
 

  

Abstract—To lessen the amount of money spent on logistics 

and the amount of carbon dioxide that is produced during 

delivery, as well as to investigate the interconnected and highly 

influential factors that facility location and vehicle delivery 

have on delivery efficiency, a multi-period heterogeneous 

vehicle delivery center location-path optimization model under 

uncertainty has been developed. With the aim of reducing the 

costs associated with the logistics system, this model takes into 

account the limitations imposed by the capacity of distribution 

centers and a method of logistics that concurrently manages 

delivery and returns. The issue was developed to be solved using 

the NSGA-II algorithm, which was included with tabu search 

and recombination techniques. The efficiency of the model and 

algorithm was shown by numerical tests. Examine the 

implications that optimistic, expected, and pessimistic values 

have on site selection and vehicle service route tactics within the 

context of the planning model for uncertain opportunity 

constraints. Additionally, a sensitivity analysis should be 

carried out to have a better understanding of how credibility 

and the range of unknown factors influence the results of site 

selection and route optimization. The results indicate the 

model's ability to guide decision-making regarding site selection 

and vehicle transportation route determination. 

 

 
Index Terms—Location-Routing Problem, Facility Location, 

Vehicle distribution, Uncertainty Analysis, Service Path. 

 

I. INTRODUCTION 

 he Location-Routing Problem (LRP) combines two 

problems: the Location Allocation Problem (LAP) and 

the Vehicle Routing Problem (VRP), both of which are 

complex problems that involve making many decisions. The 

goal of building a distribution center is to optimize the 
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logistics distribution system and allocate resources more 

effectively; hence, the distribution center's location is critical 

to the logistics system. The goal of the VRP, on the other 

hand, is to transport the commodities requested by consumers 

from the distribution center to the customers while adhering 

to specific limits, hence lowering logistical costs. LAP and 

VRP are two connected difficulties that have a substantial 

influence on delivery efficiency. Studying both may prevent 

the local optimization issues that arise from examining site 

selection or vehicle routing problems separately, leading to a 

reduction in the overall logistics system costs[1]. 

Because real-world transportation is complex and 

constantly changing, which greatly impacts how well 

networks operate, it's more practical to study transportation 

issues in uncertain situations rather than in predictable ones. 

Researchers have used effective methodologies to investigate 

transportation under uncertain circumstances. 

The Vehicle Routing Problem with Simultaneous Pick-up 

and Delivery (VRPSPD) pertains to the scenario in which 

delivery and pick-up services are executed concurrently 

during each client visit. In contrast to solely addressing 

individual pick-up or delivery requirements for distribution 

services, simultaneous pick-up and delivery optimize the 

utilization of residual vehicle capacity during transit, thereby 

integrating remanufacturing and resource recycling. This 

approach significantly diminishes vehicle empty load rates, 

lowers distribution costs, and enhances distribution 

efficiency, leading to its widespread implementation. 

Logistics expenses are a primary emphasis of LRP 

research, including elements such as facility development 

expenses, transportation costs, and vehicle deployment 

costs[2]. Costs serve as a crucial metric for transportation 

efficiency and economic gain, enhancing firms by 

augmenting economic efficacy. In the current context of 

sustainable development, green logistics focused on "low 

energy consumption and emissions" has received significant 

attention. A primary objective of VRP research is to 

minimize logistical expenses while also decreasing carbon 

emissions produced during the transportation process. Some 

scholars are currently researching it from broader 

perspectives, including reducing logistics costs, and 

promoting low-carbon environmental practices [3]. 

This manuscript presents the following contributions: (1）

We have developed a mathematical model for the Fuzzy 

Low-Carbon LRP with Simultaneous Pick-up and Delivery 

Heterogeneous Fleet (FLCLRPSPDHF), which addresses 

simultaneous pickup and delivery within a sustainable 

multi-period, multi-vehicle framework characterized by 

uncertain consumer demand. (2) An uncertain 
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chance-constrained programming model was established 

based on the notion of uncertain variables. Transform the 

indeterminate model, which cannot be immediately resolved, 

into a corresponding deterministic model for resolution. （3）

Created an improved NSGA-II algorithm with numerous 

strategic improvements, scrutinizing the model parameters to 

gauge the impact of reliability and fluctuating demand range 

on the placement of facilities and the optimization of vehicle 

routes. The performance was corroborated using numerical 

examples, demonstrating the algorithm's practicality and 

efficacy, with the intention of serving as a reference for the 

design of corporate logistics systems. 

The following part is titled "Literature Review." This part 

offers a thorough examination of the current literature on 

LRP, the synchronized pickup and delivery issue, and 

uncertainty, while also outlining the research goals of this 

article. The "Problem Description" section outlines the 

study's objectives and clarifies the problem hypotheses. The 

following section is entitled "Model Formulation." This 

article will formulate the FLCLRPSPDHF mathematical 

model and transform it into a deterministic model based on 

the specification of uncertain variables. The following 

section is the "Solution Approach," in which this study 

presents the improved NSGA-II algorithm. The following is 

"Case Study" examining the influence of believability and the 

breadth of uncertainty intervals on the ideal configuration of 

facility and vehicle route placements. This study 

accomplishes this objective via a numerical example, serving 

as a reference for the design of corporate logistics systems. 

The findings of this paper were ultimately summarized. 

II. LITERATURE REVIEW 

Numerous experts have undertaken a comprehensive study 

of the LRP. Tai-Hi [4] developed a multi-site LRP model and 

formulated a simulated annealing approach to address it. 

Hansen [5] created an LRP model that includes limits on how 

much can be carried, while Prins[6] developed a Hybrid 

Metaheuristics that uses local search and Genetic Algorithms 

to solve the LRP problem with these vehicle capacity limits. 

Wang [7] established a capacitated LRP model and designed 

a two-stage hybrid heuristic algorithm for its solution, 

combining Tabu search and a dual-population Ant Colony 

algorithm. Yuan [8] developed a bi-level programming 

model for LRP, employing an Immune algorithm for facility 

location in the upper layer and a particle swarm optimization 

algorithm for route planning in the lower layer. 

