

Abstract— The hash polynomial of a string is defined by

converting each letter in the string into a numerical value

according to its position in the alphabet. In some cases, the

number of strings that satisfy a given hash value is determined

using a specified hash polynomial function. The number of

possible character combinations and the repetition of

subproblems that may occur present challenges in the given

hash function. In this paper, we propose a novel solution to the

aforementioned problem using dynamic programming

technique and Fast Fourier Transform method, which satisfy a

given polynomial hash function. In our algorithm, the

recurrence relation for the dynamic programming technique

utilizes polynomial equation model for each state. Therefore,

for each transition in the recurrence relation, the values are

updated through polynomial operations. One of these operations

is polynomial multiplication, where the Fast Fourier Transform

(FFT) is used to speed up computation. Based on test results

from a given case study, the dynamic programming approach

and Fast Fourier Transform achieves an average execution time

of 2.62 seconds and consumes an average of 19 MB of memory,

utilizing only 1.23% of the available memory limit.

Index Terms—dynamic programming, fast Fourier

transform, hash polynomials, set permutation

I. INTRODUCTION

UPPOSE a polynomial hash function 𝐻(𝑆) is defined. By

converting each letter in string 𝑆 into a numerical value

based on its position in the alphabet, the string can be

represented as a fixed value called a polynomial hash value.

For example, 𝑆 = abde, 𝐵 = 26,𝑀 = 36, the string has a

length of 𝑁 = 4. Thus, 𝐻(S) = (263 ∗ 0 + 262 ∗ 1 + 261 ∗
3 + 260 ∗ 4) % 36 = 2. Since each polynomial hash value

of a string is taken modulo 𝑀 according to (1), different

strings can have the same polynomial hash value, with the

result always being less than 𝑀.

𝐻(𝑆) = ∑ 𝐵𝑁−𝑖−1

𝑁−1

𝑖=0

∗ 𝐷(𝑆𝑖) % 𝑀 (1)

Manuscript received November 11, 2024; revised March 20, 2025. This

work was supported in part by Sepuluh Nopember Insitute of Technology,

Surabaya, Indonesia.
 Fadel Pramaputra Maulana is a graduate student at Sepuluh Nopember

Institute of Technology, Department of Informatics, Surabaya, Indonesia.

(e-mail: fadelpm2002@gmail.com)
Rully Soelaiman is an associate professor at Sepuluh Nopember Institute

of Technology, Department of Informatics, Surabaya, Indonesia (e-mail:
rully130270@gmail.com)

Yudhi Purwananto is an associate professor at Sepuluh Nopember

Institute of Technology, Department of Informatics, Surabaya, Indonesia (e-
mail: purwananto@gmail.com)

The problem discussed in this paper is the calculation of

the number of combinations of lowercase characters that can

be formed such that the polynomial hash value of the string

satisfies a given value. For instance, to calculate 𝐻(𝑆) with

𝑁𝑚𝑎𝑘𝑠 = 2, 𝑀 = 2, 𝐵 = 26, using (1) and Table I, while

ensuring 0 ≤ 𝐻(𝑆) < 𝑀, the numerical value of each

character from “𝑎” to “𝑧𝑧” are assigned as in Table II.

The number of hash values that can be generated when

𝑁𝑚𝑎𝑥 = 1 and 𝑁𝑚𝑎𝑥 = 2 corresponds to the number of

character combinations for string lengths of 1 and 2, which

totals 702. Using the method described above, if we set

𝑁𝑚𝑎𝑥 = 30000 and 𝑀 = 30000, the time complexity of the

calculation becomes 𝑂(1042449) and requires 1042440

seconds which is approximately 3.17 𝑥 1042442 years.

Therefore, a brute-force approach for computing the number

of combinations of lowercase characters that satisfy a given

hash value is not a feasible solution for real-world

applications.

Dynamic Programming and Fast Fourier

Transform Approach for Polynomial Equation

Models in Hash Collision Calculation

Fadel Pramaputra Maulana, Rully Soelaiman, Member, IAENG, and Yudhi Purwananto

S

TABLE I

NUMERICAL VALUE FOR EACH CHARACTER

𝑆𝑖 𝐷(𝑆𝑖) 𝑆𝑖 𝐷(𝑆𝑖)

