourly edge totally
irregular fuzzy graph. Furthermore, the given fuzzy graph G̃
is not complete as (u0, u3) /∈ V5.
The order of the fuzzy graph is
p = α(u0) + α(u1) + α(u2) + α(u3) + α(u4) = 0.98.
Size of the graph is
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Fig. 1. Fuzzy Delta Graph of 5-Cycle

q = β(u0, u1) + β(u1, u2) + β(u2, u3) + β(u3, u4) + β(u4, u0).

= 0.74

Here, tdG̃(u0, u4) = tdG̃(u0, u1) the graph G̃ is not
strongly edge totally irregular fuzzy graph.
dG̃(u0, u4) = dG̃(u0, u1) the graph G̃ is not strongly edge
irregular fuzzy. Here, each vertex has not same degree.
So, G̃ is not c-regular fuzzy graph. Also each vertex has not
same total degree. So, G̃ is not c-totally regular fuzzy graph.
The minimum total td2-vertex degree of G̃ is tδ2(G̃) = 0.03
The maximum total td2-vertex degree of G̃ is t∆2(G̃) = 0.74
Since, d2(ui) 6= c,∀ui ∈ V then G̃ is not (2, c)-regular fuzzy
graph. The minimum d2-vertex degree of G̃ is δ2(G̃) = 0.02.
The maximum d2-vertex degree of G̃ is ∆2(G̃) = 0.54. Here
each vertex of G̃ have not same total d2-vertex degree c.
Hence, G̃ is not totally (2, c)-regular fuzzy graph.

V. PRODUCT OF FUZZY DELTA GRAPHS

Definition V.1. Let G̃rp = (Vp, E
r
p , α1, β1) and

G̃sq = (Vq, E
s
q , α2, β2) be two fuzzy

delta graphs. The product of fuzzy delta
graphs are G̃r,sp,q = (Vpq, E

rs
pq , α12, β12) where

α12(E(p, x(m)), E(q, x(n))) = α1(E(p, x(m)).α2(E(q, x(n)),
β12((E(p, x(m)), (E(q, x(n)))=α12(E(p, x(m))) ∧ α12(E(q, x(n)))

= min
{
α12(E(p, x(m)), α12(E(q, x(n)))

}
.

Consider the definition III.7 of product of delta
and integral graph. When r = 1 and s = 1 taking
5-cycle (u0, u1, u2, u3, u4, u0) and 3-cycle (v0, v1, v2, v0).
The product of 5-cycle and 3-cycle of order (1, 1)

and graph having 15 vertices and 25 edges in 2.
Consider two fuzzy graphs G̃1

1 = (V1, E1, α1, β1) and
G̃1

2 = (V2, E2, α2, β2). Then the product of fuzzy graph

G̃1,1
1,2 = ˜G1

1 ×G1
2 = (V12, E12, α12, β12). The fuzzy vertex

values, vertex degrees, total vertex degrees, edge values,
edge degrees and total edge degrees are given in the
Figure 2. In Figure 2 the fuzzy vertex values calculated as

α12(uivj) = α1(ui)α2(vj) =
E(5, 5(i))

E(1, 5(0))
× E(3, 3(j))

E(1, 3(0))
,

i = 0, 1, 2, 3, 4 and j = 0, 1, 2.
The fuzzy edge values calculated as follows
β12(uivj , usvr) = α12(uivj) ∧ α12(usvr)

= min

{
E(5, 5(i))

E(1, 5(0))
× E(3, 3(j))

E(1, 3(0))
,
E(5, 5(s))

E(1, 5(0))
× E(3, 3(r))

E(1, 3(0))

}
i, s = 0, 1, 2, 3, 4 and j, r = 0, 1, 2.

The fuzzy vertex degree calculated as follows
d
G̃1,1

1,2

(uivj) =
∑

(uivj ,urvs)∈E12

β12(uivj , urvs), for

(uivj , urvs) ∈ E12 and β12(uivj , urvs) = 0 for
(uivj , urvs) /∈ E12 j, s = 0, 1, 2 and i, r = 0, 1, 2, 3, 4.