Given the existence of unpredictable variables in 

real-world transportation, examining transportation issues 

under uncertain contexts is more pragmatically relevant than 

in deterministic contexts. Zarandi [9] developed the Fuzzy 

Location Routing Problem (FLRP) model in which customer 

demand and trip time are represented as fuzzy numbers. 

Wang T [10]developed a multimodal transportation model 

that accounts for transit time uncertainty and resolved it with 

Gurobi. Tian[11] developed a secondary distribution 

scheduling model for refined oil that accounts for customer 

service time and demand uncertainty and devised an MMA 

algorithm for its resolution; Wu [12] created an emergency 

evacuation system for subway stations in response to sudden 

surges in passenger flow, grounded in uncertainty theory. 

Pekel [13] created a Hybrid Metaheuristics that combines 

Variable Neighborhood Search to tackle the location-path 

issue with uncertain demand; Nassab [14] designed a model 

for location and routing that includes uncertain demand and 

job limits and developed an ant colony algorithm to solve it. 

These studies combine where to place facilities and how to 

route trucks, avoiding problems that arise when these parts 

are looked at separately, which helps lower the overall cost of 

the logistics system[15]. Nevertheless, little research has 

examined the influence of product returns on facility 

locations. Zhang [16] examined the influence of ambiguous 

customer return requests and the concurrent pick-up and 

delivery method on facility placement within the B2C 

logistics facility location issue, but his research does not 

address how fuzzy variables are managed by stochastic 

algorithms. Stochastic algorithms manage fuzzy variables; 

however, the impact of credibility on the model's outcomes 

remains understudied. Credibility denotes the risk tolerance 

of the decision-maker. While several research studies 

elucidate ambiguous models grounded on credibility, few 

examine the influence of credibility and various categories of 

decision-makers on the outcomes. 

Min [17] built a public library distribution system capable 

of delivering and collecting various goods. Privé [18] 

established a VRPSPD model for beverage distribution that 

necessitates the delivery of full bottles and the collection of 

empty ones, while Soysal [19] formulated a VRPSPD model 

for food distribution that entails the transportation of food 

and the retrieval of expired or damaged products for 

appropriate disposal. At present, the majority of research is 

on VRPSPD, although there is a paucity of studies that 

integrate the pickup and delivery problem with the 

location-routing problem. 

Recently, as the significance of sustainable development 

has grown, green logistics has garnered considerable 

attention. Wang [20] suggested a multi-objective urban 

routing model for green vehicles transporting hazardous 

chemicals, taking into account carbon emissions and 

examining the effects of transportation hazards, costs, and 

emissions on delivery routes. Zhao [21] suggested a 

Low-Carbon LRP issue that incorporates numerous vehicle 

types and simultaneous pickup and delivery, and they 

developed an evolutionary hyper-heuristic algorithm to 

address it. Li [22] proposed a detailed LRP model that 

includes the carbon trading system and created an improved 

NSGA-II algorithm to put it into action. The construction of 

facilities for the LRP entails considerable time and financial 

investment, and once a decision is reached, it necessitates 

long-term maintenance. Customer demand exhibits 

uncertainty over extended decision cycles; thus, addressing a 

multi-period LRP is more pragmatic. Wang [23] developed a 

two-phase green Location-Routing model incorporating time 

windows for pickup and delivery and formulated a Heuristic 

Algorithm utilizing Lagrange relaxation for its resolution. 

Tang [24] investigated the characteristics of the green LRP 

with fuzzy demand by formulating a multi-period fuzzy 

chance-constrained optimization model and creating a 

Hybrid Genetic Algorithm to solve it. Saffarian [25] 

formulated a multi-objective Location-Routing problem 

model that incorporates disaster management and developed 

a GA-SA algorithm for its solution. 
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TABLE I 

 LITERATURE REVIEW 

Article Objective Uncertainty Multi-Cycle Heterogeneous 

Vehicles 

Risk attitude Solution methodology 

Zarandi[9] Single-objective Yes No No No SA 

Pekel[13] Single-objective Yes No No No HVNS 
Nassab[14] Single-objective Yes No No No ACO 

Li[22] Bi-objective No No No No NSGA-Ⅱ 

Saffarian[25] Bi-objective Yes Yes No No GA-SA 
This paper Bi-objective Yes Yes Yes Yes NSGA-Ⅱ 

 

This paper presents a two-part integer programming 

method for eco-friendly multi-period, multi-vehicle pickup 

and delivery, even when client demand is unpredictable. 

Taking into account the varying risk tolerance of different 

decision-makers, the uncertain model is transformed into a 

corresponding deterministic model based on the definition 

of uncertain variables. This analysis uses numerical 

examples to look at how credibility and product return rates 

affect the best locations for facilities and truck routes, 

aiming to provide advice for designing logistics systems in 

companies. 

TABLE I delineates the distinctive characteristics of the 

current investigation in comparison to other pertinent 

research. 

III. PROBLEM DESCRIPTION  

The FLCLRPSPDHF problem is defined in the following 

way: The information regarding all potential distribution 

centers and customers indicates that customer demands are 

uncertain. Each distribution center possesses a capacity limit 

and is outfitted with k varieties of transportation vehicles. 

The demand from customers allocated to a specific 

distribution center must not exceed its operational capacity. 

Multiple delivery cycles exist. During each delivery cycle, 

the distribution center must dispatch vehicles to serve 

customers. The vehicles must also collect returned goods 

throughout the delivery process. The delivery mode, 

characterized by simultaneous pickup and delivery of goods, 

results in a dynamic fluctuation of vehicle capacity. 

Throughout the delivery process, the dynamic load of the 

vehicle must consistently adhere to the vehicle's capacity 

limit. It is essential to select an appropriate portion from the 

alternative distribution centers for construction and to 

establish the vehicle scheduling plan. The FLCLRPSPDHF 

model is developed to minimize the total cost of the logistics 

system while ensuring that the established plan for 

distribution center locations and vehicle scheduling 

adequately meet customer demands. 