a 0 n 13

b 1 o 14

c 2 p 15

d 3 q 16

e 4 r 17

f 5 s 18

g 6 t 19

h 7 u 20

i 8 v 21

j 9 w 22

k 10 x 23

l 11 y 24

m 12 z 25

TABLE II

EXAMPLE CASE 𝑁𝑚𝑎𝑥 = 2

No 𝐻(𝑆) Hash Calculation
Hash

Value

1 𝐻(“𝑎”) (1 ∗ 0) % 2 0

… … … …

26 𝐻(“𝑧”) (1 ∗ 25) % 2 1

27 𝐻(“𝑎𝑎”) (26 ∗ 0 + 1 ∗ 0) % 2 0

… … … …

701 𝐻(“𝑧𝑦”) (26 ∗ 25 + 1 ∗ 24) % 2 0

702 𝐻(“𝑧𝑧”) (26 ∗ 25 + 1 ∗ 25) % 2 1

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

In order for this problem to be solved efficiently, another

approach is required, that is by using dynamic programming

method. Dynamic programming is a problem-solving

technique by decomposing the solution into a set of steps or

stages in such a way that the solution of a problem can be

viewed from a series of small decisions which are related to

one another [1]. In defining the dynamic programming

model, it is essential to determine the relationship between a

given state and its previous state so that a recurrence equation

can be defined [9]. A recurrence relation is an equation that

defines each element of a sequence as a function of the

previous elements. Therefore, the solution for each state

depends on the solutions for smaller states of the same

problem [3]. In the process, this approach involves computing

polynomial multiplication. Thus, the Fast Fourier Transform

(FFT) method is used to speed up the naïve polynomial

multiplication. The Fast Fourier Transform method is a

method used to calculate the Discrete Fourier Transform

(DFT) efficiently. By using the FFT method, which utilizes

the special properties of complex roots of unity, the DFT

calculation can be done in 𝑂(𝑀 𝑙𝑜𝑔2𝑀) time [2]. In this

problem, the FFT method will be used to reduce the time

complexity of calculating polynomial multiplication from

𝑂(𝑀2) to 𝑂(𝑀 𝑙𝑜𝑔2𝑀).
By taking previous research on the topics of hash

polynomials and fast polynomial multiplication [4], [5], [6],

[7], [8], [11], it can be concluded that dynamic programming

and FFT-based approaches provide a feasible solution to this

problem. Therefore, in this paper, we propose a solution that

takes only 2.62 seconds on average to compute a given

number of hash values in a time efficient manner and satisfies

the problem time constraint of 10 seconds.

The rest of the paper is organized as follows: Section II

presents our novel method: dynamic programming technique

and Fast Fourier Transform method. Section III presents the

experimental results and analysis. Finally, the conclusion is

stated in section IV.

II. METHODOLOGY

Our proposed algorithm to count the number of character

combinations with a given hash value utilizes dynamic

programming techniques for all hashes less than 𝑀 and

applies the Fast Fourier Transform for polynomial

multiplication. In general, the algorithm is divided into 3

parts: first, it determines whether the input is a unique case or

not. If the input is a unique case, then the solution can be done

with log2𝑁 calculations. Otherwise, if the input is not a

unique case, the number of hash values for maximum string

length equal to 2𝑘 is first calculated using dynamic

programming techniques. Then, the number of hash values

for a maximum string length not equal to 2𝑘 is calculated

using the results from the previous part and dynamic

programming techniques. In both the second and third parts,

state calculations in dynamic programming involve

polynomial multiplication. To improve efficiency, the naïve

𝑂(𝑀2) polynomial multiplication is replaced with the Fast

Fourier Transform (FFT), reducing the complexity to

𝑂(𝑀 log2𝑀). The following discussion consists of six main

sections. Section II-A explains the state model used in

dynamic programming. Section II-B and II-C describe the

recurrence relation used in calculating the number of hash

values for a maximum string length equal to and not equal to

2𝑘. Section II-D explains how Fast Fourier Transform is

utilized in accelerating the calculation of polynomial

multiplication. Section II-E addresses the handling of unique

cases, followed by Section II-F, which presents the time

complexity analysis of our proposed method.

A. Dynamic Programming State Model

If the sigma form of (1) is converted to an explicit sum

form, we obtain (2). To calculate the number of combinations

of 𝑁 characters such that 𝐻(𝑆) takes values from 0 to 𝑀 − 1,

start by calculating the number of hash values when the string

length consists of only one character, with each character

value as in Table I. Equation (2) shows each segment of the

sum is denoted as 𝑇1 to 𝑇𝑁, where 𝑇𝑖 is the set consisting of

the number of hash values from 0 to 𝑀 − 1 when the string

length consists of one character at the 𝑖-th character from the

last character in the string. As a result, Equations (3) and (4)

are derived. Equation (3) shows 𝑇𝑖 = {ℎ0, ℎ1, . . . , ℎ𝑀−1}
where ℎ𝑖 represents the number of occurrences of hash value

𝑖. As illustrated in Fig. 1, each 𝑇 in (4) produces hash values

raging from 0 to 𝑀 − 1.

Given 𝑇𝑝 and 𝑇𝑞 where each is the set number of hash

values {ℎ0, ℎ1, . . . , ℎ𝑀−1}, these sets can be transformed into

polynomial equations. Here, the values ℎ0 to ℎ𝑀−1 in each

𝑇 are the coefficients of a polynomial, where the exponent

corresponds to the hash value. Thus, 𝑇𝑝 is defined as ℎ0𝑥
0 +

ℎ1𝑥
1 +⋯+ ℎ𝑀−1𝑥

𝑀−1, and similarly for 𝑇𝑞 . To calculate the

number of hash values from 0 to 𝑀 − 1 for a string of length

two can be done by multiplying ℎ𝑖 with ℎ𝑗 at two 𝑇 in (5).

The result of the multiplication gives the number of hashes

with value 𝑖 + 𝑗, as shown in Table III. Therefore, 𝑇𝑝𝑇𝑞

represents the set of hash values from 0 to 𝑀 − 1 when the

string consists of two characters, spanning from the 𝑝-th

character to the 𝑞-th character, starting from the end of the

string.

𝐻(𝑆) = (𝐵𝑁−1𝐷(𝑆0) + ⋯+𝐵0𝐷(𝑆𝑁−1)) % 𝑀 (2)

𝑇𝑖 = 𝐵𝑖−1𝐷(𝑆𝑁−𝑖) % 𝑀, 1 ≤ 𝑖 ≤ 𝑁 (3)

𝐻(𝑆) = (𝑇𝑁 + 𝑇𝑁−1 +⋯+ 𝑇2 + 𝑇1) % 𝑀 (4)

𝑇𝑝𝑇𝑞(ℎ𝑖+𝑗) = 𝑇𝑝(ℎ𝑖) ∗ 𝑇𝑞(ℎ𝑗), 0 ≤ 𝑖, 𝑗 ≤ 𝑀 − 1 (5)

Fig. 1. The number of hash values for each 𝑇

 𝐻(𝑆) = (𝑇𝑁 + 𝑇𝑁−1 + ⋯+ 𝑇2 + 𝑇1) % 𝑀

ℎ0

ℎ1

…

ℎ𝑀−1

ℎ0

ℎ1

…

ℎ𝑀−1

ℎ0

ℎ1

…

ℎ𝑀−1

ℎ0

ℎ1

…

ℎ𝑀−1

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

Referring to (5), the string hash polynomial function has

modulo 𝑀, thus if the value of 𝑖 + 𝑗 = 𝑘 in 𝑇𝑝𝑇𝑞, 𝑘 does not

exceed 𝑀. Therefore, for all ℎ𝑘 in 𝑇𝑝𝑇𝑞, a formula as in (6) is

applied. This formula is also used to calculate the number of

hash values for strings longer than two characters, as it does

not change the number of sets 𝑇 consisting of ℎ0 to ℎ𝑀−1.

