TAENG International Journal of Applied Mathematics

Dynamic Programming and Fast Fourier
Transform Approach for Polynomial Equation
Models in Hash Collision Calculation

Fadel Pramaputra Maulana, Rully Soelaiman, Member, IAENG, and Yudhi Purwananto

Abstract— The hash polynomial of a string is defined by
converting each letter in the string into a numerical value
according to its position in the alphabet. In some cases, the
number of strings that satisfy a given hash value is determined
using a specified hash polynomial function. The number of
possible character combinations and the repetition of
subproblems that may occur present challenges in the given
hash function. In this paper, we propose a novel solution to the
aforementioned problem using dynamic programming
technique and Fast Fourier Transform method, which satisfy a
given polynomial hash function. In our algorithm, the
recurrence relation for the dynamic programming technique
utilizes polynomial equation model for each state. Therefore,
for each transition in the recurrence relation, the values are
updated through polynomial operations. One of these operations
is polynomial multiplication, where the Fast Fourier Transform
(FFT) is used to speed up computation. Based on test results
from a given case study, the dynamic programming approach
and Fast Fourier Transform achieves an average execution time
of 2.62 seconds and consumes an average of 19 MB of memory,
utilizing only 1.23% of the available memory limit.

Index Terms—dynamic programming, fast Fourier

transform, hash polynomials, set permutation

I. INTRODUCTION

SUPPOSE a polynomial hash function H(S) is defined. By
converting each letter in string S into a numerical value
based on its position in the alphabet, the string can be
represented as a fixed value called a polynomial hash value.
For example, S = abde, B = 26, M = 36, the string has a
length of N = 4. Thus, H(S) = (263 x 0 + 262 * 1 + 26
3 +26° % 4) % 36 = 2. Since each polynomial hash value
of a string is taken modulo M according to (1), different
strings can have the same polynomial hash value, with the
result always being less than M.

N-1

H(S) = Z BN-i14 D(S;) % M)
i=0

Manuscript received November 11, 2024; revised March 20, 2025. This
work was supported in part by Sepuluh Nopember Insitute of Technology,
Surabaya, Indonesia.

Fadel Pramaputra Maulana is a graduate student at Sepuluh Nopember
Institute of Technology, Department of Informatics, Surabaya, Indonesia.
(e-mail: fadelpm2002@gmail.com)

Rully Soelaiman is an associate professor at Sepuluh Nopember Institute
of Technology, Department of Informatics, Surabaya, Indonesia (e-mail:
rully130270@gmail.com)

Yudhi Purwananto is an associate professor at Sepuluh Nopember
Institute of Technology, Department of Informatics, Surabaya, Indonesia (e-
mail: purwananto@gmail.com)

The problem discussed in this paper is the calculation of
the number of combinations of lowercase characters that can
be formed such that the polynomial hash value of the string
satisfies a given value. For instance, to calculate H(S) with
Npaks = 2, M =2, B =26, using (1) and Table I, while
ensuring 0 < H(S) < M, the numerical value of each
character from “a” to “zz” are assigned as in Table II.

TABLEI
NUMERICAL VALUE FOR EACH CHARACTER

D(Sy)

n
e

D(Sy)

13
14
15
16
17
18
19
20
21
22
23
24
25

S —X— =0 Q D Q0O T®
SEBowo~vousrwNhrRO
NS XS<CcC—~0nw-Q0TO >

The number of hash values that can be generated when
Npar =1 and Np,,, = 2 corresponds to the number of
character combinations for string lengths of 1 and 2, which
totals 702. Using the method described above, if we set
Nyax = 30000 and M = 30000, the time complexity of the
calculation becomes 0(10%%%*%) and requires 10%244°
seconds which is approximately 3.17 x 10*2**2 years.
Therefore, a brute-force approach for computing the number
of combinations of lowercase characters that satisfy a given

hash value is not a feasible solution for real-world
applications.
TABLE Il
EXAMPLE CASE N,y = 2
. Hash
No | H(S) Hash Calculation Value
1 H(“a") (1%0)%2 0
26 | H("z") (1%25)%?2 1
27 | H("aa” 26x0+1%0) %2 0
701 | H("zy") | (26 %25+ 1% 24) %2 0
702 | H(“zz") | (26 %25+ 1%25) % 2 1