The FLCLRPSPDHF model is based on the following 

assumptions: 

1) The construction costs and operational capacities of the 

alternative distribution centers are established. 

2) The quantity, location, and demand of customers are 

established, with demand is regarded as an uncertain 

variable. Each customer is served exclusively by a single 

vehicle from a designated distribution center. 

3) The quantities of each vehicle type, dispatch costs, 

transportation capacity, and unit transportation expenses are 

established, with each vehicle assigned a singular service 

route that begins and concludes at the same distribution 

center. 

4) The unit fuel cost is established. 

5) Select delivery vehicles according to the criteria of 

maximum load capacity and minimal carbon emissions. 

IV. MODEL FORMULATION 

A. Model Parameters 

TABLE II presents the symbols utilized in the model 

along with their definitions. 

 
TABLE II 

SYMBOL DESCRIPTION  

Symbol Description 

Set 

DN  The set of alternative distribution centers  

CN  The set of customers  

K  The set of vehicle types  

ks  The set of vehicles of type K  

V  C DV N N=  is the set of all nodes in the network 

Parameters 

if  Construction cost of distribution center i  

iCD  Capacity limit of distribution center i  

ijd  Distance from node i to node j  

r  Transportation cost per unit of product per unit distance 
t

id  Customer i's delivery demand in cycle t  

t
ip  Customer i's return demand in cycle t  

k  Vehicle type  

km  Number of vehicles of type K  

kC  Fixed cost of vehicle k  

kQ  Capacity limit of vehicle k  

t
ijksU  

Capacity of the sth k-vehicle during cycle t when it departs 

from point i en route to point j 

0
kp  

Fuel consumption factor of vehicle type k in unloaded 

condition  

1
kp  

Fuel consumption factor of vehicle type k in fully loaded 
condition 

  Factors associated with the emission of carbon dioxide. 

Decision variables 

t
ijksx  

0-1 decision variables, if Vehicle s, type k driving from 

point i to point j in cycle t, 
t

ijksx =1, or
t

ijksx = 0 

iy  
0-1 decision variables, if distribution center i being selected,  

iy =1, or iy = 0 

ijz   
0-1 decision variables, if distribution center i delivering to 
customer j,  ijz =1, or ijz = 0 

 

B. Mathematical Model 

B.1 Objective function 

This study looks closely at how choosing facility 

locations and planning vehicle routes are connected, trying 

to prevent problems that can happen when these two are 

looked at separately. The primary objective is to minimize 

logistics expenses and carbon emissions. The objective 

function 1 aims to minimize the total logistics cost, which 

encompasses facility construction costs, vehicle scheduling 

costs, and transportation expenses. 
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Objective Function 2 aims to minimize carbon dioxide 

emissions produced during transportation. 
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Eq (3) indicates that each consumer can only be serviced 

once throughout a cycle; Eq (4) depicts the vehicle 

in-and-out balance constraint at customer points, which 

ensures that the number of cars arriving and departing each 

customer point is equal. Eq (5) guarantees that the number of 

cars dispatched from the distribution center is fewer than the 

number of available vehicles. Eq (6) assures that the overall 

capacity of the chosen distribution centers is sufficient to 

satisfy all customers' entire demands. Eq (7) guarantees that 

the capacity of each distribution center is sufficient to satisfy 

the total demands of the customers served by it. Eq (8) 

guarantees that each customer is served by a single 

distribution center. Eq (9) removes constraints for 

sub-branches, with S representing the set of customers 

served by vehicle k. Eq (10) demonstrates that the vehicle's 

load upon leaving the distribution center is equivalent to the 

aggregate of the delivery demands from the served 

customers. Eq (11) demonstrates that the vehicle's load upon 

returning to the distribution center is equivalent to the 

aggregate of the return demands from the serviced 

customers. Eq (12) illustrates the dynamic change in the 

vehicle's capacity. Eq (13) establishes the constraint on the 

vehicle's capacity. Eqs (14), (15), and (16) demonstrate that 

the activated distribution centers are required to serve 

customers. Eq (17) stipulates that these centers must have 

vehicles departing. Eq (18) demonstrates that the 

unconstructed distribution centers lack vehicle departures in 

each period. Eqs (19), (20), and (21) delineate the 

constraints among the decision variables. Eqs (22), (23), and 

(24) denote the binary decision variables. 

C. Model Analysis 

t
jtd  and t

jtp is an indeterminate variable and cannot be 

resolved directly. To render the model solvable, it is 

essential to transform it into an equivalent deterministic 

model. Let , ,( )a b c =  be a zigzag-type uncertain variable, 

and consider 0 a b c   [26]. 

Theorem 1[27]: The uncertainty distribution   of an 

uncertain variable, is an uncertain measure,  is the 

whole number of real numbers, ξ is defined by 

   ( ) ,x x x =      (25) 

Theorem 2[28]: Let   be an uncertain variable with 

regular uncertainty distribution ( )x . Then the inverse 

function 1( )a−  is called the inverse uncertainty 

distribution of  . 

Theorem 3[29]: Let   be an uncertain variable. is an 

uncertainty measure of   with confidence level  for any 

real number r . 

