
 

 

Abstract— The hash polynomial of a string is defined by 

converting each letter in the string into a numerical value 

according to its position in the alphabet. In some cases, the 

number of strings that satisfy a given hash value is determined 

using a specified hash polynomial function. The number of 

possible character combinations and the repetition of 

subproblems that may occur present challenges in the given 

hash function. In this paper, we propose a novel solution to the 

aforementioned problem using dynamic programming 

technique and Fast Fourier Transform method, which satisfy a 

given polynomial hash function. In our algorithm, the 

recurrence relation for the dynamic programming technique 

utilizes polynomial equation model for each state.  Therefore, 

for each transition in the recurrence relation, the values are 

updated through polynomial operations. One of these operations 

is polynomial multiplication, where the Fast Fourier Transform 

(FFT) is used to speed up computation. Based on test results 

from a given case study, the dynamic programming approach 

and Fast Fourier Transform achieves an average execution time 

of 2.62 seconds and consumes an average of 19 MB of memory, 

utilizing only 1.23% of the available memory limit. 

Index Terms—dynamic programming, fast Fourier 

transform, hash polynomials, set permutation 

 

I. INTRODUCTION 

UPPOSE a polynomial hash function 𝐻(𝑆) is defined. By 

converting each letter in string 𝑆 into a numerical value 

based on its position in the alphabet, the string can be 

represented as a fixed value called a polynomial hash value. 

For example, 𝑆 = abde, 𝐵 = 26,𝑀 = 36, the string has a 

length of 𝑁 = 4. Thus, 𝐻(S) = (263 ∗ 0 + 262 ∗ 1 + 261 ∗
3 + 260 ∗ 4) % 36 = 2. Since each polynomial hash value 

of a string is taken modulo 𝑀 according to (1), different 

strings can have the same polynomial hash value, with the 

result always being less than 𝑀. 

𝐻(𝑆) =  ∑ 𝐵𝑁−𝑖−1

𝑁−1

𝑖=0

∗ 𝐷(𝑆𝑖) % 𝑀 (1) 
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The problem discussed in this paper is the calculation of 

the number of combinations of lowercase characters that can 

be formed such that the polynomial hash value of the string 

satisfies a given value. For instance, to calculate 𝐻(𝑆) with 

𝑁𝑚𝑎𝑘𝑠 = 2,  𝑀 = 2,  𝐵 = 26, using (1) and Table I, while 

ensuring 0 ≤ 𝐻(𝑆) < 𝑀, the numerical value of each 

character from “𝑎” to “𝑧𝑧” are assigned as in Table II.  

 

The number of hash values that can be generated when 

𝑁𝑚𝑎𝑥 = 1 and 𝑁𝑚𝑎𝑥 = 2  corresponds to the number of 

character combinations for string lengths of 1 and 2, which 

totals 702. Using the method described  above, if we set 

𝑁𝑚𝑎𝑥 = 30000 and 𝑀 = 30000, the time complexity of the 

calculation becomes 𝑂(1042449) and requires 1042440 

seconds which is approximately 3.17 𝑥 1042442 years. 

Therefore, a brute-force approach for computing the number 

of combinations of lowercase characters that satisfy a given 

hash value is not a feasible solution for real-world 

applications. 
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TABLE I 

NUMERICAL VALUE FOR EACH CHARACTER 

𝑆𝑖 𝐷(𝑆𝑖) 𝑆𝑖 𝐷(𝑆𝑖) 

a 0 n 13 

b 1 o 14 

c 2 p 15 

d 3 q 16 

e 4 r 17 

f 5 s 18 

g 6 t 19 

h 7 u 20 

i 8 v 21 

j 9 w 22 

k 10 x 23 

l 11 y 24 

m 12 z 25 

 

 

 

TABLE II 

EXAMPLE CASE 𝑁𝑚𝑎𝑥 = 2 

No 𝐻(𝑆) Hash Calculation 
Hash 

Value 

1 𝐻(“𝑎”) (1 ∗ 0) % 2 0 

… … … … 

26 𝐻(“𝑧”) (1 ∗ 25) % 2 1 

27 𝐻(“𝑎𝑎”) (26 ∗ 0 + 1 ∗ 0)  % 2 0 

… … … … 

701 𝐻(“𝑧𝑦”) (26 ∗ 25 + 1 ∗ 24)  % 2 0 

702 𝐻(“𝑧𝑧”) (26 ∗ 25 + 1 ∗ 25)  % 2 1 
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In order for this problem to be solved efficiently, another 

approach is required, that is by using dynamic programming 

method. Dynamic programming is a problem-solving 

technique by decomposing the solution into a set of steps or 

stages in such a way that the solution of a problem can be 

viewed from a series of small decisions which are related to 

one another [1]. In defining the dynamic programming 

model, it is essential to determine the relationship between a 

given state and its previous state so that a recurrence equation 

can be defined [9]. A recurrence relation is an equation that 

defines each element of a sequence as a function of the 

previous elements. Therefore, the solution for each state 

depends on the solutions for smaller states of the same 

problem [3]. In the process, this approach involves computing 

polynomial multiplication. Thus, the Fast Fourier Transform 

(FFT) method is used to speed up the naïve polynomial 

multiplication. The Fast Fourier Transform method is a 

method used to calculate the Discrete Fourier Transform 

(DFT) efficiently. By using the FFT method, which utilizes 

the special properties of complex roots of unity, the DFT 

calculation can be done in 𝑂(𝑀 𝑙𝑜𝑔2𝑀) time [2]. In this 

problem, the FFT method will be used to reduce the time 

complexity of calculating polynomial multiplication from 

𝑂(𝑀2) to 𝑂(𝑀 𝑙𝑜𝑔2𝑀). 
By taking previous research on the topics of hash 

polynomials and fast polynomial multiplication [4], [5], [6], 

[7], [8], [11], it can be concluded that dynamic programming 

and FFT-based approaches provide a feasible solution to this 

problem. Therefore, in this paper, we propose a solution that 

takes only 2.62 seconds on average to compute a given 

number of hash values in a time efficient manner and satisfies 

the problem time constraint of 10 seconds.  

