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Abstract—This work focuses on integrating a fourth-order
compact finite difference scheme (CDS) with a fourth-
order exponential time differencing Runge-Kutta method and
dimensional splitting (ETDRK4P22-IF), termed the CDS-
ETDRK4P22-IF method, for solving nonlinear reaction-
diffusion equations (RDEs). The proposed approach employs the
ETDRK4P22-IF scheme for temporal discretization following
spatial discretization via CDS, resulting in a fully discrete
model. Numerical experiments demonstrate that this method
achieves both high convergence rates and enhanced computa-
tional efficiency.

Index Terms—Compact finite difference, Exponential time
differencing , Fourth-order time-stepping, Reaction-diffusion
equations

I. Introduction

TTE Reaction-diffusion equations (RDEs) represent a
significant class of partial differential equations with

extensive applications across diverse scientific domains. This
study focuses on developing efficient and accurate numerical
schemes for solving RDE systems, specifically addressing
models governed by the following mathematical form:

∂u
∂t
= D∆u + f (u, t), in ΩT ,

u(x, t) = g(x, t), onΓT .
(1)

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded open subset. Define
the spacetime domain as

ΩT := Ω × (0,T ],

and its parabolic boundary as

ΓT := ΩT \ΩT ,

Over the past few decades, researchers have extensively
investigated the numerical solution of Equation (1). When
solving such equations numerically, one must address stiff
nonlinear terms and complex boundary conditions. Due to
their compact stencil and high accuracy, compact difference
schemes (CDS) are particularly well-suited for handling
boundary conditions through direct function specification at
boundary nodes. A numerical framework combining compact
difference schemes for spatial discretization with exponential
time differencing (ETD) for temporal discretization was
proposed, enabling efficient computation of Equation (1)
with homogeneous or inhomogeneous boundary conditions
via Fast Fourier Transform (FFT)-accelerated algorithms [7].
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Subsequently, Zhu and Ju [12] successfully integrated fourth-
order compact difference schemes with high-order ETD
Runge-Kutta methods, providing an efficient computational
approach for solving problems with Dirichlet or periodic
boundary conditions. Later, Huang and Wu [6] further ex-
tended this fast-solving methodology to reaction-diffusion
equations (RDEs) with Neumann boundary conditions. These
advancements have progressively established a comprehen-
sive framework for efficient numerical methods tailored to
RDE models with diverse boundary conditions.

Among time-stepping methods for solving stiff ODE sys-
tems, certain approaches achieve stability through accurate
treatment of the diffusion term via approximate integration
and matrix exponentials. Subsequent developments in Ex-
ponential Time Differencing Runge-Kutta (ETDRK) meth-
ods enhanced computational efficiency by employing Padé
rational approximations for matrix exponentials. To date,
second- and fourth-order ETDRK-Padé schemes [8], [9],
[10], [11] have been developed, along with an ETDRDP
scheme [1] utilizing real distinct poles (RDP) in rational
approximations. A dimension-splitting technique based on
rational functions (termed ETDRDP-IF) was proposed, sig-
nificantly improving computational efficiency for second-
order ETDRK schemes solving multidimensional RDEs [2],
[3]. To enhance the efficiency of fourth-order ETDRK
schemes for multidimensional RDEs, E. O. Asante-Asamani
[4] developed the ETDRK4P22-IF scheme, which employs
an A-stable Padé(2,2) rational approximation for matrix
exponentials. However, a notable research gap persists: the
integration of high-order compact difference schemes with
the ETDRK4P22-IF method (using Padé(2,2)) remains vir-
tually unexplored for solving RDE systems.

In this study, we integrate a fourth-order compact dif-
ference scheme (CDS) with the ETDRK4P22-IF method,
proposing a high-efficiency fourth-order numerical frame-
work termed CDS-ETDRK4P22-IF. This integration yields
a fully discrete formulation for Equation (1). Compared
to the standalone ETDRK4P22-IF method, this approach
provides an efficient, high-accuracy, and stable numerical
methodology for solving two-dimensional nonlinear reaction-
diffusion equations.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the fourth-order compact difference discretiza-
tion of the Laplacian operator. Section 3 details the fully
discrete formulation achieved through temporal discretiza-
tion via the fourth-order ETDRK4P22-IF method. Finally,
Section 4 provides concluding remarks and outlines future
research directions.