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

In order for this problem to be solved efficiently, another
approach is required, that is by using dynamic programming
method. Dynamic programming is a problem-solving
technique by decomposing the solution into a set of steps or
stages in such a way that the solution of a problem can be
viewed from a series of small decisions which are related to
one another [1]. In defining the dynamic programming
model, it is essential to determine the relationship between a
given state and its previous state so that a recurrence equation
can be defined [9]. A recurrence relation is an equation that
defines each element of a sequence as a function of the
previous elements. Therefore, the solution for each state
depends on the solutions for smaller states of the same
problem [3]. In the process, this approach involves computing
polynomial multiplication. Thus, the Fast Fourier Transform
(FFT) method is used to speed up the naive polynomial
multiplication. The Fast Fourier Transform method is a
method used to calculate the Discrete Fourier Transform
(DFT) efficiently. By using the FFT method, which utilizes
the special properties of complex roots of unity, the DFT
calculation can be done in O(M log,M) time [2]. In this
problem, the FFT method will be used to reduce the time
complexity of calculating polynomial multiplication from
0(M?)to O(M log,M).

By taking previous research on the topics of hash
polynomials and fast polynomial multiplication [4], [5], [6],
[71, [8], [11], it can be concluded that dynamic programming
and FFT-based approaches provide a feasible solution to this
problem. Therefore, in this paper, we propose a solution that
takes only 2.62 seconds on average to compute a given
number of hash values in a time efficient manner and satisfies
the problem time constraint of 10 seconds.

The rest of the paper is organized as follows: Section II
presents our novel method: dynamic programming technique
and Fast Fourier Transform method. Section Il presents the
experimental results and analysis. Finally, the conclusion is
stated in section IV.

Il. METHODOLOGY

Our proposed algorithm to count the number of character
combinations with a given hash value utilizes dynamic
programming techniques for all hashes less than M and
applies the Fast Fourier Transform for polynomial
multiplication. In general, the algorithm is divided into 3
parts: first, it determines whether the input is a unique case or
not. If the input is a unique case, then the solution can be done
with log, N calculations. Otherwise, if the input is not a
unique case, the number of hash values for maximum string
length equal to 2% is first calculated using dynamic
programming techniques. Then, the number of hash values
for a maximum string length not equal to 2% is calculated
using the results from the previous part and dynamic
programming techniques. In both the second and third parts,
state calculations in dynamic programming involve
polynomial multiplication. To improve efficiency, the naive
0(M?) polynomial multiplication is replaced with the Fast
Fourier Transform (FFT), reducing the complexity to
0(M log, M). The following discussion consists of six main
sections. Section 1I-A explains the state model used in

dynamic programming. Section 1I-B and II-C describe the
recurrence relation used in calculating the number of hash
values for a maximum string length equal to and not equal to
2%, Section 11-D explains how Fast Fourier Transform is
utilized in accelerating the calculation of polynomial
multiplication. Section II-E addresses the handling of unique
cases, followed by Section II-F, which presents the time
complexity analysis of our proposed method.

A. Dynamic Programming State Model

If the sigma form of (1) is converted to an explicit sum
form, we obtain (2). To calculate the number of combinations
of N characters such that H(S) takes values from0to M — 1,
start by calculating the number of hash values when the string
length consists of only one character, with each character
value as in Table I. Equation (2) shows each segment of the
sum is denoted as T; to Ty, where T; is the set consisting of
the number of hash values from 0 to M — 1 when the string
length consists of one character at the i-th character from the
last character in the string. As a result, Equations (3) and (4)
are derived. Equation (3) shows T; = {hg, hy,..., hy_1}
where h; represents the number of occurrences of hash value
i. Asillustrated in Fig. 1, each T in (4) produces hash values
raging fromOto M — 1.

H(S) = (BN7ID(Sy) + - +B°D(Sy_1)) % M)
T, =B D(Sy_) % M,1<i<N ®3)
HS) =Ty +Ty_1 ++T, +T) %M (4)

H(S) = (TN+TN—1 ++T2 +T1)%M

N

ho ho ho ho
hy hy hy hy
hy -1 hy—1 hy—1 hy -1

Fig. 1. The number of hash values for each T

Given T, and T, where each is the set number of hash
values {hg, hy, ..., hy—1}, these sets can be transformed into
polynomial equations. Here, the values h, to hy_, in each
T are the coefficients of a polynomial, where the exponent
corresponds to the hash value. Thus, T, is defined as hox° +
hyx' 4 -+ hy_,x™~", and similarly for T,. To calculate the
number of hash values from 0 to M — 1 for a string of length
two can be done by multiplying h; with h; at two T in (5).
The result of the multiplication gives the number of hashes
with value i +j, as shown in Table Ill. Therefore, T,T,
represents the set of hash values from 0 to M — 1 when the
string consists of two characters, spanning from the p-th
character to the g-th character, starting from the end of the
string.