(1) The optimistic value of sup is defined by: 

  sup( ) sup{ | { } }, (0,1]r r    =      (26) 

(2) The expected value of 
E is defined by: 

    
0

0
E r dr r dr  

+

−
=  −     (27) 

(3) The pessimistic value of 
inf is defined by: 

   inf ( ) inf | , (0,1]r r    =      (28) 

Definition 1[27]: When uncertain variable   has a 

continuous uncertain distribution ( )r , there exists 

 1 ( )r r−  =  . Combining Theorems 1, 2, and 3 can 

obtain: 
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  sup ( ) sup |1 ( ) , (0,1]r r   = −      (29) 

 
0

0
(1 ( )) ( )E r dr r dr
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−
= −  −     (30) 

  inf ( ) inf | ( ) , (0,1]r r   =      (31) 

Definition 2[27]: The mathematical expression for the 

confidence level   of the unknown variable an is shown in 

equation (32); the graphical representation of the 

distribution function is illustrated in Figure 1. Where   are 

the model's confidence levels. The decision maker must 

ascertain its worth prior to resolution, and the acceptance of 

risk by the decision maker dictates the value of r.  
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Figure 1. Zigzag confidence function for uncertainty variable 
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Figure 2. The amount of trust and the trend of customer demand 

 

When the uncertain variable is designated as a, as seen in 

Figure 2, the optimistic value diminishes with increasing 

believability when   ranges from 0.5 to 1, whereas the 

pessimistic value escalates. The decision-maker's 

predetermined confidence level fundamentally indicates 

their varying attitudes about risk. When   is elevated, the 

decision maker exhibits risk aversion and aims to diminish 

actual demand below the anticipated demand with increased 

probability. Conversely, when   assumes a lower value, 

the decision maker exhibits risk preference and opts for the 

less expensive alternative, confident in their ability to 

manage the risks associated with the uncertain environment. 

V. SOLUTION APPROACH 

The LRP problem encompasses both the location issue 

and the vehicle routing problem, both of which are classified 

as NP-hard; hence, it is categorized under NP-hard 

problems[30]. For extensive NP-hard problems, precise 

algorithms often encounter difficulties in achieving 

computing results within a constrained timeframe; hence, 

several heuristic methods have been extensively used to 

address these issues. 

NSGA-II is a problem-solving method that is effective at 

finding the best solutions for complex issues, and it has been 

successfully used in many situations where there are 

multiple goals to achieve. The tabu search algorithm, 

recognized for its robust search capabilities and efficiency, 

is extensively examined as a method for addressing the VRP 

problem[6]. The taboo search algorithm is integrated as a 

strategy within NSGA-II to formulate a two-stage approach 

for addressing the LRP problem. Customers are allocated to 

the nearest distribution center according to the location 

scheme, resulting in chromosome encoding. The initial issue 

is segmented into various distribution centers and their 

corresponding customers. Each distribution center and its 

corresponding customers can be considered a VRPSPD 

problem. The VRPSPD problem is addressed through the 

application of the taboo search strategy, incorporating all 

distribution centers along with their associated construction 

costs. A recombination strategy is introduced to prevent the 

population from becoming trapped in local optima, thereby 

diversifying the population distribution and enhancing its 

search capability. 

A. Encode 
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Vehicle  2         Route2  — 6— 7

1 8

 
Figure 3. Chromosome encoding 

 

The chromosomes employ a multi-layer encoding 

structure, consisting of two components, 1p  and 2p . The 

1p  component denotes the site selection scheme, while the 

gene value signifies the selection status of the distribution 

center. 1p  gene value of 1 indicates the selection of the 
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distribution center, while a value of 0 indicates its 

non-selection. Part 2p  comprises multiple strings of 

differing lengths, with the quantity of segments aligned with 

the number of delivery cycles. Each string denotes the 

vehicle routing plan for a specific cycle, comprising multiple 

substrings, each of which represents an individual vehicle 

route. For instance, there are three candidate distribution 

centers and seven customers, supported by two types 

vehicles, where numbers 1-2 denote distribution centers 

numbers 3-7 indicate customers and numbers 8-9 indicate 

vehicles, as illustrated in a specific chromosome in Figure 3. 

B. Degree of Congestion 

Individuals may be classified into distinct distribution 

centers and clients according to the chromosomal encoding. 

Each distribution center and its related consumers may be 

seen as a VRPSPD issue throughout each distribution cycle. 

The VRPSPD issue is addressed using a tabu search 

technique, yielding objective functions 1Z  and 2Z  for the 

person. We acquire the objective functions of all individuals 

in the population, normalize them, and determine each 

individual's crowding degree dT . 

C. Crossover 

The crossover process comprises site selection crossover 

and allocation crossover. Figure 4 illustrates that the site 

selection crossover includes chromosome part 1p , which 

represents the site selection scheme and uses the uniform 

crossover method. The new site selection scheme is 

evaluated following the crossover procedure. If the new site 

selection scheme satisfies customer requirements, 2p  is 

regenerated; otherwise, the site selection scheme is revised. 

Customer crossover refers to segment 2p  of the 

chromosome, which represents the customer allocation 

scheme. Employing the partially matched crossover method, 

the vehicle routes in 2p  are examined post-crossover, and 

routes with customer demand surpassing vehicle capacity 

are subsequently reallocated. 

 
 

0

Site selection crossover

Site crossover

Prochromosomes

Path repair

P1 P2

30 1 1 4 2 5 8 8

31 1 4 1 5 8 8

Re-generation of chromosome layer 2 after site crossover

31 0 1 5 1 4 8 8

51 0 1 1 3 2 4 8 8 8

Re-vehicle assignment for conflicting paths

 
Figure 4. Crossover operation 

 

D. Mutation 

The mutation process consists of two types: location 

mutation and allocation mutation. Following the mutation 

operation, it is essential to evaluate the new solution 

post-mutation, as illustrated in Figure 5. Location mutation 

entails the random selection of mutation sites within part 1p  

of the chromosome, followed by the execution of a flip 

operation. Allocation mutation entails executing mutation 

operations on a randomly chosen segment of chromosome 

2p . Following the execution of the mutation, an inspection 

of the vehicles in 2p  is conducted, leading to the 

reallocation of routes where customer demand surpasses 

vehicle capacity. 
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Prochromosomes
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P1 P2

30 1 2 4 2 5 8 8

31 2 4 2 5 8 8

Re-generation of chromosome layer 2 after site mutation

51 1 2 3 2 4 8 8

51 1 2 2 3 2 4 8 8 8

Re-vehicle assignment for conflicting paths

 
Figure 5. Variation operation 

 

E. Tabu Search Strategy 

This study utilizes a Tabu Search approach to address the 

deterministic VRPSPD problem. The algorithmic strategy is 

outlined as follows: 

1) Neighborhood search: The 2-opt approach is used for 

neighborhood search, which entails the random selection of 

two gene sites and the subsequent exchange of the customers 

at these spots. 