The rest of the paper is organized as follows: Section II 

presents our novel method: dynamic programming technique 

and Fast Fourier Transform method. Section III presents the 

experimental results and analysis. Finally, the conclusion is 

stated in section IV. 

 

II. METHODOLOGY 

Our proposed algorithm to count the number of character 

combinations with a given hash value utilizes dynamic 

programming techniques for all hashes less than 𝑀 and 

applies the Fast Fourier Transform for polynomial 

multiplication. In general, the algorithm is divided into 3 

parts: first, it determines whether the input is a unique case or 

not. If the input is a unique case, then the solution can be done 

with log2𝑁 calculations. Otherwise, if the input is not a 

unique case, the number of hash values for maximum string 

length equal to 2𝑘 is first calculated using dynamic 

programming techniques. Then, the number of hash values 

for a maximum string length not equal to 2𝑘 is calculated 

using the results from the previous part and dynamic 

programming techniques. In both the second and third parts, 

state calculations in dynamic programming involve 

polynomial multiplication. To improve efficiency, the naïve 

𝑂(𝑀2) polynomial multiplication is replaced with the Fast 

Fourier Transform (FFT), reducing the complexity to 

𝑂(𝑀 log2𝑀). The following discussion consists of six main 

sections. Section II-A explains the state model used in 

dynamic programming. Section II-B and II-C describe the 

recurrence relation used in calculating the number of hash 

values for a maximum string length equal to and not equal to  

2𝑘. Section II-D explains how Fast Fourier Transform is 

utilized in accelerating the calculation of polynomial 

multiplication. Section II-E addresses the handling of unique 

cases, followed by Section II-F, which presents the time 

complexity analysis of our proposed method. 

A. Dynamic Programming State Model 

If the sigma form of (1) is converted to an explicit sum 

form, we obtain (2). To calculate the number of combinations 

of 𝑁 characters such that 𝐻(𝑆) takes values from 0 to 𝑀 − 1, 

start by calculating the number of hash values when the string 

length consists of only one character, with each character 

value as in Table I. Equation (2) shows each segment of the 

sum is denoted as 𝑇1 to 𝑇𝑁, where 𝑇𝑖  is the set consisting of 

the number of hash values from 0 to 𝑀 − 1 when the string 

length consists of one character at the 𝑖-th character from the 

last character in the string. As a result, Equations (3) and (4) 

are derived. Equation (3) shows 𝑇𝑖 = {ℎ0, ℎ1, . . . , ℎ𝑀−1} 
where ℎ𝑖 represents the number of occurrences of hash value 

𝑖. As illustrated in Fig. 1, each 𝑇 in (4) produces hash values 

raging from 0 to 𝑀 − 1. 

 

 

Given 𝑇𝑝 and 𝑇𝑞 where each is the set number of hash 

values {ℎ0, ℎ1, . . . , ℎ𝑀−1}, these sets can be transformed into 

polynomial equations. Here, the values ℎ0 to ℎ𝑀−1  in each 

𝑇 are the coefficients of a polynomial, where the exponent 

corresponds to the hash value. Thus, 𝑇𝑝 is defined as ℎ0𝑥
0 +

ℎ1𝑥
1 +⋯+ ℎ𝑀−1𝑥

𝑀−1, and similarly for 𝑇𝑞 . To calculate the 

number of hash values from 0 to 𝑀 − 1 for a string of length 

two can be done by multiplying ℎ𝑖 with ℎ𝑗 at two 𝑇 in (5). 

The result of the multiplication gives the number of hashes 

with value 𝑖 + 𝑗, as shown in Table III. Therefore, 𝑇𝑝𝑇𝑞 

represents the set of hash values from 0 to 𝑀 − 1 when the 

string consists of two characters, spanning from the 𝑝-th 

character to the 𝑞-th character, starting from the end of the 

string. 

𝐻(𝑆) = (𝐵𝑁−1𝐷(𝑆0) + ⋯+𝐵0𝐷(𝑆𝑁−1)) % 𝑀 (2) 

𝑇𝑖 = 𝐵𝑖−1𝐷(𝑆𝑁−𝑖) % 𝑀, 1 ≤ 𝑖 ≤ 𝑁 (3) 

𝐻(𝑆) = (𝑇𝑁 + 𝑇𝑁−1 +⋯+ 𝑇2 + 𝑇1) % 𝑀 (4) 

𝑇𝑝𝑇𝑞(ℎ𝑖+𝑗) = 𝑇𝑝(ℎ𝑖) ∗ 𝑇𝑞(ℎ𝑗),      0 ≤ 𝑖, 𝑗 ≤ 𝑀 − 1 (5) 

 
Fig. 1.  The number of hash values for each 𝑇 

 𝐻(𝑆) = (𝑇𝑁 + 𝑇𝑁−1 + ⋯+ 𝑇2 + 𝑇1) % 𝑀 
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ℎ0 
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ℎ0 
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Referring to (5), the string hash polynomial function has 

modulo 𝑀, thus if the value of 𝑖 + 𝑗 = 𝑘 in 𝑇𝑝𝑇𝑞, 𝑘 does not 

exceed 𝑀. Therefore, for all ℎ𝑘 in 𝑇𝑝𝑇𝑞, a formula as in (6) is 

applied. This formula is also used to calculate the number of 

hash values for strings longer than two characters, as it does 

not change the number of sets 𝑇 consisting of ℎ0 to ℎ𝑀−1. 