Tqu(hiﬂ') = Tp(hy) * Tq(hj)' 0<ij=sM-1 (®)

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

TABLE I
CALCULATION OF NUMBER OF HASH VALUES FOR N = 2

T, T, T, *T,
hO h’O h0+0
hO hl h0+1
hl hO h1+0
hl hl h1+1
h; h; Rie=iyj

Ry Ry ham-1)

L _{ he, k<M 6
kBM = Ry o g + his M<k<2(M-1) ()

Referring to (5), the string hash polynomial function has
modulo M, thus if the value of i + j = k in T, T,, k does not
exceed M. Therefore, for all hy in T, T, a formula as in (6) is
applied. This formula is also used to calculate the number of
hash values for strings longer than two characters, as it does
not change the number of sets T consisting of hy to hy_4.
Equation (2) shows the value of each segment of the sum is
differentiated by a multiplier B. T; and T, are differentiated
by a multiplier B, T, and T; by B?, and so on. Thus, to
calculate the set on T,, permutation can be applied to T,, using
the multiplier B9"P and T,, given that q >p. This
permutation is performed by multiplying B9~ with each
hash value in T, altering the order of the number of hash
values in the T, set so that it transforms into the T, set, as
shown in Table IV.

TABLE IV
EXAMPLE OF PERMUTATION ON 7 WITH MULTIPLIER B
Ty MULTIPLIER Ts
hy B? ho + 2)om
2
hl B h(]_ % BZ)%M
B?
2
hu-2 B h((M—Z) + B2)%M
2
ha-1 B h((M—l) * B2)%M

Tpir = permut(Tp, Br)

()

h(i*Bq—p)%M = h(i*Bq—P)%M +h, 0<i<M

In Table IV, the hash value at T; is taken modulo M to
ensure that the result does not exceed M. Given T,,, the set at
T, can be determined by permuting the set at T, using the
multiplier B™, as shown in (7), where r = q — p and q > p.
There are several permutation operations that are true,

1. Ty4r = permut(T,, B")

2. Ty Tosr o Tpyr = permut(Ti T, ... T,, BY)

3. Ty + Ty Togr + o+ Trygy e Tp+r =

permut(T; + T1T, + -+ Ty ...T,, B")

The set T, T,... T, consists of the number of hash values from
0 to M —1, given that the string length consists of p
characters, spanning from the first to the p-th character,
starting from the end of the string. Whereas T, + T, T, + -+ +
T,...T, represents the number of sets consisting of the
number of hash values from 0 to M — 1 when the string length
is less than or equal to p characters. The symbol (+) in the
equation denotes summation between sets of T when T is
represented as a polynomial equation. The use of this
permutation function is crucial as it significantly reduce the
number of calculations needed to generate a new T set from
an existing one.

B. Recurrence Relation when String Length is 2%

If there is a value N, and U represents the number of
hash values when the string length is less than or equal to
Nonax, then U is the union of the sets of T, as shown in (8). If
N = 2¥ for k integers, the set U can be divided into smaller
parts, as illustrated in Fig. 2.

U = Tl + TlTZ + o + T].TZ "'TNmaks—lTNmaks (8)

a b c d
by
U=Ty +T Ty + T1To(T3) + Ty T, T3Ty + -

Fig. 2. Aset U that is divided into smaller parts

Based on Fig. 2 there are several conclusions, such that, b
can be created from a * permut(a, B'). Moreover, d can be
created from b * permut(b, B?). Lastly, ¢ can be created
from permut(a, B?). To determine U with a length of N,,, ..,
/Ny iterations are performed to find the number of hash

values of the character combination. If Troeqi[v/Nimax | = U
and U represents the number of hash values from0to M — 1
with length N, then a recurrence relation is obtained when
Nypax is 2K with k integers, as shown in (9) and (10). The
following is an explanation of the variables in (9) and (10),
e h; = the number of hashes with a value of i.
o T, =theset{hg, hy,...,hy_1} when N = 1 at the last
character of the string.
o Tioralk] = the set {hgy, hq,..., hy_1} representing
string length combinations from N = 1to N = 2.
o Toracelk] = the set {hy, hy,..., hy_4} representing
string length combinations exactly at N = 2%,
e permut(4,b) = the permutation function applied to
set A = {hgy, hy,..., hy—1} with multiplier b.
e B = the base in the polynomial hash function.