2) Establishment of taboo objects and tabu length: The 

conclusive solution of each iteration is included in the taboo 

list as a taboo object; the tabu length denotes the number of 

iterations during which the tabu item is prohibited from 

selection, with the tabu length established accordingly. 

3) The ambition criteria are used based on evaluative 

values. When the current solution in the candidate set is 

prohibited but superior to the optimal solution, it is 

expunged from the taboo list, and both the current and 

optimal solutions are revised. 

4) Termination criterion: Conclude the loop when 

reaching the specified number of iterations. 

 

Encoding after field search

2opt exchange

original code 53 6 10 9 7 8

5 6 10 9 7 8

5

3
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Figure 6. Tabu Search strategy 

 

F. Elite Retention Strategy 

 

The eliminated individual

Ft+1
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dominated 
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Figure 7. Elite retention strategy 

 

Subsequent to merging the parental population with the 

progeny population, execute non-dominated sorting. 

Currently, all individuals in the population possess 

non-dominated sorting LT  and crowding degree dT . 

Prioritize the selection of individuals with lower indices, and 

among those with identical indices, choose individuals with 

lesser crowding distances to preserve population variety. 
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The leading N people will be chosen to constitute the 

subsequent generation population. This technique facilitates 

the retention of superior individuals from the parent 

population, directing subsequent genetic operations and 

assuring the conservation of exceptional people.  

G. Reorganization Strategy 

Establish the number of iterations aN  and the 

concentration threshold aP  to prevent premature 

convergence in algorithm. Premature convergence happens 

when the best solution stops getting better or when too many 

individuals in the population are the same, exceeding the 

concentration threshold /ap m N= , m represent the count 

of individuals sharing an identical fitness value and N 

denotes the total population size. Employ the initial 

population generation method outlined in section 2.1 to 

create a subset of new individuals that will substitute the 

identical components within the population, thus enhancing 

population diversity and broadening the solution space.  

H. Algorithmic Process 

The main process of the improved NSGA-II algorithm, 

illustrated in Figure 8: 

 

Generate the initial population

The technique of genetic modification is used to produce 

targeted offspring populations.

Elite retention strategy

Disaggregate the initial issue into many VRPSPD instances via 

chromosomal encoding.

Address the VRPSPD issue via a Tabu Search Strategy.

Whether the number of 

iterations is reached

NO

Output results

Start.

Recombination strategy

YES

Calculate the objective function and congestion

 
Figure 8. Algorithm flowchart 

 

VI. CASE STUDY 

A. Parameters Setting  

This article evaluates the Gaskell67-21x5 case by 

incorporating customer return demands and adjusting the 

construction costs and capacity of the distribution center, 

ensuring that both costs and capacity are proportional. 

Customer demand underwent uncertainty processing. 

Utilizing the methodology outlined in reference [31], 

parameters p ad=  , 0.2a =  were established to produce 

customer return demands. Subsequently, customer demand 

was further analyzed for uncertainty by expanding   to the 

left and right by a specific proportion 0.2 = , resulting in 

uncertain delivery demands 1 ,(( ) ( ), )1i d d dd  = − + . was 

configured to produce uncertain return demands, leading to 

customer pick-up and delivery demands t
id  and t

ip  for the 

initial cycle. Subsequently, t  was randomly generated 

within the interval [-0.5, 0.5] to derive customer demands 

for the second and third cycles. Each center is equipped with 

two vehicle types, as detailed in TABLE III. TABLE IV and 

TABLE Ⅴ present the information regarding customer nodes 

and distribution center nodes. 

Perform numerical experiments utilizing the optimistic, 

expected, and pessimistic values. The experiments will be 

executed on a PC with Python 3.0 to compile the algorithm, 

specifically using an i7-8565U 1.8GHz CPU, 8GB of 

memory, and running on Windows 11. The primary 

parameters of the algorithm include a population size of 

N=200 for the genetic algorithm and a maximum iteration 

count of MAXGEN=200. The candidate set of TS contains 

A=3×B individuals, with B representing the customer scale 

of the VRPSPD problem. Python software optimizes the 

tabu length A  and caps the maximum number of 

iterations at A. 

  
TABLE III 

VEHICLE INFORMATION 

Vehicles 
Type 

Capacity Num Fix Cost 
Fuel Consumption 

Empty Load Full Load 
1v   400 2 100 0.26 0.37 
2v  600 2 260 0.27 0.38 

 

TABLE IV 

DISTRIBUTION CENTER NODE INFORMATION 

Distribution 
Center  

1 2 3 4 5 

Coordinates 

 (x, y)  
(136,194) (143,237) (136,216) (137,204) (128,197) 

Capacity 

(item)  
1200 1350 1500 1650 1800 

Cost (CNY) 40000 15000 50000 55000 60000 

 
TABLE V 

CUSTOMER NODE INFORMATION 
Customer  1 2 3 4 5 6 7 

Coordinates 

(x, y)  

(151,264) (159,261) (130,254) (128,252) (163,247) (146,246) (161,242) 

Cycle 1 

Delivery 
(item) 

(68.2,77.4,86.7) (43.4,49.3,55.2) (49.6,56.3,63.1) (86.7,98.6,110.4) (130.1,147.8,165.6) (24.8,28.2,31.6) (49.6,56.3,63.1) 

Return 

(item) 

(13.6,15.5,17.3) (8.7,9.9,11) (9.9,11.3,12.6) (17.3,19.7,22.1) (26,29.6,33) (5,5.63,6.3) (9.9,11.3,12.6) 

Cycle 2 

Delivery 
(item) 

(85.2,96.8,108.4) (54.2,61.6,69) (62,70.4,78.9) (108.4,123.2,138) (162.6,184.8,207) (31,35.2,39.4) (62,70.4,78.8) 
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Return 
(item) 