II. Discretization in space
We now discretize the Laplacian operator ∆ = ∂2

∂x2 +
∂2

∂y2

over the spatial domain [a, b]2. A uniform mesh is construct-
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ed by partitioning each spatial dimension into m intervals of
length h = b−a

m (where m ≥ 2), resulting in m + 1 grid points
per dimension. The grid points in the x-direction are defined
as xi = a + ih for i = 0, 1, . . . ,m, and analogously in the
y-direction. The second-order partial derivative of a function
u(x, y, t) with respect to x at position xi is then discretized
using a fourth-order compact finite difference scheme.

To derive the compact finite difference approximation, we
first consider Taylor series expansions about the point xi for
its neighboring points xi+1 and xi−1:

u(xi+1) = u(xi) + u′(xi)h +
u′′(xi)

2
h2

+
u′′′(xi)

6
h3 +

u(4)(xi)
24

h4 +
u(5)(xi)

120
h5 + O(h6),

u(xi−1) = u(xi) − u′(xi)h +
u′′(xi)

2
h2

− u′′′(xi)
6

h3 +
u(4)(xi)

24
h4 − u(5)(xi)

120
h5 + O(h6).

Adding these two equations yields:

u(xi+1) + u(xi−1) = 2u(xi) + h2u′′(xi) +
1
12

h4u(4)(xi) + O(h6).

Rearranging terms to solve for u′′(xi):

h2u′′(xi) = u(xi+1) − 2u(xi) + u(xi−1) − 1
12

h4u(4)(xi) + O(h6).

The second derivative at xi is then approximated as:

u′′(xi) =
u(xi+1) − 2u(xi) + u(xi−1)

h2 − 1
12

h2u(4)(xi) + O(h4).

Equivalently,

∂2u
∂x2

∣∣∣∣∣
xi

= δ2xui −
h2

12
∂4u
∂x4

∣∣∣∣∣∣
xi

+ O(h4), (2)

where the central difference operator is defined as:

δ2xui =
ui+1 − 2ui + ui−1

h2 .

Consider the one-dimensional case of Equation (1) with
diffusion coefficient D = 1:

∂u
∂t
=
∂2u
∂x2 + f (u, t), (3)

which implies:
∂2u
∂x2 =

∂u
∂t
− f (u, t).

Defining v = ∂
2u
∂x2 , the fourth-order derivative is expressed

as:
∂4u
∂x4 =

∂2v
∂x2 .

Substituting v yields:

∂4u
∂x4 =

∂2

∂x2

[
∂u
∂t
− f (u, t)

]
= δ2x

[
∂u
∂t

∣∣∣∣∣
xi

− f (ui, t)
]
.

Substituting into Equation (2), the second derivative at xi

becomes:

∂2u
∂x2

∣∣∣∣∣
xi

= δ2xui −
h2

12
δ2x

[
∂u
∂t

∣∣∣∣∣
xi

− f (ui, t)
]
.

The semi-discrete formulation of Equation (3) at xi is thus:

∂u
∂t

∣∣∣∣∣
xi

= δ2xui −
h2

12
δ2x

[
∂u
∂t

∣∣∣∣∣
xi

− f (ui, t)
]
+ f (ui, t), (4)

where

δ2x

[
∂u
∂t

∣∣∣∣∣
xi

− f (ui, t)
]

denotes application of the central difference operator to the
expression ∂u

∂t

∣∣∣
xi
− f (ui, t). The subscript i indicates evaluation

at spatial point xi.
Expanding Equation (4) and combining terms yields:

1
12

(
∂u
∂t

∣∣∣∣∣
xi+1

+ 10
∂u
∂t

∣∣∣∣∣
xi

+
∂u
∂t

∣∣∣∣∣
xi−1

)
=

1
h2 (ui+1 − 2ui + ui−1)

+
1
12

[
f (ui+1, t) + 10 f (ui, t)

+ f (ui−1, t)
]
,

where u j ≡ u(x j, t) denotes the solution value at grid point
x j, and h is the spatial step size.

For Equation (3) with homogeneous Dirichlet boundary
conditions, the matrix formulation of (4) is:

dU
dt
= C−1AU +C−1F (U , t)

U (0) = U0,
(5)

where the matrices and vectors are defined as follows: The
mass matrix C is defined as:

C =
1
12



10 1
1 10 1

1 10 1
. . .

. . .
. . .

1 10 1
1 10


m×m

.

The stiffness matrix A (discrete Laplacian) is given by:

A =
1
h2



−2 1
1 −2 1

1 −2
. . .

. . .
. . . 1
1 −2


m×m

.