T, i=0

Texace[i] = {Texact[i — 1] * permut (Texact[i —1], BZH), 2<2'<N ©)

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

Tl! i=0

Totar[i] = Totali — 1] + Texa'ct[i], i=1 (10)

Trotarli = 1] + Teyaeeli — 1] * permut (Ttoml[i —-1], BZH), 2<2i<pN

T, bit[i]|,
Permut(totai| ;.t[[%]]]) i=0
i BN—Z Ll

= Trotar[bit[{]] Tocace [bit[i]] (11)

total ’ exact , .)

permut (BN—Zbit[O]_..‘_zbif[i]> + permut <BN_2bit[0]_‘.._2bit[i]) *Uli—-1], 1<i<k

Based on the recurrence relation in (9) and (10), Algorithm
1 is used to calculate the number of hash values when the
string length is equal to 2.

Algorithm 1 Solve recurrence relation when
string length is equal to 2F

Input: dpl, dp2, B, M, base, j
Output: dpl, dp2
1: for 1 < © to MIN(26, M)-1 do

2: for kR < 0@ to 25 do

3: h « (B*i+k) 5 M

4: dp2[1][h] < dp2[1][h] + dpI1[1][1]
5: dp1[1] < ADD(dpi[1l], dp2[1], M)

6: for 1 <« 2 to j do

7: pt <« PERMUT(dp2[i-1], base[i-1], M)
8: dp2[i1] < MUL(dp2[i-1], pt, M)

9: pt <« PERMUT(dp1[i-1], base[i-1], M)
10: mul <« MUL(dp2[i-1], pt, M)

11: dp1[i] < ADD(dpi[i-1], mul, M)

12: return dpl, dp2

C. Recurrence Relation when String Length is Not 2%

To calculate the number of hash values from 0 to M — 1
for a string length that is not a set of 2% (where k is an
integer), a method is required to determine which set of hash
values at which length to use. This can be achieved by
examining the bits that form the binary representation of
Npax- For example, Fig. 3 illustrates the binary
representations of 15 and 25.

1510 - 11112 2510 - 11{012
23 22 21 20 24— 23 20

Fig. 3. Binary representation of the numbers 15 and 25

In Fig. 3, the number 15 can be formed using 2°, 21, 22, 23,
while the number 25 can be formed using 2°,23,2%
Similarly, to compute the set {hg, hq,..., hy_,} for a length
of Ny,qx, the lengths used to build the hash will correspond to
the powers of two represented by the positions of the 1-bits
in the binary representation of N,,,,. Suppose,

e h; = the number of hashes with a value of i.

o Tioralk] = the set {hgy, hq,..., hy_1} representing

string length combinations from N = 1to N = 2.
o Toactlk] = the set {hy, hy,..., hy_1} representing
string length combinations exactly at N = 2.

e permut(4,b) = the permutation function applied to
set A = {hg, hy,..., hy_1} with multiplier b.

e B = the base in the polynomial hash function.

e expo = the exponent of B used for multiplication in
permutations.

e bit = the sequence of bits in N from its binary
representation, starting from the first bit (only bits
with a value of 1 are considered).

To calculate the numbers of hash values when N is not
equal to 2%, the numbers of hash values for N is equal to the
powers of 2 is used. The set that must be formed to solve the
problem with N, is U=T,+ T T, + T,T,Ts + -+
T, ...Ty,,,,- Iteration continues until all bit with a value of 1
in the binary representation N,,,, have been traversed. This
results in U, the set of hash values raging fromO0to M — 1
when the maximum string length is Ny,.,. If bit[i] represents
the position of a bit with value 1 in the binary representation
of Nyax, Where 0 < i < k and bit[k] is the position of the
last bit with value 1, then the recurrence relation when
Nypax # 2K (i.e., when N, is not equal to 2% for integers k)
is shown in (11).