Equation (2) shows the value of each segment of the sum is 

differentiated by a multiplier 𝐵. 𝑇1 and 𝑇2 are differentiated 

by a multiplier 𝐵1, 𝑇1 and 𝑇3 by 𝐵2, and so on. Thus, to 

calculate the set on 𝑇𝑞, permutation can be applied to 𝑇𝑝 using 

the multiplier 𝐵𝑞−𝑝 and 𝑇𝑝, given that 𝑞 > 𝑝. This 

permutation is performed by multiplying 𝐵𝑞−𝑝 with each 

hash value in 𝑇𝑝, altering the order of the number of hash 

values in the 𝑇𝑝 set so that it transforms into the 𝑇𝑞 set, as 

shown in Table IV. 

 

 

𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇𝑝 , 𝐵
𝑟) 

ℎ(𝑖∗𝐵𝑞−𝑝)%𝑀 = ℎ(𝑖∗𝐵𝑞−𝑝)%𝑀 + ℎ𝑖 ,     0 ≤ 𝑖 < 𝑀 
(7) 

In Table IV, the hash value at 𝑇3 is taken modulo 𝑀 to 

ensure that the result does not exceed 𝑀. Given 𝑇𝑝, the set at 

𝑇𝑞 can be determined by permuting the set at 𝑇𝑝 using the 

multiplier 𝐵𝑟 , as shown in (7), where 𝑟 = 𝑞 − 𝑝 and 𝑞 > 𝑝. 

There are several permutation operations that are true, 

1. 𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇𝑝, 𝐵
𝑟) 

2. 𝑇1+𝑟𝑇2+𝑟 …𝑇𝑝+𝑟 = 𝑝𝑒𝑟𝑚𝑢𝑡(𝑇1𝑇2…𝑇𝑝, 𝐵
𝑟) 

3. 𝑇1+𝑟 + 𝑇1+𝑟𝑇2+𝑟 +⋯+ 𝑇1+𝑟 …𝑇𝑝+𝑟 = 

𝑝𝑒𝑟𝑚𝑢𝑡(𝑇1 + 𝑇1𝑇2 +⋯+ 𝑇1…𝑇𝑝, 𝐵
𝑟) 

The set 𝑇1𝑇2. . . 𝑇𝑝 consists of the number of hash values from 

0 to 𝑀 − 1, given that the string length consists of 𝑝 

characters, spanning from the first to the 𝑝-th character, 

starting from the end of the string. Whereas 𝑇1 + 𝑇1𝑇2 +⋯+
𝑇1. . . 𝑇𝑝 represents the number of sets consisting of the 

number of hash values from 0 to 𝑀 − 1 when the string length 

is less than or equal to 𝑝 characters. The symbol (+) in the 

equation denotes summation between sets of 𝑇 when 𝑇 is 

represented as a polynomial equation. The use of this 

permutation function is crucial as it significantly reduce the 

number of calculations needed to generate a new 𝑇 set from 

an existing one. 

B. Recurrence Relation when String Length is 2𝑘  

If there is a value 𝑁max and 𝑈 represents the number of 

hash values  when the string length is less than or equal to 

𝑁𝑚𝑎𝑥 , then 𝑈 is the union of the sets of 𝑇, as shown in (8). If 

𝑁 = 2𝑘 for 𝑘 integers, the set 𝑈 can be divided into smaller 

parts, as illustrated in Fig. 2. 

 

 
 

Based on Fig. 2 there are several conclusions, such that, 𝑏 

can be created from 𝑎 ∗ 𝑝𝑒𝑟𝑚𝑢𝑡(𝑎, 𝐵1). Moreover, 𝑑 can be 

created from 𝑏 ∗ 𝑝𝑒𝑟𝑚𝑢𝑡(𝑏, 𝐵2). Lastly, 𝑐 can be created 

from 𝑝𝑒𝑟𝑚𝑢𝑡(𝑎, 𝐵2). To determine 𝑈 with a length of 𝑁𝑚𝑎𝑥 , 

√𝑁𝑚𝑎𝑥 iterations are performed to find the number of hash 

values of the character combination. If 𝑇𝑡𝑜𝑡𝑎𝑙[√𝑁𝑚𝑎𝑥  ] = 𝑈 

and 𝑈 represents the number of hash values from 0 to 𝑀 − 1 

with length 𝑁𝑚𝑎𝑥 , then a recurrence relation is obtained when 

𝑁𝑚𝑎𝑥  is 2𝑘 with 𝑘 integers, as shown in (9) and (10). The 

following is an explanation of the variables in (9) and (10), 

• ℎ𝑖 = the number of hashes with a value of 𝑖. 

• 𝑇1 = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} when 𝑁 = 1 at the last 

character of the string.  

• 𝑇𝑡𝑜𝑡𝑎𝑙[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing 

string length combinations from 𝑁 = 1 to 𝑁 = 2𝑘. 

• 𝑇𝑒𝑥𝑎𝑐𝑡[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing 

string length combinations exactly at 𝑁 = 2𝑘. 

• 𝑝𝑒𝑟𝑚𝑢𝑡(𝐴, 𝑏) = the permutation function applied to 

set 𝐴 =  {ℎ0, ℎ1, . . . , ℎ𝑀−1} with multiplier 𝑏. 

• 𝐵 = the base in the polynomial hash function. 