The total fuzzy vertex degree calculated as follows
d
G̃1,1

1,2

(uivj) =
∑

(uivj ,urvs)∈E12

β12(uivj , urvs) + α12(uivj),

for (uivj , urvs) ∈ E12 and β12(uivj , urvs) = 0 for
(uivj , urvs) /∈ E12 j, s = 0, 1, 2 and i, r = 0, 1, 2, 3, 4.

The fuzzy edge degree calculated as follows
d
G̃1,1

1,2

(uivj , urvs) = d
G̃1,1

1,2

(uivj) + d
G̃1,1

1,2

(urvs)

− 2β12(uivj , urvs), and β12(uivj , urvs) = 0
for (uivj , urvs) /∈ E12. where i, s = 0, 1, 2, 3, 4.
and j, r = 0, 1, 2.
The fuzzy total edge degree calculated as
d
G̃1,1

1,2

(uivj , urvs) = d
G̃1,1

1,2

(uivj) + d
G̃1,1

1,2

(urvs)

− β12(uivj , urvs) where β12(uivj , urvs) = 0
for (uivj , urvs) /∈ E12. i, s = 0, 1, 2, 3, 4 and j, r = 0, 1, 2.

Example V.2. The diagram representing all these values of
product graph 3-cycle and 5-cycle is given in the example.
From Figure 2 there exists vertex u0v2 ∈ G̃1,1

1,2 such that
u4v2, u0v1, u0v0 are adjacent vertices.
But d

G̃1,1
1,2

(u0v0) 6= d
G̃1,1

1,2

(u0v1)6= d
G̃1,1

1,2

(u0v2) 6=d
G̃1,1

1,2

(u4v2)

the given graph is irregular fuzzy graph and
td
G̃1,1

1,2

(u0v1) 6= td
G̃1,1

1,2

(u0v2) 6=td
G̃1,1

1,2

(u4v2) 6=td
G̃1,1

1,2

(u0v0)

the given graph is totally irregular fuzzy graph.

A vertex u4v2 adjacent to the vertex u4v1 such that
d
G̃1,1

1,2

(u4v2) = d
G̃1,1

1,2

(u4v1). So, given graph is not strongly

irregular fuzzy. Also the graph is not neighbourly irregular
fuzzy. The minimum degree of an edge is δE12(G̃) = 0.01.
The maximum degreee of an edge is ∆E12

(G̃) = 0.42.
The minimum total degree of an edge is δtE12

(G̃) = 0.09.
The maximum total degreee of an edge is ∆tE12

(G̃) = 0.5.
The adjacent edges (u0v2, u4v2) and (u4v2, u4v1) such

that d
G̃1,1

1,2

(u0v2, u4v2) = d
G̃1,1

1,2

(u4v2, u4v1). So the graph is

not neighbourly edge irregular fuzzy and not strongly edge
irregular. Also td

G̃1,1
1,2

(u0v2, u4v2) = td
G̃1,1

1,2

(u4v2, u4v1).

So the graph is not neighbourly edge totally irregular and
not strongly edge totally irregular. Clearly, from the Figure
2 the fuzzy graph is not complete but connected. The order
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Fig. 2. Product of 5-Cycle and 3-Cycle of Fuzzy Delta Graph

of the fuzzy graph is p = 0.88 and size q = 1.15. Here each
vertex have not the same degree. So, G̃1,1

1,2 is not regular fuzzy
graph and each vertex has not the same total vertex degree
c. So, the fuzzy graph is not totally regular of total degree c.