The total number of hash values from 0 to M — 1 for a
string length that is not 2* is represented by U[k]. The
addition and multiplication in the recurrence relation in (11)
correspond to polynomial addition and multiplication, where
Ulk][j] is the coefficient of the j-th polynomial term, with
the limit 0 <j < M. The coefficient of the j-th term
represents the number of hash values with a value of j. It is
certain that calculating U[i] only requires the value of
U[i — 1], while storing U[0] to U[i — 2] is unnecessary. This
approach minimizes memory usage. Using this method, the
number of hash values that need to be calculated is log, N,
excluding the polynomial addition and multiplication
calculations, where N is the maximum string length in (11).
Based on (11), Algorithm 2 is used to calculate the number of
hash values when the string length is not equal to 2%.

Algorithm 2 Solve recurrence relation when
string length is not equal to 2%

Input: N, M, twopowers, base, dpl, dp2
Output: ans
1: i, j < ©
while twopowers[i] < N do
if N & twopowers[i] then
if j = 0 then
temp <« N - twopowers[1i]
nums[j] « temp
else
temp < nums[j-1] - twopowers[1i]

oNOUV A~ WN

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

Algorithm 2 Solve recurrence relation when
string length is not equal to 2*

9: nums[j] < temp

10: exp[j] « 1

11: jej+ 1

12: 1e<1+1

13: for i1 < 0 to j - 2 do

14: R « exp[i+1]

15: L « nums[i+1]

16: m < FINDMULTIPLY(base, L, M)

17: if 1 = @ then

18: f < FINDMULL(base, nums[i], M)
19: if L # 0 then

20: ptl <« PERMUT(dp2[k], m, M)
21: pt2 « PERMUT(dpl[exp[il]l, f>» M)
22: ans « MUL(pt1, pt2, M)

23: else

24: ptl « PERMUT(dpl[exp[il]l, f, M)
25: ans « MUL(dp2[kR], pt1, M)
26: else

27: if L # 0 then

28: ptl < PERMUT(dp2[k], m, M)
29: ans « MUL(pt1, ans, M)

30: else

31: ans « MUL(dp2[k], ans, M)
32: if [# @ then

33: ptl <« PERMUT(dpl[R], m, M)

34: ans < ADD(ptl, ans, M)

35: return ans

D. Polynomial Multiplication with Fast Fourier

Transform

It is known that multiplying two polynomials A(x) and
B(x), with degrees a and b, requires O((a + 1) = (b + 1))
time complexity since there are a + 1 elements in A(x) and
b+1 elements in B(x). However, there exists a
multiplication method that reduces the complexity to O (n),
known as pointwise multiplication, when the polynomials are
represented in point-value form. As mentioned in
Introduction to Algorithm by Cormen et al page 901-902, a
polynomial with a degree bound of n can be represented using
at least n different points as values in the polynomial basis.
For example, given A(x) = x?>—1 and B(x) = x, these
polynomials can be represented as point-values using at least
three points for A(x) and two points for B(x), as illustrated
in Fig. 4.

A(x) B(x)

Fig. 4. Graphs of polynomials A(x) and B(x) on the cartesian coordinate
plane

C(X) = {(x()r C(x()))r (xlf C(xl))' T (xn—lf C(xn—l))} (12)

If there is a polynomial C(x) with bound degree n, it can
be represented using the set in (12). In polynomial
multiplication, if C(x) = A(x) * B(x), where A(x) is a
polynomial of degree a and B(x) is a polynomial of degree
b, then the product of polynomial C(x) has a degree of ¢ =
a + b or a polynomial with bounded degree of ¢ + 1. Thus,
at least ¢ + 1 points are required to represent the polynomial
C(x) in point-value form. If multiplication is performed using
pointwise multiplication, then a 4+ b + 1 different points are
required for polynomials A(x) and B (x). After the pointwise
multiplication, C (x) can be converted back from point-value
representation to coefficient representation through a process
known as interpolation.

Naive polynomial evaluation at n points requires 0(n?)
complexity. However, in this section, the FFT (Fast Fourier
Transform) is used to reduce the complexity to O(n log, n).
The general scheme for polynomial multiplication is
illustrated in Fig. 5. It is assumed that polynomial A(x) has a
degree bounded by a set of 2¥ numbers. Therefore, Algorithm
3 is used to iteratively convert A(x) between point-value
representation and coefficient representation.