 

𝑇𝑒𝑥𝑎𝑐𝑡[𝑖] = {
𝑇1,   𝑖 = 0

𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1] ∗ 𝑝𝑒𝑟𝑚𝑢𝑡 (𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1],  𝐵2𝑖−1) ,   2 ≤ 2𝑖 ≤ 𝑁
 (9) 

ℎ𝑘%𝑀 = {
ℎ𝑘, 𝑘 < 𝑀

ℎ𝑘 % 𝑀 + ℎ𝑘, 𝑀 ≤ 𝑘 ≤ 2(𝑀 − 1)
 (6) 

𝑈 = 𝑇1 + 𝑇1𝑇2 +⋯+ 𝑇1𝑇2…𝑇𝑁𝑚𝑎𝑘𝑠−1
𝑇𝑁𝑚𝑎𝑘𝑠

 (8) 

TABLE III 

CALCULATION OF NUMBER OF HASH VALUES FOR 𝑁 = 2 

𝑇𝑝 𝑇𝑞 𝑇𝑝 ∗ 𝑇𝑞  

ℎ0 ℎ0 ℎ0+0 

ℎ0 ℎ1 ℎ0+1 

… … … 

ℎ1 ℎ0 ℎ1+0 

ℎ1 ℎ1 ℎ1+1 

… … … 

ℎ𝑖 ℎ𝑗 ℎ𝑘=𝑖+𝑗 

… … … 

ℎ𝑀−1 ℎ𝑀−1 ℎ2(𝑀−1) 

 

TABLE IV 

EXAMPLE OF PERMUTATION ON 𝑇 WITH MULTIPLIER 𝐵 

𝑇1 MULTIPLIER 𝑇3 

ℎ0 𝐵2
 ℎ(0 ∗ 𝐵2)%𝑀 

ℎ1 𝐵2
 ℎ(1 ∗ 𝐵2)%𝑀 

… 𝐵2
 … 

ℎ𝑀−2 𝐵2
 ℎ

((𝑀−2) ∗ 𝐵2)%𝑀
 

ℎ𝑀−1 𝐵2
 ℎ

((𝑀−1) ∗ 𝐵2)%𝑀
 

 

 
Fig. 2.  A set 𝑈 that is divided into smaller parts 

 

𝑈 = 𝑇1 + 𝑇1𝑇2 + 𝑇1𝑇2(𝑇3) + 𝑇1𝑇2𝑇3𝑇4 + ⋯ 

 

𝑎 𝑏 𝑐 𝑑 
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𝑇𝑡𝑜𝑡𝑎𝑙[𝑖] = {

𝑇1,   𝑖 = 0

𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1] + 𝑇𝑒𝑥𝑎𝑐𝑡[𝑖],   𝑖 = 1

𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1] + 𝑇𝑒𝑥𝑎𝑐𝑡[𝑖 − 1] ∗ 𝑝𝑒𝑟𝑚𝑢𝑡 (𝑇𝑡𝑜𝑡𝑎𝑙[𝑖 − 1],  𝐵2𝑖−1) ,   2 ≤ 2𝑖 ≤ 𝑁
 (10) 

𝑈[𝑖] =

{
 
 

 
 𝑝𝑒𝑟𝑚𝑢𝑡 (

𝑇𝑡𝑜𝑡𝑎𝑙[𝑏𝑖𝑡[𝑖]],

 𝐵𝑁−2𝑏𝑖𝑡[𝑖]
) ,   𝑖 = 0

𝑝𝑒𝑟𝑚𝑢𝑡 (
𝑇𝑡𝑜𝑡𝑎𝑙[𝑏𝑖𝑡[𝑖]],

𝐵𝑁−2𝑏𝑖𝑡[0]−⋯−2𝑏𝑖𝑡[𝑖]
) +  𝑝𝑒𝑟𝑚𝑢𝑡 (

𝑇𝑒𝑥𝑎𝑐𝑡[𝑏𝑖𝑡[𝑖]],

𝐵𝑁−2𝑏𝑖𝑡[0]−⋯−2𝑏𝑖𝑡[𝑖]
) ∗ 𝑈[𝑖 − 1],   1 ≤ 𝑖 ≤ 𝑘

 (11) 

Based on the recurrence relation in (9) and (10), Algorithm 

1 is used to calculate the number of hash values when the 

string length is equal to 2𝑘. 

Algorithm 1 Solve recurrence relation when 
string length is equal to 2𝑘 

Input: dp1, dp2, B, M, base, j 
Output: dp1, dp2 
1:  for i ⃪ 0 to MIN(26, M)-1 do 
2:    for k ⃪ 0 to 25 do  
3:       h ⃪ (B*i+k) % M 
4:       dp2[1][h] ⃪ dp2[1][h] + dp1[1][i] 
5: dp1[1] ⃪ ADD(dp1[1], dp2[1], M) 
6: for i ⃪ 2 to j do 
7:    pt ⃪ PERMUT(dp2[i-1], base[i-1], M) 
8:    dp2[i] ⃪ MUL(dp2[i-1], pt, M) 
9:    pt ⃪ PERMUT(dp1[i-1], base[i-1], M) 
10:    mul ⃪ MUL(dp2[i-1], pt, M) 
11:    dp1[i] ⃪ ADD(dp1[i-1], mul, M) 

12: return dp1, dp2 

C. Recurrence Relation when String Length is Not 2𝑘  

To calculate the number of hash values from 0 to 𝑀 − 1 

for a string length that is not a set of 2𝑘 (where 𝑘 is an 

integer), a method is required to determine which set of hash 

values at which length to use. This can be achieved by 

examining the bits that form the binary representation of 

𝑁𝑚𝑎𝑥 . For example, Fig. 3 illustrates the binary 

representations of 15 and 25. 

 

 

In Fig. 3, the number 15 can be formed using 20, 21, 22, 23, 

while the number 25 can be formed using 20, 23, 24. 

Similarly, to compute the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} for a length 

of 𝑁𝑚𝑎𝑥 , the lengths used to build the hash will correspond to 

the powers of two represented by the positions of the 1-bits 

in the binary representation of 𝑁𝑚𝑎𝑥 . Suppose, 

• ℎ𝑖 = the number of hashes with a value of 𝑖. 