Equation (2) shows the value of each segment of the sum is

differentiated by a multiplier 𝐵. 𝑇1 and 𝑇2 are differentiated

by a multiplier 𝐵1, 𝑇1 and 𝑇3 by 𝐵2, and so on. Thus, to

calculate the set on 𝑇𝑞, permutation can be applied to 𝑇𝑝 using

the multiplier 𝐵𝑞−𝑝 and 𝑇𝑝, given that 𝑞 > 𝑝. This

permutation is performed by multiplying 𝐵𝑞−𝑝 with each

hash value in 𝑇𝑝, altering the order of the number of hash

values in the 𝑇𝑝 set so that it transforms into the 𝑇𝑞 set, as

shown in Table IV.

𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇𝑝 , 𝐵
𝑟)

ℎ(𝑖∗𝐵𝑞−𝑝)%𝑀 = ℎ(𝑖∗𝐵𝑞−𝑝)%𝑀 + ℎ𝑖 , 0 ≤ 𝑖 < 𝑀
(7)

In Table IV, the hash value at 𝑇3 is taken modulo 𝑀 to

ensure that the result does not exceed 𝑀. Given 𝑇𝑝, the set at

𝑇𝑞 can be determined by permuting the set at 𝑇𝑝 using the

multiplier 𝐵𝑟 , as shown in (7), where 𝑟 = 𝑞 − 𝑝 and 𝑞 > 𝑝.

There are several permutation operations that are true,

1. 𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇𝑝, 𝐵
𝑟)

2. 𝑇1+𝑟𝑇2+𝑟 …𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇1𝑇2…𝑇𝑝, 𝐵
𝑟)

3. 𝑇1+𝑟 + 𝑇1+𝑟𝑇2+𝑟 +⋯+ 𝑇1+𝑟 …𝑇𝑝+𝑟 =

𝑝𝑒𝑟𝑚𝑢𝑡(𝑇1 + 𝑇1𝑇2 +⋯+ 𝑇1…𝑇𝑝, 𝐵
𝑟)

The set 𝑇1𝑇2. . . 𝑇𝑝 consists of the number of hash values from

0 to 𝑀 − 1, given that the string length consists of 𝑝

characters, spanning from the first to the 𝑝-th character,

starting from the end of the string. Whereas 𝑇1 + 𝑇1𝑇2 +⋯+
𝑇1. . . 𝑇𝑝 represents the number of sets consisting of the

number of hash values from 0 to 𝑀 − 1 when the string length

is less than or equal to 𝑝 characters. The symbol (+) in the

equation denotes summation between sets of 𝑇 when 𝑇 is

represented as a polynomial equation. The use of this

permutation function is crucial as it significantly reduce the

number of calculations needed to generate a new 𝑇 set from

an existing one.

B. Recurrence Relation when String Length is 2𝑘

If there is a value 𝑁max and 𝑈 represents the number of

hash values when the string length is less than or equal to

𝑁𝑚𝑎𝑥 , then 𝑈 is the union of the sets of 𝑇, as shown in (8). If

𝑁 = 2𝑘 for 𝑘 integers, the set 𝑈 can be divided into smaller

parts, as illustrated in Fig. 2.

Based on Fig. 2 there are several conclusions, such that, 𝑏

can be created from 𝑎 ∗ 𝑝𝑒𝑟𝑚𝑢𝑡(𝑎, 𝐵1). Moreover, 𝑑 can be

created from 𝑏 ∗ 𝑝𝑒𝑟𝑚𝑢𝑡(𝑏, 𝐵2). Lastly, 𝑐 can be created

from 𝑝𝑒𝑟𝑚𝑢𝑡(𝑎, 𝐵2). To determine 𝑈 with a length of 𝑁𝑚𝑎𝑥 ,

√𝑁𝑚𝑎𝑥 iterations are performed to find the number of hash

values of the character combination. If 𝑇𝑡𝑜𝑡𝑎𝑙[√𝑁𝑚𝑎𝑥] = 𝑈

and 𝑈 represents the number of hash values from 0 to 𝑀 − 1

with length 𝑁𝑚𝑎𝑥 , then a recurrence relation is obtained when

𝑁𝑚𝑎𝑥 is 2𝑘 with 𝑘 integers, as shown in (9) and (10). The

following is an explanation of the variables in (9) and (10),

• ℎ𝑖 = the number of hashes with a value of 𝑖.

• 𝑇1 = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} when 𝑁 = 1 at the last

character of the string.

• 𝑇𝑡𝑜𝑡𝑎𝑙[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing

string length combinations from 𝑁 = 1 to 𝑁 = 2𝑘.

• 𝑇𝑒𝑥𝑎𝑐𝑡[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing

string length combinations exactly at 𝑁 = 2𝑘.

• 𝑝𝑒𝑟𝑚𝑢𝑡(𝐴, 𝑏) = the permutation function applied to

set 𝐴 = {ℎ0, ℎ1, . . . , ℎ𝑀−1} with multiplier 𝑏.

• 𝐵 = the base in the polynomial hash function.