Algorithm 3 Iterative FFT

Input: aq,islnverse
Output: y

1: a < BIT-REVERSAL-PERMUTATION(a)
2: n « a.length

3: for s < 1 to log,n do

4: m < 2%

5: if isInverse = 1 then

6: Wy, e—Zm'/n

7: else

8: Wy, eZT[i/n

9: for k < © to n-1 by m do
1o: w <1

11: for j < 0 to m/2-1 do
12: t « wx*alk+j+m/2]
13: u « alk+j]

14: alk+jleu+t

15: alk+j+m/2l<u—t
16: W —w* Wy,

17: if islnverse = 1 then

18: a < (ap/n, a;/n, ..., ay_1/n)

19: return a

E. Unique Cases

Based on (2), if B is divisible by M and M = 26, then all
the sets of hash values, which are greater than 0 in the first to
the second last character, are 0. Equation (13) shows the sum
of the hash values forms a geometric sequence, as illustrated
in Fig. 6.

HES) =0+0++0+T) %M (13)

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

Ag,Aq, -, A1

Naive Multiplication

bo, by, o) by_y

Converting polynomials from
coefficient representation to
point-value

Time Complexity

Time Complexity O(n*)

v

CorC1y -y Cpei

Converting polynomials
from point-value
representation to coefficient

Time Complexity

0O(nlog, n) 0O(nlog, n)
0
A(w%,), B((Ué::n) ggwing
w
A(w3n), B(w3,) Pointwise Multiplication 2n
Time Complexity O(n)
A3, BwF? Sloa)

Fig. 5. Efficient Polynomial Multiplication Scheme

Therefore, formula (14) is used to calculate the number of
hash values for the case where GCD(B,M) = 26 and B = M.
For values of i where 0 < i < 25, the result is taken modulo
10° + 7 to ensure that the output remains within the valid
range. Computing 26" can be done with 0(log, N) time
complexity using binary exponentiation. Since 26" is large,
each iteration of binary exponentiation is taken modulo
1000000007 to prevent integer overflow in certain
programming languages. Therefore, the concept of inverse
modular (15) is used and (14) is transformed into (16), which
is used to calculate the number of hash values when
GCD(B,M) = 26 and B = M, with mult = 280000002 and
mod = 1000000007.

ho=1 hy=1+26! hoy=1+26++26"1

hy;s =1 hys =1+26' || hys=1+26+--+26"1

hz6 =0 hys =0 hye =0
hy-1=0 hy_1=0 hy-1=0
|string| =1 |string| =2 |string| = N

Fig. 6. Geometric sequence in the unique case where greatest common
divisor GCD(B,M) = 26 and B > M

26N — 1 ,

hi — %mOd, 0<i<?25 (14)

0, 25<i<M
a
5 % mod = ((a % mod) (15)
* (b~1 % mod)) % mod
N .
h; = {((26 —1) mult)) %mod, 0<i<25 (16)
0, 25<i<M

F. Time Complexity Analysis

Equation (9) shows that calculating T,.4.: involves O(M)
permutations and O(M log, M) polynomial multiplications,

repeated log, N times. This result in a total of (log, N)(M +
M log, M) operations. Similarly, in (10), calculating Tyt
involves O(M) permutations, O(M) polynomial additions,
and O (M log, M) multiplications, leading to (log, N)(2M +
M log, M) operations. Thus, the total operations for (9) can
be simplified to:
e (log;N)«(M + Mlog, M)
+ (log, N) * (2M + Mlog, M),
e (logzN)*(M +2M + Mlog, M + Mlog, M),
o (log;N)*(3BM + 2Mlog, M).
Equation (11) shows that U requires two permutations
0(2M), O(M) polynomial addition, and O(M log, M)
multiplication over log, N, resulting in (log, N)(3M +
M log, M) operations. Combining (9), (10), and (11) gives:
e (log;N)*(3M + 2Mlog, M) +
(log, N) * (3M + M log, M),
e (log;N)*(3M + 2Mlog, M + 3M + M log, M),
e (log, N)*(6M + 3Mlog, M),
e (logz N) * (M(6 + 3log, M))
~ O(log, N) * (M * log, M).
Using this method, the complexity of calculating the number
of hash values is O(log, N * M * log, M), where N is the
maximum string length and M is the modulus. For the unique
cases described in (16), the only non-constant operation is
calculating the value of 26". This can be done using binary
exponentiation, which has a time complexity of O(log, N).
In conclusion, the overall complexity for unique cases is
O(log, N).