• 𝑇𝑡𝑜𝑡𝑎𝑙[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing 

string length combinations from 𝑁 = 1 to 𝑁 = 2𝑘. 

• 𝑇𝑒𝑥𝑎𝑐𝑡[𝑘] = the set {ℎ0, ℎ1, . . . , ℎ𝑀−1} representing 

string length combinations exactly at 𝑁 = 2𝑘. 

• 𝑝𝑒𝑟𝑚𝑢𝑡(𝐴, 𝑏) = the permutation function applied to 

set 𝐴 =  {ℎ0, ℎ1, . . . , ℎ𝑀−1} with multiplier 𝑏. 

• 𝐵 = the base in the polynomial hash function. 

• 𝑒𝑥𝑝𝑜 = the exponent of 𝐵 used for multiplication in 

permutations. 

• 𝑏𝑖𝑡 = the sequence of bits in 𝑁 from its binary 

representation, starting from the first bit (only bits 

with a value of 1 are considered). 

To calculate the numbers of hash values when 𝑁 is not 

equal to 2𝑘, the numbers of hash values for 𝑁 is equal to the 

powers of 2 is used. The set that must be formed to solve the 

problem with 𝑁𝑚𝑎𝑥  is 𝑈 = 𝑇1 + 𝑇1𝑇2 + 𝑇1𝑇2𝑇3 +⋯+
𝑇1…𝑇𝑁𝑚𝑎𝑥

. Iteration continues until all bit with a value of 1 

in the binary representation 𝑁𝑚𝑎𝑥  have been traversed. This 

results in 𝑈, the set of hash values raging from 0 to 𝑀 − 1 

when the maximum string length is 𝑁𝑚𝑎𝑥 . If 𝑏𝑖𝑡[𝑖] represents 

the position of a bit with value 1 in the binary representation 

of 𝑁𝑚𝑎𝑥 , where 0 ≤ 𝑖 ≤ 𝑘 and 𝑏𝑖𝑡[𝑘] is the position of the 

last bit with value 1, then the recurrence relation when 

𝑁𝑚𝑎𝑥 ≠ 2𝑘 (i.e., when 𝑁𝑚𝑎𝑥  is not equal to 2𝑘 for integers 𝑘) 

is shown in (11). 

The total number of hash values from 0 to 𝑀 − 1 for a 

string length that is not 2𝑘 is represented by 𝑈[𝑘]. The 

addition and multiplication in the recurrence relation in (11) 

correspond to polynomial addition and multiplication, where 

𝑈[𝑘][𝑗] is the coefficient of the 𝑗-th polynomial term, with 

the limit 0 ≤ 𝑗 < 𝑀. The coefficient of the 𝑗-th term 

represents the number of hash values with a value of 𝑗. It is 
certain that calculating 𝑈[𝑖] only requires the value of     

𝑈[𝑖 − 1], while storing 𝑈[0] to 𝑈[𝑖 − 2] is unnecessary. This 

approach minimizes memory usage. Using this method, the 

number of hash values that need to be calculated is log2𝑁, 

excluding the polynomial addition and multiplication 

calculations, where 𝑁 is the maximum string length in (11). 

Based on (11), Algorithm 2 is used to calculate the number of 

hash values when the string length is not equal to 2𝑘. 

Algorithm 2 Solve recurrence relation when 
string length is not equal to 2𝑘 

Input: N, M, twopowers, base, dp1, dp2 
Output: ans 
1:  i, j ⃪ 0 
2: while twopowers[i] ≤ N do 
3:    if N & twopowers[i] then 
4:       if j = 0 then  
5:          temp ⃪ N - twopowers[i] 
6:          nums[j] ⃪ temp 
7:       else  
8:          temp ⃪ nums[j-1] – twopowers[i]    

 
Fig. 3.  Binary representation of the numbers 15 and 25 

 
    =       

            

    =        
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Algorithm 2 Solve recurrence relation when 
string length is not equal to 2𝑘 

9:          nums[j] ⃪ temp 
10:       exp[j] ⃪ i 
11:       j ⃪ j + 1 
12:    i ⃪ i + 1 
13: for i ⃪ 0 to j – 2 do 
14:    k ⃪ exp[i+1] 
15:    L ⃪ nums[i+1] 
16:    m ⃪ FINDMULTIPLY(base, l, M) 
17:    if i = 0 then  
18:       f ⃪ FINDMULL(base, nums[i], M) 
19:       if l ≠ 0 then  
20:          pt1 ⃪ PERMUT(dp2[k], m, M) 
21:          pt2 ⃪ PERMUT(dp1[exp[i]], f, M) 
22:          ans ⃪ MUL(pt1, pt2, M) 
23:       else  
24:          pt1 ⃪ PERMUT(dp1[exp[i]], f, M) 
25:          ans ⃪ MUL(dp2[k], pt1, M) 
26:    else  
27:       if l ≠ 0 then  
28:          pt1 ⃪ PERMUT(dp2[k], m, M) 
29:          ans ⃪ MUL(pt1, ans, M) 
30:       else  
31:          ans ⃪ MUL(dp2[k], ans, M) 
32:    if l ≠ 0 then  
33:       pt1 ⃪ PERMUT(dp1[k], m, M) 
34:       ans ⃪ ADD(pt1, ans, M) 

35: return ans 

D. Polynomial Multiplication with Fast Fourier 

Transform 

It is known that multiplying two polynomials 𝐴(𝑥) and 

𝐵(𝑥), with degrees 𝑎 and 𝑏, requires 𝑂((𝑎 + 1) ∗ (𝑏 + 1)) 

time complexity since there are 𝑎 + 1 elements in 𝐴(𝑥) and 

𝑏 + 1 elements in 𝐵(𝑥). However, there exists a 

multiplication method that reduces the complexity to 𝑂(𝑛), 
known as pointwise multiplication, when the polynomials are 

represented in point-value form. As mentioned in 

Introduction to Algorithm by Cormen et al page 901-902, a 

polynomial with a degree bound of 𝑛 can be represented using 

at least 𝑛 different points as values in the polynomial basis. 