𝑇𝑒𝑥𝑎𝑐𝑡[𝑖] = {
𝑇1, 𝑖 = 0

𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1] ∗ 𝑝𝑒𝑟𝑚𝑢𝑡 (𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1], 𝐵2𝑖−1) , 2 ≤ 2𝑖 ≤ 𝑁
 (9)

ℎ𝑘%𝑀 = {
ℎ𝑘, 𝑘 < 𝑀

ℎ𝑘 % 𝑀 + ℎ𝑘, 𝑀 ≤ 𝑘 ≤ 2(𝑀 − 1)
 (6)

𝑈 = 𝑇1 + 𝑇1𝑇2 +⋯+ 𝑇1𝑇2…𝑇𝑁𝑚𝑎𝑘𝑠−1
𝑇𝑁𝑚𝑎𝑘𝑠

 (8)

TABLE III

CALCULATION OF NUMBER OF HASH VALUES FOR 𝑁 = 2

𝑇𝑝 𝑇𝑞 𝑇𝑝 ∗ 𝑇𝑞

ℎ0 ℎ0 ℎ0+0

ℎ0 ℎ1 ℎ0+1

… … …

ℎ1 ℎ0 ℎ1+0

ℎ1 ℎ1 ℎ1+1

… … …

ℎ𝑖 ℎ𝑗 ℎ𝑘=𝑖+𝑗

… … …

ℎ𝑀−1 ℎ𝑀−1 ℎ2(𝑀−1)

TABLE IV

EXAMPLE OF PERMUTATION ON 𝑇 WITH MULTIPLIER 𝐵

𝑇1 MULTIPLIER 𝑇3

ℎ0 𝐵2
 ℎ(0 ∗ 𝐵2)%𝑀

ℎ1 𝐵2
 ℎ(1 ∗ 𝐵2)%𝑀

… 𝐵2
 …

ℎ𝑀−2 𝐵2
 ℎ

((𝑀−2) ∗ 𝐵2)%𝑀

ℎ𝑀−1 𝐵2
 ℎ

((𝑀−1) ∗ 𝐵2)%𝑀

Fig. 2. A set 𝑈 that is divided into smaller parts

𝑈 = 𝑇1 + 𝑇1𝑇2 + 𝑇1𝑇2(𝑇3) + 𝑇1𝑇2𝑇3𝑇4 + ⋯

𝑎 𝑏 𝑐 𝑑

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

𝑇𝑡𝑜𝑡𝑎𝑙[𝑖] = {

𝑇1, 𝑖 = 0

𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1] + 𝑇𝑒𝑥𝑎𝑐𝑡[𝑖], 𝑖 = 1

𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1] + 𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1] ∗ 𝑝𝑒𝑟𝑚𝑢𝑡 (𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1], 𝐵2𝑖−1) , 2 ≤ 2𝑖 ≤ 𝑁
 (10)

𝑈[𝑖] =

{

 𝑝𝑒𝑟𝑚𝑢𝑡 (

𝑇𝑡𝑜𝑡𝑎𝑙[𝑏𝑖𝑡[𝑖]],

 𝐵𝑁−2𝑏𝑖𝑡[𝑖]
) , 𝑖 = 0

𝑝𝑒𝑟𝑚𝑢𝑡 (
𝑇𝑡𝑜𝑡𝑎𝑙[𝑏𝑖𝑡[𝑖]],

𝐵𝑁−2𝑏𝑖𝑡[0]−⋯−2𝑏𝑖𝑡[𝑖]
) + 𝑝𝑒𝑟𝑚𝑢𝑡 (

𝑇𝑒𝑥𝑎𝑐𝑡[𝑏𝑖𝑡[𝑖]],

𝐵𝑁−2𝑏𝑖𝑡[0]−⋯−2𝑏𝑖𝑡[𝑖]
) ∗ 𝑈[𝑖 − 1], 1 ≤ 𝑖 ≤ 𝑘

 (11)

Based on the recurrence relation in (9) and (10), Algorithm

1 is used to calculate the number of hash values when the

string length is equal to 2𝑘.

Algorithm 1 Solve recurrence relation when
string length is equal to 2𝑘

Input: dp1, dp2, B, M, base, j
Output: dp1, dp2
1: for i ⃪ 0 to MIN(26, M)-1 do
2: for k ⃪ 0 to 25 do
3: h ⃪ (B*i+k) % M
4: dp2[1][h] ⃪ dp2[1][h] + dp1[1][i]
5: dp1[1] ⃪ ADD(dp1[1], dp2[1], M)
6: for i ⃪ 2 to j do
7: pt ⃪ PERMUT(dp2[i-1], base[i-1], M)
8: dp2[i] ⃪ MUL(dp2[i-1], pt, M)
9: pt ⃪ PERMUT(dp1[i-1], base[i-1], M)
10: mul ⃪ MUL(dp2[i-1], pt, M)
11: dp1[i] ⃪ ADD(dp1[i-1], mul, M)

12: return dp1, dp2

C. Recurrence Relation when String Length is Not 2𝑘

To calculate the number of hash values from 0 to 𝑀 − 1

for a string length that is not a set of 2𝑘 (where 𝑘 is an

integer), a method is required to determine which set of hash

values at which length to use. This can be achieved by

examining the bits that form the binary representation of

𝑁𝑚𝑎𝑥 . For example, Fig. 3 illustrates the binary

representations of 15 and 25.

In Fig. 3, the number 15 can be formed using 20, 21, 22, 23,

while the number 25 can be formed using 20, 23, 24.

Similarly, to compute the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} for a length

of 𝑁𝑚𝑎𝑥 , the lengths used to build the hash will correspond to

the powers of two represented by the positions of the 1-bits

in the binary representation of 𝑁𝑚𝑎𝑥 . Suppose,

• ℎ𝑖 = the number of hashes with a value of 𝑖.

• 𝑇𝑡𝑜𝑡𝑎𝑙[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing

string length combinations from 𝑁 = 1 to 𝑁 = 2𝑘.

• 𝑇𝑒𝑥𝑎𝑐𝑡[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing

string length combinations exactly at 𝑁 = 2𝑘.