I11. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm was tested for both correctness
and performance. The implementation code was submitted to
the Sphere Online Judge (SPQJ) site to evaluate its accuracy
and efficiency. To compare the performance results, the
implementation code was submitted 10 times.

Section I11-A described the validity check of the dynamic
programming method and the FFT used to calculate the
number of hash values for a given string length. In addition,

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

Section I11-B further discusses the performance check of the
proposed method, both in time-wise and space-wise.

A. Validity Examination

Fig. 12 shows the status on the Sphere Online Judge
website of the approach used in this problem. Sphere Online
Judge will provide various responses based on its judgement
to the solution submitted. The “Accepted” status indicates
that the program ran successfully and gave the correct
answer, the “Wrong Answer” status means that the program
ran successfully, but gave the wrong answer, “Time Limit
Exceeded” indicates that the program compiled successfully,
but exceeded the time limit, “Compilation Error” means
that the program could not be compiled, and finally the
“Runtime Error” status implies that the program compiled
successfully, but exited with a runtime error or crashed.

Code testing was performed 10 times to ensure accuracy
and validity during the test run. All 10 submissions received
an “Accepted” response which proves that the proposed
approach to calculate the number of hash values in a given
string using dynamic programming techniques and the Fast
Fourier Transform method can provide the correct answer
within the time and memory limitation. The “Accepted”
status is given only if the code passes all the test cases,
proving how valid the solution proposed in this paper is. Fig.
7 displays the validity examination of our method on the
problems available in Sphere Online Judge.

B. Performance Examination

There are two factors to consider in performance checks,
which are program runtime and memory usage [10]. The first
factor will be tested in local environment using the PC used
in this research, and an external environment using the Sphere
Online Judge (SPQJ) website.

Runtime: to evaluate performance, two graphs were
generated based on empirical analysis, each of which has a
change in value with respect to the other variable. In the local
testing, the test cases used samples with N = 30000 and
varying M values, as well as varying N values and M =
30000, with each case tested 10 times. There are four
columns in the local test data as shown in Tables V and VI.
The first column shows the test data number. The second
column contains the test case, where the first row specifies
the number of test cases, T. Each of these T cases is followed
by a row with four numbers B, M, N, and Q, representing the
polynomial basis, modulus, maximum string length, and
number of queries, respectively. Each query includes one
value H, the hash value. The third column indicates the
output, which is the count of hash values equal to H. The
fourth column records the program’s runtime duration. The
graphs in Figs. 8, 9, and 10 show a a linear increase in
time with respect to the values log, N and M *log, M,
indicating the time complexity of the method is
O(log, N + M =log, M). For external test, the average
execution time is 2.62 seconds, which can be seen in Fig.11.

accepted
32729056 202;‘;03. rdl edit i 19M CPP
07:24:52 (/users/fadelpm2002/) (/submit/AHASH2/id=32729056) (/ranks/AHASH2/)
ideone it
656 accepted
S Fdl edit 2.40
04
32728973 07:10:25 (/users/fadelpm2002/) (/submit/AHASH2/id=32728973) (/ranks/AHASH2/) M cre
ideone it
o565 accepted
32728970 o4 Fdl _ edit A 19M CPP
07:10:13 (/users/fadelpm2002/) (/submit/AHASH2/id=32728970) (/ranks/AHASH2/)
ideone it
accepted
32728042 0s Be e et 19M CPP
07:06:11 (/users/fadelpm2002/) (/submit/AHASH2/id=32728942) (/ranks/AHASH2/)
ideone it
595,55 accepted
32728929 o4 bl , edit %09 19M CPP
07:04:30 (/users/fadelpm2002/) (/submit/AHASH2/id=32728929) (/ranks/AHASH2/)
ideone it
Fig. 7. Validity examination of the program by the Sphere Online Judge site
5 0.110
® Data Points ® Data Points 0.1003
——- y=0.29743x* + -0.49354x° ——- y=0.00001927x* + 0.00219562x" e
4.0980 0.088 ’z”
4 4 ® o
g 3_12263’3256 %ﬂ 0.066 //'
@ 34 2.13242’ & //
< 2.6238" < 0.095%
E 2.33.5»1". g 00947 -~
= e I Rt
2.0‘1‘{)6' -~
21 - 0.0225"
LIS 0.022 - L
L4834 " 0.011”
12288~ p.og#
1 T T T T T 0.000 — T T T T T
6 8 10 12 14] 1000 2000 3000 4000 5000
loga(N) M logz(M)