VI. APPLICATIONS

Here is an application of the fuzzy weighted graph
model in transportation network optimization, expressed in
mathematical form.
Application: Urban transportation route optimization with
fuzzy travel times. Let G = (V,E, w̃) be a fuzzy weighted
graph. Where, V is the set of nodes, E ⊆ V × V is the set
of edges, w̃ : E → R̃ is a fuzzy weight function assigning
fuzzy numbers w̃ij to each edge (i, j) ∈ E, representing

uncertain travel time or cost. We define the fuzzy shortest
path between source node s ∈ V and destination node t ∈ V
as the path P is P = {s, v1, v2, . . . , t} ⊆ V minimizing the
total fuzzy travel time:

W̃ (P ) =
∑

(i,j)∈P

w̃ij

The objective is:
min
P

W̃ (P )

Subject to:
P is a valid path from s to t in G, The aggregation of fuzzy

weights is done using fuzzy addition (e.g., using α-cuts or
defuzzification if needed for comparison).
Interpretation: This formulation allows urban planners
or navigation systems to identify optimal routes under
travel time uncertainty, offering more resilient and flexible
routing decisions compared to crisp models. An important
application of the fuzzy weighted graph model is in urban
transportation planning, where uncertainty plays a significant
role due to varying traffic conditions, weather disruptions,
and road maintenance activities. In such scenarios, traditional
crisp models often fail to account for the imprecise
nature of travel costs, delays, or route reliability. The
fuzzy weighted graph model allows planners to represent
a transportation network as a graph where each edge is
assigned a fuzzy weight that captures uncertain metrics
like travel time, cost, or fuel consumption in the form of
fuzzy numbers or membership functions. For example, the
travel time between two locations may be represented as
a triangular fuzzy number to reflect best-case, typical, and
worst-case scenarios. Using this model, decision-makers can
compute the most reliable or cost-effective routes under
uncertain conditions, enabling more resilient and adaptive
route planning. Moreover, by applying fuzzy shortest path
algorithms on this graph, transportation systems can optimize
traffic flow, improve public transit schedules, and support
real-time route recommendation systems for drivers and
logistics companies. Here is an application of the delta
graph operator for modeling dynamic changes in networks,
expressed in mathematical format.
Application: Dynamic network topology adjustment in
communication networks. Let the initial state of a graph be:

Gt = (Vt, Et)

Where, Vt is the set of vertices at time t,
Et ⊆ Vt × Vt is the set of edges at time t.
We define a delta graph operator ∆G that captures the
change in the graph over a time step ∆t as:

∆G = Gt+∆t −Gt = (Vt+∆t \ Vt, Et+∆t \ Et)

The updated graph becomes:

Gt+∆t = Gt ⊕∆G

Here, ⊕ denotes a graph union with updates, including:
Vertex addition/removal : Vt+∆t = Vt ∪ V + \ V −
Edge addition/removal : Et+∆t = Et ∪ E+ \ E−.
Where, V +, E+ are new vertices and edges added,
V −, E− are vertices and edges removed.
Use Case:
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In a mobile ad hoc network (MANET), nodes join and leave
dynamically due to movement. The delta graph operator ∆G
models such topology changes. Routing algorithms can then
adapt paths by recalculating on the updated graph Gt+∆t,
ensuring efficient communication despite network volatility.
This model can be extended by including fuzzy weights
on edges or applying this operator iteratively to model
time-evolving networks.

An important application of the delta graph operator lies
in modeling dynamic changes in communication networks,
such as the internet or wireless sensor networks. These
networks often experience frequent structural updatesnodes
may be added or removed, and connections may change due
to failures, upgrades, or mobility. The delta graph operator
is used to represent and manage such dynamic transitions
by capturing the change between two graph states over
time. For example, if Gt is the network graph at time t
and Gt+1 is the updated graph at time t + 1, then the
delta graph operator ∆(Gt, Gt+1) encodes only the changes
(added or deleted nodes/edges), making it efficient to track
and update the network status. This is especially useful in
adaptive routing protocols, where decisions are made based
on real-time topological variations, ensuring efficient data
transmission even under network instability.

VII. CONCLUSION

By defining the generalized extorial function and a
new type delta graph have been introduced. After applying
fuzzy concept on these delta graphs, product of fuzzy graph
is established with fuzzy vertex and edge degrees. The
regularity and irregularity behaviour like neighbourly edge,
neighbourly irregular, strongly irregular, highly irregular,
totally irregular, strongly edge irregular, strongly edge totally
irregular are discussed. The fuzzy values assigned to with
example each vertex may be replaced by change of electrons
in the chemical graphs for getting applications in physical
science.
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