• 𝑝𝑒𝑟𝑚𝑢𝑡(𝐴, 𝑏) = the permutation function applied to

set 𝐴 = {ℎ0, ℎ1, . . . , ℎ𝑀−1} with multiplier 𝑏.

• 𝐵 = the base in the polynomial hash function.

• 𝑒𝑥𝑝𝑜 = the exponent of 𝐵 used for multiplication in

permutations.

• 𝑏𝑖𝑡 = the sequence of bits in 𝑁 from its binary

representation, starting from the first bit (only bits

with a value of 1 are considered).

To calculate the numbers of hash values when 𝑁 is not

equal to 2𝑘, the numbers of hash values for 𝑁 is equal to the

powers of 2 is used. The set that must be formed to solve the

problem with 𝑁𝑚𝑎𝑥 is 𝑈 = 𝑇1 + 𝑇1𝑇2 + 𝑇1𝑇2𝑇3 +⋯+
𝑇1…𝑇𝑁𝑚𝑎𝑥

. Iteration continues until all bit with a value of 1

in the binary representation 𝑁𝑚𝑎𝑥 have been traversed. This

results in 𝑈, the set of hash values raging from 0 to 𝑀 − 1

when the maximum string length is 𝑁𝑚𝑎𝑥 . If 𝑏𝑖𝑡[𝑖] represents

the position of a bit with value 1 in the binary representation

of 𝑁𝑚𝑎𝑥 , where 0 ≤ 𝑖 ≤ 𝑘 and 𝑏𝑖𝑡[𝑘] is the position of the

last bit with value 1, then the recurrence relation when

𝑁𝑚𝑎𝑥 ≠ 2𝑘 (i.e., when 𝑁𝑚𝑎𝑥 is not equal to 2𝑘 for integers 𝑘)

is shown in (11).

The total number of hash values from 0 to 𝑀 − 1 for a

string length that is not 2𝑘 is represented by 𝑈[𝑘]. The

addition and multiplication in the recurrence relation in (11)

correspond to polynomial addition and multiplication, where

𝑈[𝑘][𝑗] is the coefficient of the 𝑗-th polynomial term, with

the limit 0 ≤ 𝑗 < 𝑀. The coefficient of the 𝑗-th term

represents the number of hash values with a value of 𝑗. It is
certain that calculating 𝑈[𝑖] only requires the value of

𝑈[𝑖 − 1], while storing 𝑈[0] to 𝑈[𝑖 − 2] is unnecessary. This

approach minimizes memory usage. Using this method, the

number of hash values that need to be calculated is log2𝑁,

excluding the polynomial addition and multiplication

calculations, where 𝑁 is the maximum string length in (11).

Based on (11), Algorithm 2 is used to calculate the number of

hash values when the string length is not equal to 2𝑘.

Algorithm 2 Solve recurrence relation when
string length is not equal to 2𝑘

Input: N, M, twopowers, base, dp1, dp2
Output: ans
1: i, j ⃪ 0
2: while twopowers[i] ≤ N do
3: if N & twopowers[i] then
4: if j = 0 then
5: temp ⃪ N - twopowers[i]
6: nums[j] ⃪ temp
7: else
8: temp ⃪ nums[j-1] – twopowers[i]

Fig. 3. Binary representation of the numbers 15 and 25

 =

 =

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

Algorithm 2 Solve recurrence relation when
string length is not equal to 2𝑘

9: nums[j] ⃪ temp
10: exp[j] ⃪ i
11: j ⃪ j + 1
12: i ⃪ i + 1
13: for i ⃪ 0 to j – 2 do
14: k ⃪ exp[i+1]
15: L ⃪ nums[i+1]
16: m ⃪ FINDMULTIPLY(base, l, M)
17: if i = 0 then
18: f ⃪ FINDMULL(base, nums[i], M)
19: if l ≠ 0 then
20: pt1 ⃪ PERMUT(dp2[k], m, M)
21: pt2 ⃪ PERMUT(dp1[exp[i]], f, M)
22: ans ⃪ MUL(pt1, pt2, M)
23: else
24: pt1 ⃪ PERMUT(dp1[exp[i]], f, M)
25: ans ⃪ MUL(dp2[k], pt1, M)
26: else
27: if l ≠ 0 then
28: pt1 ⃪ PERMUT(dp2[k], m, M)
29: ans ⃪ MUL(pt1, ans, M)
30: else
31: ans ⃪ MUL(dp2[k], ans, M)
32: if l ≠ 0 then
33: pt1 ⃪ PERMUT(dp1[k], m, M)
34: ans ⃪ ADD(pt1, ans, M)

35: return ans

D. Polynomial Multiplication with Fast Fourier

Transform

It is known that multiplying two polynomials 𝐴(𝑥) and

𝐵(𝑥), with degrees 𝑎 and 𝑏, requires 𝑂((𝑎 + 1) ∗ (𝑏 + 1))

time complexity since there are 𝑎 + 1 elements in 𝐴(𝑥) and

𝑏 + 1 elements in 𝐵(𝑥). However, there exists a

multiplication method that reduces the complexity to 𝑂(𝑛),
known as pointwise multiplication, when the polynomials are

represented in point-value form. As mentioned in

Introduction to Algorithm by Cormen et al page 901-902, a

polynomial with a degree bound of 𝑛 can be represented using

at least 𝑛 different points as values in the polynomial basis.

For example, given 𝐴(𝑥) = 𝑥2 − 1 and 𝐵(𝑥) = 𝑥, these

polynomials can be represented as point-values using at least

three points for 𝐴(𝑥) and two points for 𝐵(𝑥), as illustrated

in Fig. 4.