(17,19.4,21.7) (10.8,12.3,13.8) (12.4,14.1,15.8) (21.7,24.6,27. 6) (32.5,37,41.4) (6.2,7,7.9) (12.4,14,15.8) 

Cycle 3 

Delivery 
(item) 

(102,116.2,130.1) (65.1,73.9,82.8) (74.3,84.5,94.6) (130.1,147.8,165.6) (195.1,221.7,2.4) (37.2,42.2,47.3) (74.3,84.5,94.6) 

Return 
(item) 

(20.4,23.23,26) (13,14.8,16.6) (14.9,16.9,18.9) (26,29.6,33.1) (39,44.35,49.7) (7.4,8.5,9.5) (14.9,16.9,18.9) 

Customer  8 9 10 11 12 13 14 

Coordinates 
(x, y) 

(142,239) (163,236) (148,232) (128,231) (156,217) (129,214) (146,208) 

Cycle 1 

Delivery 
(item) 

(6.2,7.04,7.9) (31,35.2,39.4) (37.2,42.4,47.3) (74.3,84.48,94.6) (80.5,91.5,102.5) (80.6,91.5,102.5) (18.6,21.1,23.7) 

Return 
(item) 

(1.2,1.41,1.6) (6.2,7,7.9) (7.4,8.5,9.5) (14.9,16.9,18.9) (16.1,18.3,20.5) (16.1,18.3,20.5) (3.7,4.2,4.7) 

Cycle 2 

Delivery 
(item) 

(7.7,8.8,9.9) (38.7,44,49.3) (46.5,52.8,59.1) (92.9,105.6,118.3) (100.7,114.4,128.2) (100.7,114.4,128.1) (23.2,26.4,29.6) 

Return 
(item) 

(1.5,1.8,2) (7.7,8.8,9.9) (9.3,10.6,11.8) (18.6,21.12,2.7) (20.1,22.9,25.6) (20.1,22.8,25.6) (4.6,5.28,5.9) 

Cycle 3 

Delivery 
(item) 

(9.3,10.6,11.8) (46.5,52.8,59.1) (55.8,63.36,71) (111.6,126.7,141.9) (120.8,137.3,153.8) (120.8,137.3,153.8) (27.9,31.7,35.5) 

Return 
(item) 

(1.9,2.11,2.4) (9.3,10.6,11.8) (11.1,12.7,14.2) (22.3,25.3,28.4) (24.2,27.5,30.8) (24.2,27.46,30.8) (5.6,6.3,7.1) 

Customer  15 16 17 18 19 20 21 

Coordinates 
(x, y) 

(164,208) (141,206) (147,193) (164,193) (129,189) (155,185) (139,182) 

Cycle 1 

Delivery 
(item) 

(55.8,63.4,71) (130.1,147.8,165.6) (62,70.4,78.8) (55.8,63.4,71) (154.9,176,197.1) (111.5,126.7,141.9) (43.4,49.3,55.2) 

Return 
(item) 

(11.1,12.7,14.2) (26,29.6,33.1) (12.4,14.1,15.8) (11.1,12.7,14.2) (31,35.2,39.4) (22.3,25.34,28.4) (8.7,9.9,11) 

Cycle 2 

Delivery 
(item) 

(69.7,79.2,88.7) (162.6,184.8,207) (77.4,88,98.6) (69.7,79.2,88.7) (193.6,220,246.4) (139.4,158.4,177.4) (54.2,61.6,69) 

Return 
(item) 

(13.9,15.8,17.7) (32.5,37,41.4) (15.5,17.6,19.7) (13.9,15.8,17.7) (38.7,44,49.3) (27.8,31.68,35.5) (10.8,12.3,13.8) 

Cycle 3 

Delivery 
(item) 

(83.6,95,106.4) (195.1,221.7,248.4) (92.9,105.6,118.3) (83.6,95,106.5) (232.3,264,295.7) (167.2,190.1,212.9) (65,73.9,82.8) 

Return 
(item) 

(16.7,19,21.3) (39,44.4,49.7) (18.6,21.1,23.7) (16.7,19.1,21.3) (46.5,52.8,59.1) (33.5,38,42.6) (13,14.8,16.6) 

 

B. Numerical Results 

Figure 9 illustrate the Pareto front solution set across 

optimistic, expected, and pessimistic scenarios. Identify 

three solutions for examination, with Pareto 1 and 3 

representing extreme solutions, while Pareto 2 serves as a 

non-extreme point. Results are presented in TABLE VI. 

In the scenario of optimistic, the total cost of Pareto 1 was 

reduced by 39% compared to Pareto 2, while carbon 

emissions rose by 15% and driving distance increased by 

9.9%. Conversely, the total cost of Pareto 3 increased by 

48.8%, carbon emissions decreased by 10.7%, and driving 

distance decreased by 3.6%. Comparative analysis of these 

three solutions indicates that while an increase in the number 

of distribution centers raises total costs, it simultaneously 

decreases vehicle driving distances, resulting in lower 

carbon emissions and transportation expenses. 

The site selection plan for the expected value scenario 

aligns with that of the optimistic value scenario; however, 

the vehicle dispatch plan and vehicle routing differ. The 

customer demand in the expected value scenario increases 

relative to the optimistic value scenario; however, it remains 

within the capacity limit of the location plan. Consequently, 

only the vehicle dispatch and routing plans undergo 

modification. Using Pareto 1 as a case study, the distribution 

centers identified in both the expected and optimistic 

scenarios are Distribution Centers 1 and 2. In the anticipated 

scenario, the total cost rose by 1%, carbon emissions 

increased by 1.3%, and the total distance grew by 0.3%. 

Distribution Center 2 dispatched an additional 2v  vehicle 

over three cycles, leading to a 65% increase in vehicle 

dispatch costs. The costs in the expected value scenario 

exceed those in the optimistic scenario. 