For example, given 𝐴(𝑥) = 𝑥2 − 1 and 𝐵(𝑥) = 𝑥, these 

polynomials can be represented as point-values using at least 

three points for 𝐴(𝑥) and two points for 𝐵(𝑥), as illustrated 

in Fig. 4. 

 

 

If there is a polynomial 𝐶(𝑥) with bound degree 𝑛, it can 

be represented using the set in (12). In polynomial 

multiplication, if 𝐶(𝑥) = 𝐴(𝑥) ∗ 𝐵(𝑥), where 𝐴(𝑥) is a 

polynomial of degree 𝑎 and 𝐵(𝑥) is a polynomial of degree 

𝑏, then the product of polynomial 𝐶(𝑥) has a degree of 𝑐 =
𝑎 + 𝑏 or a polynomial with bounded degree of 𝑐 + 1.  Thus, 

at least 𝑐 + 1 points are required to represent the polynomial 

𝐶(𝑥) in point-value form. If multiplication is performed using 

pointwise multiplication, then 𝑎 + 𝑏 + 1 different points are 

required for polynomials 𝐴(𝑥) and 𝐵(𝑥). After the pointwise 

multiplication, 𝐶(𝑥) can be converted back from point-value 

representation to coefficient representation through a process 

known as interpolation. 

Naïve polynomial evaluation at 𝑛 points requires 𝑂(𝑛2) 
complexity. However, in this section, the FFT (Fast Fourier 

Transform) is used to reduce the complexity to 𝑂(𝑛 log2 𝑛). 
The general scheme for polynomial multiplication is 

illustrated in Fig. 5. It is assumed that polynomial 𝐴(𝑥) has a 

degree bounded by a set of 2𝑘 numbers. Therefore, Algorithm 

3 is used to iteratively convert 𝐴(𝑥) between point-value 

representation and coefficient representation. 

Algorithm 3 Iterative FFT 

Input: 𝑎, 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒 
Output: 𝑦 
1: 𝑎  ⃪ BIT-REVERSAL-PERMUTATION(a) 
2: 𝑛  ⃪ a.length 
3: for 𝑠  ⃪ 1 to log2 𝑛 do 
4:     𝑚  ⃪ 2𝑠 
5:     if 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒 = 1 then 

6:         𝜔𝑚  ⃪ 𝑒
−2𝜋𝑖/𝑛 

7:     else  

8:         𝜔𝑚  ⃪ 𝑒
2𝜋𝑖/𝑛  

9:     for 𝑘  ⃪ 0 to 𝑛-1 by 𝑚 do 
10:         𝜔  ⃪ 1 
11:         for j  ⃪ 0 to 𝑚/2-1 do 
12:             t  ⃪ 𝜔 ∗ 𝑎[𝑘 + 𝑗 + 𝑚/2] 
13:             u  ⃪ a[𝑘 + 𝑗] 
14:             a[𝑘 + 𝑗] ⃪ 𝑢 + 𝑡 
15:             𝑎[𝑘 + 𝑗 + 𝑚/2] ⃪ 𝑢 − 𝑡 
16:             𝜔  ⃪ 𝜔 ∗ 𝜔𝑚  
17: if 𝑖𝑠𝐼𝑛𝑣𝑒𝑟𝑠𝑒 = 1 then 
18:     𝑎  ⃪ (𝑎0/𝑛 , 𝑎1/𝑛, … , 𝑎𝑛−1/𝑛) 
19: return 𝑎 

E. Unique Cases 

Based on (2), if 𝐵 is divisible by 𝑀 and 𝑀 ≥ 26, then all 

the sets of hash values, which are greater than 0 in the first to 

the second last character, are 0. Equation (13) shows the sum 

of the hash values forms a geometric sequence, as illustrated 

in Fig. 6. 

 

𝐻(𝑆) = (0 + 0 +⋯+ 0 + 𝑇1) % 𝑀 (13) 

 

𝐶(𝑥) = {(𝑥0, 𝐶(𝑥0)), (𝑥1, 𝐶(𝑥1)), … , (𝑥𝑛−1, 𝐶(𝑥𝑛−1))} (12) 

 
Fig. 4. Graphs of polynomials 𝐴(𝑥) and 𝐵(𝑥) on the cartesian coordinate 

plane 
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Therefore, formula (14) is used to calculate the number of 

hash values for the case where 𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀. 

For values of 𝑖 where 0 ≤ 𝑖 ≤ 25, the result is taken modulo 

109 + 7 to ensure that the output remains within the valid 

range. Computing 26𝑁 can be done with 𝑂(log2 𝑁) time 

complexity using binary exponentiation. Since 26𝑁 is large, 

each iteration of binary exponentiation is taken modulo 

1000000007 to prevent integer overflow in certain 

programming languages. Therefore, the concept of inverse 

modular (15) is used and (14) is transformed into (16), which 

is used to calculate the number of hash values when 

𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀, with 𝑚𝑢𝑙𝑡 = 280000002 and 

𝑚𝑜𝑑 = 1000000007. 