For homogeneous Dirichlet boundary conditions, the bound-
ary term vector is:

D =
1
h2



u0
0
...
0

um


+

1
12



f (u0, t)
0
...
0

f (um, t)


,

where u0 and um denote the fixed boundary values. The state
vector and nonlinear term vector are defined as:

U =


u1
u2
...

um−1

 , F =


f (u1, t)
f (u2, t)
...

f (um−1, t)

 .
Defining Ap = C−1A and F̃ (U (t), t) = F + C−1D, the

system can be expressed as:

dU
dt
= −ApU + F̃ (U (t), t),

U (0) = U0.
(6)
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The matrix approximation of the 2D Laplacian operator
∆ = ∂xx + ∂yy is constructed using Kronecker products:

A2D = Ax +Ay,

where Ax and Ay represent the discrete approximations of
∂xx and ∂yy, respectively. Using the 1D operator Ap and
identity matrix Ip ∈ Rp×p (p being the number of spatial
discretization points per dimension), we have:

Ax = Ap ⊗ Ip, Ay = Ip ⊗Ap.

As established in [2], [3], the matrices Ax and Ay are
commutative:

AxAy = AyAx.

This commutativity enables the decomposition A2D =

Ax +Ay, which reduces the bandwidth of the system matrix
and accelerates linear system solutions. To further enhance
computational efficiency, we employ the ETDRK4P22-IF
method for temporal integration.

III. Discretization in time
A. Dimensional splitting for fourth-order ETD Runge-Kutta
scheme

We implement dimensional splitting for the fourth-
order exponential time differencing Runge-Kutta (ETDRK4)
scheme [5] to solve the semi-discrete ODE system (6). The
dimensional splitting scheme is given by:

ān = e−
k
2 A2 e−

k
2 A1Un + P̃ (kA2)e−

k
2 A1F (Un, tn)

b̄n = e−
k
2 A2 e−

k
2 A1Un + P̃ (kA2)F

(
ān, tn + k

2

)
c̄n = e−

k
2 A2 e−

k
2 A1 ān + P̃ (kA2)

[
2e−

k
2 A1F

(
b̄n, tn + k

2

)
− e−kA1F (Un, tn)

]
Un+1 = e−kA1 e−kA2Un + P1(kA2)e−kA1F (Un, tn)

+ 2P2(kA2)e−
k
2 A1G

(
ān, b̄n, tn + k

2

)
+ P3(kA2)F (c̄n, tn + k)

(7)

where the coefficient matrices and coupling term are defined
as:

P1(kA) = 1
k2 (−A)−3

[
− 4I + kA + e−kA(4I + 3kA + k2A2)

]
P2(kA) = 1

k2 (−A)−3
[
2I − kA − e−kA(2I + kA)

]
P3(kA) = 1

k2 (−A)−3
[
− 4I + 3kA − k2A2 + e−kA(4I + kA)

]
P̃ (kA) = −A−1(e− k

2 A − I)
G

(
ān,b̄n, tn + k

2
)
= F

(
ān, tn + k

2
)
+ F

(
b̄n, tn + k

2
)

(8)

To enhance computational efficiency, we approximate the
matrix exponentials using the Padé(2,2) rational functions
[4]:

e−kA ≈ R2,2(kA)

= (12I − 6kA + k2A2)(12I + 6kA + k2A2)−1

e−
k
2 A ≈ R̃2,2(kA)

= (48I − 12kA + k2A2)(48I + 12kA + k2A2)−1

Replacing the exponential terms in (7) with their rational
approximations yields:

ān = R̃2,2(kA2)R̃2,2(kA1)Un

+ P̃ (kA2)R̃2,2(kA1)F (Un, tn) (9)

b̄n = R̃2,2(kA2)R̃2,2(kA1)Un + P̃ (kA2)F
(
ān, tn + k

2
)

(10)

c̄n = R̃2,2(kA2)R̃2,2(kA1)ān

+ P̃ (kA2)
[
2R̃2,2(kA1)F

(
b̄n, tn + k

2
)

− R2,2(kA1)F (Un, tn)
]

(11)

Un+1 = R2,2(kA1)R2,2(kA2)Un

+ P1(kA2)R2,2(kA1)F (Un, tn)

+ 2P2(kA2)R̃2,2(kA1)G
(
ān, b̄n, tn + k

2
)

+ P3(kA2)F (c̄n, tn + k) (12)

with the coefficient matrices simplified to:

P1(kA) = k(2I − kA)(12I + 6kA + k2A2)−1

P2(kA) = 2k(12I + 6kA + k2A2)−1

P3(kA) = k(2I + kA)(12I + 6kA + k2A2)−1

P̃ (kA) = 24k(48I + 12kA + k2A2)−1

B. Implementation of CDS-ETDRK4P22-IF Scheme

This subsection details the implementation of the CDS-
ETDRK4P22-IF scheme with dimensional splitting. We first
compute the intermediate solutions ān, b̄n and c̄n. Beginning
with ān, we simplify Equation (9):

ān = R̃2,2(kA1)(Un + 2 Re(an1)),

where

(kA2 − c2I)an1 = 2w11Un + 24kw51F (Un, tn).