If there is a polynomial 𝐶(𝑥) with bound degree 𝑛, it can

be represented using the set in (12). In polynomial

multiplication, if 𝐶(𝑥) = 𝐴(𝑥) ∗ 𝐵(𝑥), where 𝐴(𝑥) is a

polynomial of degree 𝑎 and 𝐵(𝑥) is a polynomial of degree

𝑏, then the product of polynomial 𝐶(𝑥) has a degree of 𝑐 =
𝑎 + 𝑏 or a polynomial with bounded degree of 𝑐 + 1. Thus,

at least 𝑐 + 1 points are required to represent the polynomial

𝐶(𝑥) in point-value form. If multiplication is performed using

pointwise multiplication, then 𝑎 + 𝑏 + 1 different points are

required for polynomials 𝐴(𝑥) and 𝐵(𝑥). After the pointwise

multiplication, 𝐶(𝑥) can be converted back from point-value

representation to coefficient representation through a process

known as interpolation.

Naïve polynomial evaluation at 𝑛 points requires 𝑂(𝑛2)
complexity. However, in this section, the FFT (Fast Fourier

Transform) is used to reduce the complexity to 𝑂(𝑛 log2 𝑛).
The general scheme for polynomial multiplication is

illustrated in Fig. 5. It is assumed that polynomial 𝐴(𝑥) has a

degree bounded by a set of 2𝑘 numbers. Therefore, Algorithm

3 is used to iteratively convert 𝐴(𝑥) between point-value

representation and coefficient representation.

Algorithm 3 Iterative FFT

Input: 𝑎, 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒
Output: 𝑦
1: 𝑎 ⃪ BIT-REVERSAL-PERMUTATION(a)
2: 𝑛 ⃪ a.length
3: for 𝑠 ⃪ 1 to log2 𝑛 do
4: 𝑚 ⃪ 2𝑠
5: if 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒 = 1 then

6: 𝜔𝑚 ⃪ 𝑒
−2𝜋𝑖/𝑛

7: else

8: 𝜔𝑚 ⃪ 𝑒
2𝜋𝑖/𝑛

9: for 𝑘 ⃪ 0 to 𝑛-1 by 𝑚 do
10: 𝜔 ⃪ 1
11: for j ⃪ 0 to 𝑚/2-1 do
12: t ⃪ 𝜔 ∗ 𝑎[𝑘 + 𝑗 + 𝑚/2]
13: u ⃪ a[𝑘 + 𝑗]
14: a[𝑘 + 𝑗] ⃪ 𝑢 + 𝑡
15: 𝑎[𝑘 + 𝑗 + 𝑚/2] ⃪ 𝑢 − 𝑡
16: 𝜔 ⃪ 𝜔 ∗ 𝜔𝑚
17: if 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒 = 1 then
18: 𝑎 ⃪ (𝑎0/𝑛 , 𝑎1/𝑛, … , 𝑎𝑛−1/𝑛)
19: return 𝑎

E. Unique Cases

Based on (2), if 𝐵 is divisible by 𝑀 and 𝑀 ≥ 26, then all

the sets of hash values, which are greater than 0 in the first to

the second last character, are 0. Equation (13) shows the sum

of the hash values forms a geometric sequence, as illustrated

in Fig. 6.

𝐻(𝑆) = (0 + 0 +⋯+ 0 + 𝑇1) % 𝑀 (13)

𝐶(𝑥) = {(𝑥0, 𝐶(𝑥0)), (𝑥1, 𝐶(𝑥1)), … , (𝑥𝑛−1, 𝐶(𝑥𝑛−1))} (12)

Fig. 4. Graphs of polynomials 𝐴(𝑥) and 𝐵(𝑥) on the cartesian coordinate

plane

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

Therefore, formula (14) is used to calculate the number of

hash values for the case where 𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀.

For values of 𝑖 where 0 ≤ 𝑖 ≤ 25, the result is taken modulo

109 + 7 to ensure that the output remains within the valid

range. Computing 26𝑁 can be done with 𝑂(log2 𝑁) time

complexity using binary exponentiation. Since 26𝑁 is large,

each iteration of binary exponentiation is taken modulo

1000000007 to prevent integer overflow in certain

programming languages. Therefore, the concept of inverse

modular (15) is used and (14) is transformed into (16), which

is used to calculate the number of hash values when

𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀, with 𝑚𝑢𝑙𝑡 = 280000002 and

𝑚𝑜𝑑 = 1000000007.

ℎ𝑖 = {
((26

𝑁
− 1) ∗ 𝑚𝑢𝑙𝑡))% 𝑚𝑜𝑑, 0 ≤ 𝑖 ≤ 25

0, 25 < 𝑖 < 𝑀
 (16)

F. Time Complexity Analysis

Equation (9) shows that calculating 𝑇𝑒𝑥𝑎𝑐𝑡 involves 𝑂(𝑀)
permutations and 𝑂(𝑀 log2𝑀) polynomial multiplications,

repeated log2𝑁 times. This result in a total of (log2𝑁)(𝑀 +
𝑀 log2𝑀) operations. Similarly, in (10), calculating 𝑇𝑡𝑜𝑡𝑎𝑙
involves 𝑂(𝑀) permutations, 𝑂(𝑀) polynomial additions,

and 𝑂(𝑀 log2𝑀) multiplications, leading to (log2𝑁)(2𝑀 +
𝑀 log2𝑀) operations. Thus, the total operations for (9) can

be simplified to:

• (log2𝑁) ∗ (𝑀 + 𝑀 log2𝑀)
+ (log2𝑁) ∗ (2𝑀 + 𝑀 log2𝑀),

• (log2𝑁) ∗ (𝑀 + 2𝑀 + 𝑀 log2𝑀 +𝑀 log2𝑀),

• (log2𝑁) ∗ (3𝑀 + 2𝑀 log2𝑀).
Equation (11) shows that 𝑈 requires two permutations