When comparing Pareto 1 and 3 to Pareto 2, Pareto 1 

exhibited a total cost reduction of 38.6%, alongside a 19.5% 

increase in carbon emissions and a 10.4% rise in total 

distance. In contrast, Pareto 3 showed a total cost increase of 

48.5%, a 4.4% decrease in carbon emissions, and a 9.2% 

reduction in total distance. The site selection plan in the 

pessimistic scenario diverges from those in the optimistic 

and expected scenarios due to elevated customer demand, 

which surpasses the operational capacity of Distribution 

Centers 1 and 2, necessitating a revision of the site selection 

plan. In comparing extreme and non-extreme solutions, 

Pareto 1 exhibited a total cost reduction of 24.8%, an 

increase in carbon emissions by 15.1%, and a total distance 

increase of 14.3%. Conversely, Pareto 3 showed a total cost 

increase of 74.5%, a decrease in carbon emissions by 8%, 

and a total distance decrease of 13.4%. 

C. Credibility Analysis 

Maintain other parameters constant, thereby allowing for 

a credibility   variation between (0.5, 1] in increments of 

0.1. Perform numerical experiments utilizing both optimistic 

and pessimistic customer demand values. Select the extreme 

value solution, specifically Pareto solution 1, for analysis 

under various conditions and assess the influence of   on 
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the outcomes across different scenarios, as presented in 

TABLE VII. The expected value of the zigzag uncertain 

variable does not change with  , meaning that customer 

demand is not influenced by changes in  , the location 

selection results and paths stay the same. 
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9(a) Optimistic scenarios 
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9(b) Expected scenarios 
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9(c) Pessimistic scenarios 

Figure 9. Spatial distribution of the pareto frontier 

 

TABLE VI 

PARETO SOLUTION INDICATORS 

                            Scenario 
Indicators (CNY) 

Optimistic Expected Pessimistic 
Pareto 1 Pareto 2 Pareto 3 Pareto 1 Pareto 2 Pareto 3 Pareto 1 Pareto 2 Pareto 3 

Aggregate expenditures (CNY) 109325.4 179119.1 266503.3 110416.9 179901.7 267178.1 115768.2 153974.8 268777.8 

Distribution center 1, 2 2, 4, 5 1, 2, 3, 4, 5 1, 2 2, 4, 5 1, 2, 3, 4, 5 2, 3 1, 2, 3 1, 2, 3, 4, 5 

Construction Costs (CNY) 85000 160000 250000 85000.0 160000 250000 95000 135000 250000 

Transportation expenses (CNY) 23125.4 17619.1 14703.3 23436.9 16841.7 14598.1 18008.2 16394.8 16197.8 
vehicle dispatch Costs (CNY) 1200 1500 1800 1980 3060 2580 2760 2580 2580 

Carbon dioxide emissions (KG) 1917.7 1681.8 1502.6 1943.4 1626.5 1555 1978. 8 1719.1 1582.4 

Total distance (KM) 1754.5 1595.8 1539.1 1835.9 1663.3 1510 1988.53 1740.26 1507.7 

 

TABLE VII 

  CREDIBILITY IMPACT ON CENTER SELECTION AND COSTS 

Scenario Credibility 
Distribution 

center 
Construction costs 

(CNY) 

Total costs 
(CNY) 

Carbon dioxide 
emissions (KG) 

Vehicle dispatch 
costs (CNY) 

Transport costs 
(CNY) 

Optimistic 

0.6 1 2 85000 107709.9 1949.2 1980 20729.9 

0.7 1 2 85000 110797.2 1939.5 1200 24597.2 

0.8 1 2 85000 109325.4 1917.7 1200 23125.4 

0.9 1 2 85000 108203.9 1916 1200 22003.9 

1 1 2 85000 107666.7 1820.2 1200 21466.7 

Pessimistic 

0.6 1 2 85000 105884.4 1840.4 2760 21124.4 

0.7 1 3 90000 114256.9 2027.3 1980 22276.9 

0.8 2 3 95000 115768.2 1978. 8 2760 18008.2 

0.9 2 3 95000 117894.76 2082.4 2760 20134.8 

1 2 4 100000 120954 1780 3060 17894 
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TABLE VIII 

  IMPACT OF COMMODITY CREDIBILITY ON CENTER SELECTION AND COSTS 

Expansion 
ratio 

Scenario 
Distribution 

center 
Construction costs 

(CNY) 
Total costs 

(CNY) 
Carbon dioxide 
emissions (KG) 

Vehicle dispatch 
costs (CNY) 

Transport costs 
(CNY) 

0 
Optimistic 1 2 85000 109068 1981.6 1980 22088 

Pessimistic 1 2 85000 110416.9 1943.4 1980 23436.9 

0.1 
Optimistic 1 2 85000 108385.3 1898.2 1980 21405.3 

Pessimistic 1 2 85000 111326.8 1983.2 1980 24346.8 

0.2 
Optimistic 1 2 85000 109325.4 1917.7 1200 23125.4 

Pessimistic 2 3 95000 115768.2 1978. 8 2760 18008.2 

0.3 
Optimistic 1 2 85000 108564.4 1830. 9 1200 22364.4 

Pessimistic 2 3 95000 116243.6 1815 2760 18483.6 

0.4 
Optimistic 1 2 85000 108184.1 1829.8 1200 21984.1 

Pessimistic 3 4 105000 127703.7 1950.6 2760 19943.7 

0.5 
Optimistic 5 60000 95850.9 2392. 2 1380 34470.9 

Pessimistic 1 2 5 145000 167266 1783.5 3060 19206 

 
TABLE IX 

COMPARISON OF ALGORITHM INDICATORS 
Example Customer number Centers number Algorithm Total costs (CNY) Carbon dioxide emissions (KG) Solution time (s) 

Gaskell67-21x5 21 5 

INSGA-Ⅱ 121988.96 2346.62 254 

NSGA-Ⅱ 122181.41 1496.11 259 

GA-SA 122419 1493.71 263 

Gaskell67-32x5 32 5 

INSGA-Ⅱ 122845.24 1486.299 535 

NSGA-Ⅱ 127382.95 1541.209 515 

GA-SA 128668.87 1632.01 561 

Gaskell67-50x5 50 5 

INSGA-Ⅱ 134628.33 1407.28 2072 

NSGA-Ⅱ 137977.14 1387.92 2058 

GA-SA 112381.58 1623.52 2101 

 

In the optimistic scenario,   change did not alter the 

location plan. This result arises because, despite a decrease 

in customer demand with increased reliability, it remains 

above the operational capacity of a single distribution center. 