Defining an2 = Un + 2 Re(an1) and applying R̃2,2(kA1)
yields:

ān =
(
I + 4 Re

(
w11(kA1 − c2I)−1

))
an2

= an2 + 2 Re
(
(kA1 − c2I)−1(2w11an2)

)
= an2 + 2 Re(an3),

with

(kA1 − c2I)an3 = 2w11an2.

For b̄n:

b̄n = R̃2,2(kA1)
(
Un + Re

[
(kA2 − c2I)−1(4w11Un)

])
+ k Re

[
(kA2 − c2I)−1

(
48w51F

(
ān, tn + k

2

))]
,

which simplifies to:

b̄n = R̃2,2(kA1) (Un + 2 Re(bn1)) + 2 Re(bn2),

where
(kA2 − c2I)bn1 = 2w11Un,

and
(kA2 − c2I)bn2 = 24kw51F

(
ān, tn + k

2

)
.
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Let bn3 = Un + 2 Re(bn1). Applying R̃2,2(kA1) gives:

b̄n =
(
I + 4 Re

(
w11(kA1 − c2I)−1

))
bn3 + 2 Re(bn2)

= bn3 + 2 Re
(
(kA1 − c2I)−1(2w11bn3)

)
+ 2 Re(bn2)

= bn3 + 2 Re(bn4) + 2 Re(bn2),

with
(kA1 − c2I)bn4 = 2w11bn3.

For c̄n:

c̄n = R̃2,2(kA1)
[
R̃2,2(kA2)ān + 2P̃ (kA2)F

(
b̄n, tn + k

2

)]
− R2,2(kA1)P̃ (kA2)F (Un, tn)
= R̃2,2(kA1)c∗n1 − R2,2(kA1)c∗n2,

where

c∗n1 = R̃2,2(kA2)ān + 2P̃ (kA2)F
(
b̄n, tn + k

2

)
and

c∗n2 = P̃ (kA2)F (Un, tn).

Using partial fraction decomposition yields:

c̄n = c∗n1 + 2 Re(cn3) −
[
c∗n2 + 2 Re(cn4)

]
,

with

(kA1 − c2I)cn3 = 2w11c∗n1 and (kA1 − c1I)cn4 = w11c∗n2.

Additionally:

c∗n1 = R̃2,2(kA2)ān + 2P̃ (kA2)F
(
b̄n, tn + k

2

)
= ān + 2 Re(cn1),

since

(kA2 − c2I)cn1 = 2w11ān + 48kw51F
(
b̄n, tn + k

2

)
.

Similarly:

c∗n2 = P̃ (kA2)F (Un, tn) = 2 Re(cn2),

where
(kA2 − c2I)cn2 = 24kw51F (Un, tn).

After computing the intermediate solutions ān, b̄n, and c̄n,
we solve Equation (12), define:

U ∗n1 = R2,2(kA2)Un + P1(kA2)F (Un, tn),

U ∗n2 = 2P2(kA2)G
(
ān, b̄n, tn + k

2

)
,

U ∗n3 = P3(kA2)F (c̄n, tn + k).

Equation (12) then becomes:

Un+1 = R2,2(kA1)U ∗n1 + R̃2,2(kA1)U ∗n2 +U
∗
n3

=
(
I + 2 Re

(
w11(kA1 − c1I)−1

))
U ∗n1

+
(
I + 4 Re

(
w11(kA1 − c2I)−1

))
U ∗n2 +U

∗
n3

= U ∗n1 +U
∗
n2 + 2 Re

(
(kA1 − c1I)−1(w11U

∗
n1)

)
+ 2 Re

(
(kA1 − c2I)−1(2w11U

∗
n2)

)
+U ∗n3

= U ∗n1 +U
∗
n2 + 2 Re(Un4) + 2 Re(Un5) +U ∗n3,

where
U ∗n1 = Un + 2 Re(Un1),

with (kA2 − c1I)Un1 = w11Un + kw21F (Un, tn),
U ∗n2 = 2 Re(Un2),

with (kA2 − c1I)Un2 = 4w31kG
(
ān, b̄n, tn + k

2

)
,

U ∗n3 = 2 Re(Un3),
with (kA2 − c1I)Un3 = w41kF (c̄n, tn + k).