 

ℎ𝑖 = {
((26

𝑁
− 1) ∗ 𝑚𝑢𝑙𝑡))% 𝑚𝑜𝑑,   0 ≤ 𝑖 ≤ 25 

0,   25 < 𝑖 < 𝑀
 (16) 

F. Time Complexity Analysis 

Equation (9) shows that calculating 𝑇𝑒𝑥𝑎𝑐𝑡 involves 𝑂(𝑀) 
permutations and 𝑂(𝑀 log2𝑀) polynomial multiplications, 

repeated log2𝑁 times. This result in a total of (log2𝑁)(𝑀 +
𝑀 log2𝑀) operations. Similarly, in (10), calculating 𝑇𝑡𝑜𝑡𝑎𝑙  
involves 𝑂(𝑀) permutations, 𝑂(𝑀) polynomial additions, 

and 𝑂(𝑀 log2𝑀) multiplications, leading to (log2𝑁)(2𝑀 +
𝑀 log2𝑀) operations. Thus, the total operations for (9) can 

be simplified to: 

• (log2𝑁) ∗ (𝑀 +  𝑀 log2𝑀 ) 
+ (log2𝑁) ∗ (2𝑀 +  𝑀 log2𝑀), 

• (log2𝑁) ∗ (𝑀 + 2𝑀 +  𝑀 log2𝑀 +𝑀 log2𝑀), 

• (log2𝑁) ∗ (3𝑀 +  2𝑀 log2𝑀).  
Equation (11) shows that 𝑈 requires two permutations 

𝑂(2𝑀), 𝑂(𝑀) polynomial addition, and 𝑂(𝑀 log2𝑀) 
multiplication over log2 𝑁, resulting in (log2𝑁)(3𝑀 +
𝑀 log2𝑀) operations. Combining (9), (10), and (11) gives: 

• (log2𝑁) ∗ (3𝑀 +  2𝑀 log2𝑀) + 
(log2 𝑁) ∗ (3𝑀 +  𝑀 log2𝑀), 

• (log2𝑁) ∗ (3𝑀 +  2𝑀 log2𝑀 + 3𝑀 +𝑀 log2𝑀), 

• (log2𝑁) ∗ (6𝑀 +  3𝑀 log2𝑀), 

• (log2𝑁) ∗ (𝑀(6 +  3 log2𝑀)) 

≈ 𝑂(log2𝑁) ∗ (𝑀 ∗ log2𝑀). 
Using this method, the complexity of calculating the number 

of hash values is 𝑂(log2𝑁 ∗ 𝑀 ∗ log2𝑀), where 𝑁 is the 

maximum string length and 𝑀 is the modulus. For the unique 

cases described in (16), the only non-constant operation is 

calculating the value of 26𝑁. This can be done using binary 

exponentiation, which has a time complexity of 𝑂(log2𝑁). 
In conclusion, the overall complexity for unique cases is 

𝑂(log2𝑁). 
 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

The proposed algorithm was tested for both correctness 

and performance. The implementation code was submitted to 

the Sphere Online Judge (SPOJ) site to evaluate its accuracy 

and efficiency. To compare the performance results, the 

implementation code was submitted 10 times. 

Section III-A described the validity check of the dynamic 

programming method and the FFT used to calculate the 

number of hash values for a given string length. In addition, 

ℎ𝑖 = {
26𝑁 − 1

25
% 𝑚𝑜𝑑, 0 ≤ 𝑖 ≤ 25

0, 25 < 𝑖 < 𝑀

 (14) 

𝑎

𝑏
 % 𝑚𝑜𝑑 = ((𝑎 % 𝑚𝑜𝑑)

∗ (𝑏−1 % 𝑚𝑜𝑑)) % 𝑚𝑜𝑑 
(15) 

 
 

Fig. 5.  Efficient Polynomial Multiplication Scheme 

 
Fig. 6.  Geometric sequence in the unique case where greatest common 

divisor 𝐺𝐶𝐷(𝐵,𝑀) ≥ 26 and 𝐵 ≥ 𝑀 

 

|𝒔𝒕𝒓𝒊𝒏𝒈| =   

𝒉 =   

… 

𝒉  =   

𝒉 𝟔 =   

… 

𝒉𝑴− =   

|𝒔𝒕𝒓𝒊𝒏𝒈| =   

𝒉 =  +  𝟔  

… 

𝒉  =  +  𝟔  

𝒉 𝟔 =   

… 

𝒉𝑴− =   

|𝒔𝒕𝒓𝒊𝒏𝒈| = 𝑵 

𝒉 =  +  𝟔 + ⋯+  𝟔𝑵−  

… 

𝒉  =  +  𝟔 + ⋯+  𝟔𝑵−  

𝒉 𝟔 =   

… 

𝒉𝑴− =   
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Section III-B further discusses the performance check of the 

proposed method, both in time-wise and space-wise. 

A. Validity Examination 

Fig. 12 shows the status on the Sphere Online Judge 

website of the approach used in this problem. Sphere Online 

Judge will provide various responses based on its judgement 

to the solution submitted. The “Accepted” status indicates 

that the program ran successfully and gave the correct 

answer, the “Wrong Answer” status means that the program 

ran successfully, but gave the wrong answer, “Time Limit 

Exceeded” indicates that the program compiled successfully, 

but exceeded the time limit, “Compilation Error” means 

that the program could not be compiled, and finally the 

“Runtime Error” status implies that the program compiled 

successfully, but exited with a runtime error or crashed. 

Code testing was performed 10 times to ensure accuracy 

and validity during the test run. All 10 submissions received 

an “Accepted” response which proves that the proposed 

approach to calculate the number of hash values in a given 

string using dynamic programming techniques and the Fast 

Fourier Transform method can provide the correct answer 

within the time and memory limitation. The “Accepted” 

status is given only if the code passes all the test cases, 

proving how valid the solution proposed in this paper is.  Fig. 

7 displays the validity examination of our method on the 

problems available in Sphere Online Judge. 

B. Performance Examination 

There are two factors to consider in performance checks, 

which are program runtime and memory usage [10]. The first 

factor will be tested in local environment using the PC used 

in this research, and an external environment using the Sphere 

Online Judge (SPOJ) website. 