𝑂(2𝑀), 𝑂(𝑀) polynomial addition, and 𝑂(𝑀 log2𝑀)
multiplication over log2 𝑁, resulting in (log2𝑁)(3𝑀 +
𝑀 log2𝑀) operations. Combining (9), (10), and (11) gives:

• (log2𝑁) ∗ (3𝑀 + 2𝑀 log2𝑀) +
(log2 𝑁) ∗ (3𝑀 + 𝑀 log2𝑀),

• (log2𝑁) ∗ (3𝑀 + 2𝑀 log2𝑀 + 3𝑀 +𝑀 log2𝑀),

• (log2𝑁) ∗ (6𝑀 + 3𝑀 log2𝑀),

• (log2𝑁) ∗ (𝑀(6 + 3 log2𝑀))

≈ 𝑂(log2𝑁) ∗ (𝑀 ∗ log2𝑀).
Using this method, the complexity of calculating the number

of hash values is 𝑂(log2𝑁 ∗ 𝑀 ∗ log2𝑀), where 𝑁 is the

maximum string length and 𝑀 is the modulus. For the unique

cases described in (16), the only non-constant operation is

calculating the value of 26𝑁. This can be done using binary

exponentiation, which has a time complexity of 𝑂(log2𝑁).
In conclusion, the overall complexity for unique cases is

𝑂(log2𝑁).

III. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm was tested for both correctness

and performance. The implementation code was submitted to

the Sphere Online Judge (SPOJ) site to evaluate its accuracy

and efficiency. To compare the performance results, the

implementation code was submitted 10 times.

Section III-A described the validity check of the dynamic

programming method and the FFT used to calculate the

number of hash values for a given string length. In addition,

ℎ𝑖 = {
26𝑁 − 1

25
% 𝑚𝑜𝑑, 0 ≤ 𝑖 ≤ 25

0, 25 < 𝑖 < 𝑀

 (14)

𝑎

𝑏
 % 𝑚𝑜𝑑 = ((𝑎 % 𝑚𝑜𝑑)

∗ (𝑏−1 % 𝑚𝑜𝑑)) % 𝑚𝑜𝑑
(15)

Fig. 5. Efficient Polynomial Multiplication Scheme

Fig. 6. Geometric sequence in the unique case where greatest common

divisor 𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀

|𝒔𝒕𝒓𝒊𝒏𝒈| =

𝒉 =

…

𝒉 =

𝒉 𝟔 =

…

𝒉𝑴− =

|𝒔𝒕𝒓𝒊𝒏𝒈| =

𝒉 = + 𝟔

…

𝒉 = + 𝟔

𝒉 𝟔 =

…

𝒉𝑴− =

|𝒔𝒕𝒓𝒊𝒏𝒈| = 𝑵

𝒉 = + 𝟔 + ⋯+ 𝟔𝑵−

…

𝒉 = + 𝟔 + ⋯+ 𝟔𝑵−

𝒉 𝟔 =

…

𝒉𝑴− =

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

Section III-B further discusses the performance check of the

proposed method, both in time-wise and space-wise.

A. Validity Examination

Fig. 12 shows the status on the Sphere Online Judge

website of the approach used in this problem. Sphere Online

Judge will provide various responses based on its judgement

to the solution submitted. The “Accepted” status indicates

that the program ran successfully and gave the correct

answer, the “Wrong Answer” status means that the program

ran successfully, but gave the wrong answer, “Time Limit

Exceeded” indicates that the program compiled successfully,

but exceeded the time limit, “Compilation Error” means

that the program could not be compiled, and finally the

“Runtime Error” status implies that the program compiled

successfully, but exited with a runtime error or crashed.

Code testing was performed 10 times to ensure accuracy

and validity during the test run. All 10 submissions received

an “Accepted” response which proves that the proposed

approach to calculate the number of hash values in a given

string using dynamic programming techniques and the Fast

Fourier Transform method can provide the correct answer

within the time and memory limitation. The “Accepted”

status is given only if the code passes all the test cases,

proving how valid the solution proposed in this paper is. Fig.

7 displays the validity examination of our method on the

problems available in Sphere Online Judge.

B. Performance Examination

There are two factors to consider in performance checks,

which are program runtime and memory usage [10]. The first

factor will be tested in local environment using the PC used

in this research, and an external environment using the Sphere

Online Judge (SPOJ) website.

Runtime: to evaluate performance, two graphs were

generated based on empirical analysis, each of which has a

change in value with respect to the other variable. In the local

testing, the test cases used samples with 𝑁 = 30000 and

varying 𝑀 values, as well as varying 𝑁 values and 𝑀 =
30000, with each case tested 10 times. There are four

columns in the local test data as shown in Tables V and VI.

The first column shows the test data number. The second

column contains the test case, where the first row specifies

the number of test cases, 𝑇. Each of these 𝑇 cases is followed

by a row with four numbers 𝐵,𝑀,𝑁, and 𝑄, representing the

polynomial basis, modulus, maximum string length, and

number of queries, respectively. Each query includes one

value 𝐻, the hash value. The third column indicates the

output, which is the count of hash values equal to 𝐻. The

fourth column records the program’s runtime duration. The

graphs in Figs. 8, 9, and 10 show a a linear increase in

time with respect to the values log2𝑁 and 𝑀 ∗ log2𝑀,

indicating the time complexity of the method is

𝑂(log2𝑁 ∗ 𝑀 ∗ log2𝑀). For external test, the average

execution time is 2.62 seconds, which can be seen in Fig.11.

Fig. 7. Validity examination of the program by the Sphere Online Judge site

Fig. 8. Local performance time graph of the dynamic programming and Fast

Fourier Transform method with respect to 𝑁 for test case numbers 1 to 10

from Table V

Fig. 9. Local performance time graph of the dynamic programming and Fast

Fourier Transform method with respect to 𝑀 for test case numbers 1 to 5

from Table VI

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

Memory Usage: as mentioned at the beginning of this

section, the memory usage test utilized the Sphere Online

Judge website, where the dynamic programming method and

FFT used to calculate the number of hash values for a given

string length only required a constant memory of 19 MB as

shown in Fig. 13.