This situation does not necessitate a change in the location 

plan but rather results in modifications to the vehicle routing 

plan. At 0.6  , the decline in customer demand allowed 

for the completion of deliveries from Distribution Center 1 

using fuel vehicles. This resulted in a 2% reduction in 

vehicle dispatch costs, a total cost decrease of up to 1.3%, 

and a reduction in carbon emissions of up to 0.4%. 

In the context of pessimistic values Upon the occurrence 

of 7=0. , the site selection outcome transitions from 

Distribution Centers 1 and 2 to Distribution Centers 1 and 3; 

upon the occurrence of [0.8,0.9]  , the outcome is 

Distribution Centers 2 and 3; and upon the occurrence of 

0.9  , it is Distribution Centers 2 and 4. This is due to the 

fact that when 0.( 5,1]   happens, the pessimistic value 

of the zigzag uncertain variable is a monotonically rising 

function of  . As   rises, the gloomy estimate of 

consumer demand correspondingly grows in a monotone 

manner. When consumer demand surpasses the operating 

capability of the initial distribution centers, it necessitates 

modifications to the site selection strategy. 

In conclusion, within a specified range, when the site 

selection plan and vehicle routing plan adequately address 

customer requirements, variations in   will not affect the 

outcomes of the site selection process. Changes in   that 

surpass this range will result in modifications to the site 

selection plan or the vehicle routing plan. 

D. Uncertainty Interval Width Analysis 

This paper examines the influence of customer demand 

uncertainty intervals on facility location and associated cost 

parameters within the model. The expansion ratio   , with 

other parameters held constant, ranges from 0 to 0.5 in 

increments of 0.1. Customer demand remains unaffected by 

the   in the expected value scenario, leading to consistent 

location results and paths. 

The findings presented in TABLE VIII demonstrate that 

in the optimistic scenario, the occurrence of  0.2   leads 

to alterations in the vehicle routing plan as the uncertainty 

interval widens. Conversely, [0.2,0.4]   results in a 

gradual reduction in total costs and carbon emissions. 

Additionally, the occurrence of 0.5 =  causes a decline in 

customer demand to a level that can be adequately addressed 

by Distribution Center 5, prompting a modification in the 

location plan. In the optimistic scenario, it can be concluded 

that as the uncertainty interval widens, customer demand 

progressively diminishes. In the pessimistic scenario, the 

occurrence of [0,0.2]   leads to a gradual decrease in 

total costs and carbon emissions as the uncertainty interval 

expands. When 0.2   occurs, customer demand 

surpasses the operational capacity of distribution centers 1 

and 2, resulting in a modification of the location plan. As 

0.3   occurs and the uncertainty interval expands, the 

location plan is adjusted accordingly. In the pessimistic 

scenario, an expansion of the uncertainty interval correlates 

with a gradual increase in customer demand. 

In conclusion, customer demand exhibits fluctuations 

within a limited fuzzy range, while the site selection 

outcomes remain consistent. The costs associated with 

vehicle dispatch and delivery vary slightly in response to 

alterations in vehicle capacity. Exceeding a specific range of 

fluctuations will result in modifications to the site selection 

plan. The width of the customer uncertainty interval 

correlates with variations in customer demand, total costs, 

and carbon emissions. In optimistic scenarios, an increased 

range of customer uncertainty correlates with reduced 
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customer demand, leading to lower total costs and carbon 

emissions. Conversely, in pessimistic scenarios, a wider 

customer uncertainty range is associated with heightened 

customer demand, resulting in increased total costs and 

carbon emissions. 

E. Algorithm Comparison 

Look at the results and the time taken for the improved 

NSGA-II method discussed in this article, and compare them 

to the regular NSGA-II without improvements and the 

GA-SA results found in other studies[25]. TABLE IX 

presents the results. 

Improved NSGA-II solutions exhibit superior quality and 

enhanced search capabilities when compared to NSGA-II 

and GA-SA solutions. improved NSGA-Ⅱ has a longer 

runtime compared to NSGA-Ⅱ and GA-SA due to its 

utilization of multiple strategies; however, the additional 

time is merely 20 seconds, representing a 3.9% increase, 

thus maintaining a reasonable overall computing time. The 

improved NSGA-II algorithm shows better quality and 

greater ability to find the best solutions for the FLRP 

problem. 

VII. CONCLUSION 

This study seeks to reduce total logistics costs and carbon 

emissions in transportation by developing a multi-objective 

model for multi-period, multi-vehicle simultaneous pickup 

and delivery in uncertain conditions. The primary tasks 

accomplished include the following: 

1) The model incorporating uncertain variables is 

equivalently transformed to derive location and vehicle 

service path schemes under optimistic, expected, and 

pessimistic conditions, based on the definitions of these 

values. 

2) The proposed model and methods were validated 

through numerical examples, demonstrating the influence of 

the confidence level, indicative of the decision-maker's risk 

preference, on the results. The examples showed that the 

model and algorithm work well in real situations and 

highlighted how confidence levels and uncertain variables 

affect location and vehicle routing results. 

3) The results of the improved NSGA-II algorithm in this 

study were compared to the results of the NSGA-II and 

GA-SA algorithms for solving the LRP problem. The 

improved NSGA-II algorithm has been shown to effectively 

address the LRP problem. 

4) This study focuses exclusively on the location-routing 

optimization problem for a single product, presenting certain 

limitations. The next research direction will focus on 

optimizing the location-routing problem for multiple 

products, which holds significant practical relevance. 
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