Runtime: to evaluate performance, two graphs were 

generated based on empirical analysis, each of which has a 

change in value with respect to the other variable. In the local 

testing, the test cases used samples with 𝑁 = 30000 and 

varying 𝑀 values, as well as varying 𝑁 values and 𝑀 =
30000, with each case tested 10 times. There are four 

columns in the local test data as shown in Tables V and VI. 

The first column shows the test data number. The second 

column contains the test case, where the first row specifies 

the number of test cases, 𝑇. Each of these 𝑇 cases is followed 

by a row with four numbers 𝐵,𝑀,𝑁, and 𝑄, representing the 

polynomial basis, modulus, maximum string length, and 

number of queries, respectively. Each query includes one 

value 𝐻, the hash value. The third column indicates the 

output, which is the count of hash values equal to 𝐻. The 

fourth column records the program’s runtime duration. The 

graphs in Figs. 8, 9, and 10 show a a linear increase in         

time with respect to the values log2𝑁 and 𝑀 ∗ log2𝑀,     

indicating the time complexity of the method is  

𝑂(log2𝑁 ∗ 𝑀 ∗ log2𝑀). For external test, the average 

execution time is 2.62 seconds, which can be seen in Fig.11. 

 

  

 
Fig. 7.  Validity examination of the program by the Sphere Online Judge site 

 
Fig. 8.  Local performance time graph of the dynamic programming and Fast  

Fourier Transform method with respect to 𝑁 for test case numbers 1 to 10 

from Table V 

 
Fig. 9.  Local performance time graph of the dynamic programming and Fast  

Fourier Transform method with respect to 𝑀 for test case numbers 1 to 5 

from Table VI 
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Memory Usage: as mentioned at the beginning of this 

section, the memory usage test utilized the Sphere Online 

Judge website, where the dynamic programming method and 

FFT used to calculate the number of hash values for a given 

string length only required a constant memory of 19 MB as 

shown in Fig. 13. 

 
 

 
 

As illustrated in Fig. 12, the dynamic programming method 

and Fast Fourier Transform achieves the best time complexity 

on the Sphere Online Judge website. This proves that the 

dynamic programming method and Fast Fourier Transform 

can successfully solve the problem with the best execution 

time at present. 

 
Fig. 10. Local performance time graph of the dynamic programming and Fast  

Fourier Transform method with respect to 𝑀 for test case numbers 6 to 10 

from Table VI 

TABLE V 

LOCAL TEST VALUES RESPECT TO N 

No Input Output 
Time  

(seconds) 

1 1 

20107 30000 
48 1 

0 

Case 1: 

673858768 

1,2188 

2 1 
20107 30000 

96 1 

0 

Case 1: 
69750134 

1,48938 

3 1 
20107 30000 

192 1 

0 

Case 1: 
296116833 

1,78683 

4 1 

20107 30000 

384 1 
0 

Case 1: 

776510975 

2,04062 

5 1 

20107 30000 

768 1 
0 

Case 1: 

908161167 

2,33512 

6 1 

20107 30000 
1536 1 

0 

Case 1: 

609534788 

2,62378 

7 1 
20107 30000 

3072 1 

0 

Case 1: 
248638238 

2,89419 

8 1 
20107 30000 

6144 1 

0 

Case 1: 
608724507 

3,17197 

9 1 

20107 30000 

12288 1 
0 

Case 1: 

631154566 

3,37661 

10 1 

20107 30000 

23192 1 
0 

Case 1: 

4806455 

4,09799 

 

TABLE VI 
LOCAL TEST VALUES RESPECT TO M 

No Input Output 
Time  

(seconds) 

1 1 

20107 48  

30000 1 

0 

Case 1: 

259407919 

0,004335 

2 1 

20107 96 

30000 1 
0 

Case 1: 

563508849 

0,011224 

3 1 

20107 192 
30000 1 

0 

Case 1: 

933059172 

0,02264 

4 1 

20107 384 
30000 1 

0 

Case 1: 

401401803 

0,046328 

5 1 
20107 768 

30000 1 

0 

Case 1: 
869182996 

0,100273 

6 1 

20107 1536 

30000 1 

0 

Case 1: 

167383340 

0,212619 

7 1 

20107 3072 

30000 1 
0 

Case 1: 

310041053 

0,461427 

8 1 

20107 6144 

30000 1 
0 

Case 1: 

981530095 

0,963927 

9 1 

20107 12288 
30000 1 

0 

Case 1: 

68348150 

2,04252 

10 1 
20107 23192 

30000 1 

0 

Case 1: 
382152528 

4,06024 

 

 
Fig. 11. External performance time graph of dynamic programming 
technique and Fast Fourier Transform method by Sphere Online Judge 
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IV. CONCLUSION 

In this paper, the dynamic programming method is 

designed and analyzed for solving combinatoric problems, 

which is calculating the number of hash values for a given 

string length. The method begins by modeling the number of 

hash values as a polynomial equation, followed by the use of 

fast multiplication on polynomials, namely the Fast Fourier 

Transform. A recurrence relation is derived, reducing the 

number of polynomial multiplication calculations to be done 

only in log2𝑁𝑚𝑎𝑥  times with 𝑁𝑚𝑎𝑥  being the maximum 

length of the string in the test case. As a result, to calculate 

the number of hash values, the overall time complexity is 

𝑂(log2𝑁𝑚𝑎𝑥 ∗ 𝑀 log2𝑀).  
Experimental results for this problem have shown that the 

proposed approach using dynamic programming techniques 

and Fast Fourier Transform method can provide consistently 

valid answers by using efficient resources both time-wise and 

space-wise. 
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Fig. 12.  Statistics of all solutions submitted by all users received by Sphere Online Judge 

 
Fig. 13.  External performance memory usage graph of dynamic 
programming method and Fast Fourier Transform by Sphere Online Judge 
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