As illustrated in Fig. 12, the dynamic programming method

and Fast Fourier Transform achieves the best time complexity

on the Sphere Online Judge website. This proves that the

dynamic programming method and Fast Fourier Transform

can successfully solve the problem with the best execution

time at present.

Fig. 10. Local performance time graph of the dynamic programming and Fast

Fourier Transform method with respect to 𝑀 for test case numbers 6 to 10

from Table VI

TABLE V

LOCAL TEST VALUES RESPECT TO N

No Input Output
Time

(seconds)

1 1

20107 30000
48 1

0

Case 1:

673858768

1,2188

2 1
20107 30000

96 1

0

Case 1:
69750134

1,48938

3 1
20107 30000

192 1

0

Case 1:
296116833

1,78683

4 1

20107 30000

384 1
0

Case 1:

776510975

2,04062

5 1

20107 30000

768 1
0

Case 1:

908161167

2,33512

6 1

20107 30000
1536 1

0

Case 1:

609534788

2,62378

7 1
20107 30000

3072 1

0

Case 1:
248638238

2,89419

8 1
20107 30000

6144 1

0

Case 1:
608724507

3,17197

9 1

20107 30000

12288 1
0

Case 1:

631154566

3,37661

10 1

20107 30000

23192 1
0

Case 1:

4806455

4,09799

TABLE VI
LOCAL TEST VALUES RESPECT TO M

No Input Output
Time

(seconds)

1 1

20107 48

30000 1

0

Case 1:

259407919

0,004335

2 1

20107 96

30000 1
0

Case 1:

563508849

0,011224

3 1

20107 192
30000 1

0

Case 1:

933059172

0,02264

4 1

20107 384
30000 1

0

Case 1:

401401803

0,046328

5 1
20107 768

30000 1

0

Case 1:
869182996

0,100273

6 1

20107 1536

30000 1

0

Case 1:

167383340

0,212619

7 1

20107 3072

30000 1
0

Case 1:

310041053

0,461427

8 1

20107 6144

30000 1
0

Case 1:

981530095

0,963927

9 1

20107 12288
30000 1

0

Case 1:

68348150

2,04252

10 1
20107 23192

30000 1

0

Case 1:
382152528

4,06024

Fig. 11. External performance time graph of dynamic programming
technique and Fast Fourier Transform method by Sphere Online Judge

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

IV. CONCLUSION

In this paper, the dynamic programming method is

designed and analyzed for solving combinatoric problems,

which is calculating the number of hash values for a given

string length. The method begins by modeling the number of

hash values as a polynomial equation, followed by the use of

fast multiplication on polynomials, namely the Fast Fourier

Transform. A recurrence relation is derived, reducing the

number of polynomial multiplication calculations to be done

only in log2𝑁𝑚𝑎𝑥 times with 𝑁𝑚𝑎𝑥 being the maximum

length of the string in the test case. As a result, to calculate

the number of hash values, the overall time complexity is

𝑂(log2𝑁𝑚𝑎𝑥 ∗ 𝑀 log2𝑀).
Experimental results for this problem have shown that the

proposed approach using dynamic programming techniques

and Fast Fourier Transform method can provide consistently

valid answers by using efficient resources both time-wise and

space-wise.

REFERENCES

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

Introduction to Algorithms, 3rd Edition. Cambridge: The MIT Press,
2009.

[2] Flannery, B. P., Press, W. H., and Teukolsky, S. A. Numerical Recipes

in C: The Art of Scientiffic Computing, 2nd Edition. New York:
Cambridge University Press, 1992.

[3] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics,

2nd Edition. Reading: Addison-Wesley, 1994.
[4] J. M. Pollard. (1971, April). The Fast Fourier Transform in a Finite

Field. (Online). pp. 365-374 Available:

https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-
0301966-0/S0025-5718-1971-0301966-0.pdf.

[5] Moenck, Robert T. (1976). Practical Fast Polynomial Multiplication.

(Online). pp. 136-144 Available:
https://dl.acm.org/doi/pdf/10.1145/800205.806332.

[6] Pachocki, Jakub, and Jakub Radoszewski. (2013). Where to Use and

How not to Use Polynomial String Hashing. (Online). Available:

https://ioinformatics.org/journal/INFOL119.pdf.

[7] Smykalov, Vladimir. (2017). fft: optimizations. (Online). Available:

https://neerc.ifmo.ru/trains/toulouse/2017/fft2.pdf.
[8] Weimerskirch , Andr´e, dan Christof Paa. (2006). Generalizations of

the Karatsuba Algorithm for Efficient Implementations. (Online).

Available: https://eprint.iacr.org/2006/224.pdf.
[9] Yendri, S., Soelaiman, R., Yuhana, U. L., and Yendri, S. “Dynamic

Programming Approach for Solving Rectangle Partitioning Problem,”

IAENG International Journal of Computer Science, vol. 49, no.2, pp.
410-419, 2022.

[10] Yendri, S., Soelaiman, R., and Purwananto, Y., “Hybrid Algorithm to

Find Minimum Expected Escape Time From a Maze,” Engineering
Letters, vol. 31, no.1, pp. 346-357, 2023

[11] Zahin, Sabit. (2021). A collection of algorithms, data structures and

templates for competitive programming. (Online). Available:
https://github.com/sgtlaugh/algovault/blob/master/code_library/fft.cp

p.

Fig. 12. Statistics of all solutions submitted by all users received by Sphere Online Judge

Fig. 13. External performance memory usage graph of dynamic
programming method and Fast Fourier Transform by Sphere Online Judge

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 2954-2962

__