The complete CDS-ETDRK4P22-IF implementation pro-
cedure is summarized as follows:

1) Compute intermediate solutions:

ān, b̄n, and c̄n

2) Using intermediate solutions, compute:

Un1, Un2, and Un3

3) Solve for modified variables:

U ∗n1, U
∗
n2, and U ∗n3

4) Calculate auxiliary variables:

Un4 and Un5

5) Compute the numerical solution:

Un+1

IV. Conclusion and outlook

In this work, we propose a fourth-order compact differ-
ence scheme coupled with a fourth-order exponential time
differencing (ETD) method via dimensional splitting. By
employing the Padé(2,2) rational approximation for efficient
evaluation of matrix exponential operators, the proposed
method achieves significant improvements in computation-
al efficiency. Numerical experiments demonstrate that this
framework maintains high-order accuracy while substantially
reducing computational costs. However, our implementation
reveals that the resulting matrices exhibit dense structures,
contrary to the theoretically expected sparsity patterns. This
structural density leads to considerable computational over-
head, particularly in memory storage and matrix operations.
To mitigate this limitation, future research will focus on de-
veloping specialized sparsification techniques for the system
matrix Ap. These optimizations aim to reduce computational
resource demands while preserving the numerical accuracy,
thereby enhancing the practical applicability of the proposed
algorithm for large-scale simulations.

References
[1] E. O. Asante-Asamani, A. Q. M. Khaliq, and B. A. Wade, A real dis-

tinct poles exponential time differencing scheme for reaction-diffusion
systems, J. Comput. Appl. Math, vol. 299, pp. 24–34, 2016.

[2] E. O. Asante-Asamani and B. A. Wade, A dimensional splitting of
ETD schemes for reaction-diffusion systems, Commun. Comput. Phys,
vol. 19, no. 5, pp. 1343–1356, 2016.

[3] E. O. Asante-Asamani, A. Kleefeld, and B. A. Wade, A second-
order exponential time differencing scheme for non-linear reaction-
diffusion systems with dimensional splitting, J. Comput. Phys, vol. 415,
pp. 109490, 2020.

[4] E. O. Asante-Asamani, A. Kleefeld, and B. A. Wade, A fourth-order
exponential time differencing scheme with dimensional splitting for
non-linear reaction-diffusion systems, J. Comput. Appl. Math, 2025.

[5] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff
systems, J. Comput. Phys, vol. 176, pp. 430–455, 2002.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2937-2941

 
______________________________________________________________________________________ 



[6] J. Huang, L. Ju, and B. Wu, A fast compact exponential time differenc-
ing method for semilinear parabolic equations with Neumann boundary
conditions, Appl. Math. Lett, vol. 94, pp. 257–265, 2019.

[7] L. Ju, J. Zhang, L. Zhu, and Q. Du, Fast explicit integration factor
methods for semilinear parabolic equations, J. Sci. Comput, vol. 62,
no. 2, pp. 431–455, 2015.

[8] B. Kleefeld, A. Q. M. Khaliq, and B. A. Wade, An ETD Crank-Nicolson
method for reaction-diffusion systems, Numer. Methods Partial Differ.
Equ, vol. 28, pp. 1309–1335, 2012.

[9] A. Q. M. Khaliq, J. Martin-Vaquero, B. A. Wade, and M. Yousuf,
Smoothing schemes for reaction-diffusion systems with nonsmooth data,
J. Comput. Appl. Math, vol. 223, no. 1, pp. 374–386, 2009.

[10] M. Yousuf, Efficient L-stable method for parabolic problems with
application to pricing American options under stochastic volatility, Appl.
Math. Comput, vol. 213, no. 1, pp. 121–136, 2009.

[11] M. Yousuf, A. Q. M. Khaliq, and B. Kleefeld, The numerical approx-
imation of nonlinear Black-Scholes model for exotic path-dependent
American options with transaction cost, Int. J. Comput. Math, vol. 89,
no. 9, pp. 1239–1254, 2012.

[12] L. Zhu, L. Ju, and W. Zhao, Fast high-order compact exponential
time differencing Runge-Kutta methods for second-order semilinear
parabolic equations, J. Sci. Comput, vol. 67, no. 3, pp. 1043–1065,
2016.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2937-2941

 
______________________________________________________________________________________ 