Fig. 8. Local performance time graph of the dynamic programming and Fast
Fourier Transform method with respect to N for test case numbers 1 to 10
from Table V

Fig. 9. Local performance time graph of the dynamic programming and Fast
Fourier Transform method with respect to M for test case numbers 1 to 5
from Table VI

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

5.00
@ Data Points
—-—- y=0.00001731x* + 0.03053759x%°
4.0602|
4.04 - .
P
e
’I
-
@ L
g 3.08
c I’
= "
v | 2.042%
£ 2.12]
[S -
L
#)I
1.16 4 0.9638"
P
-
0.4614
2126%
0.20 L —= T T T T
50000 100000 150000 200000
M logz(M)

Fig. 10. Local performance time graph of the dynamic programming and Fast
Fourier Transform method with respect to M for test case numbers 6 to 10

from Table VI
TABLE V
LOCAL TEST VALUES RESPECT TO N
No Input Output (SJCI(;?'I%S)
1 1 Case 1: 1,2188
20107 30000 673858768
481
0
2 1 Case 1: 1,48938
20107 30000 69750134
96 1
0
3 1 Case 1: 1,78683
20107 30000 296116833
1921
0
4 1 Case 1: 2,04062
20107 30000 776510975
3841
0
5 1 Case 1: 2,33512
20107 30000 908161167
768 1
0
6 1 Case 1: 2,62378
20107 30000 609534788
1536 1
0
7 1 Case 1: 2,89419
20107 30000 248638238
30721
0
8 1 Case 1: 3,17197
20107 30000 | 608724507
6144 1
0
9 1 Case 1: 3,37661
20107 30000 | 631154566
12288 1
0
10 1 Case 1: 4,09799
20107 30000 | 4806455
231921
0

Memory Usage: as mentioned at the beginning of this
section, the memory usage test utilized the Sphere Online
Judge website, where the dynamic programming method and
FFT used to calculate the number of hash values for a given
string length only required a constant memory of 19 MB as

shown in

Fig. 13.

TABLE VI
LOCAL TEST VALUES RESPECT TOM
No Input Output (s;gg:%s)
1 1 Case 1: 0,004335
20107 48 259407919
30000 1
0
2 1 Case 1: 0,011224
20107 96 563508849
30000 1
0
3 1 Case 1: 0,02264
20107 192 933059172
30000 1
0
4 1 Case 1: 0,046328
20107 384 401401803
30000 1
0
5 1 Case 1: 0,100273
20107 768 869182996
30000 1
0
6 1 Case 1: 0,212619
20107 1536 167383340
30000 1
0
7 1 Case 1: 0,461427
20107 3072 310041053
30000 1
0
8 1 Case 1: 0,963927
20107 6144 | 981530095
30000 1
0
9 1 Case 1: 2,04252
20107 12288 | 68348150
30000 1
0
10 1 Case 1: 4,06024
20107 23192 | 382152528
30000 1
0
4
3.30
] 2.72 2.80 573
g [Tzar R aa 2o HIAT 2,52
S
]
c 27
E
=
14
0 T T T T T T T T T
o A 6;.,)0 gﬁ(‘i\, @9 u;’-“\’ b‘_,'ga Qb'-Q o 2 Q_,J‘;; n;;l«

Bl
Qv

Q
g

Submission date (04/03/2024)

! N
& &

Fig. 11. External performance time graph of dynamic programming
technique and Fast Fourier Transform method by Sphere Online Judge

Asiillustrated in Fig. 12, the dynamic programming method
and Fast Fourier Transform achieves the best time complexity
on the Sphere Online Judge website. This proves that the
dynamic programming method and Fast Fourier Transform
can successfully solve the problem with the best execution

time at present.

Volume 55, Issue 9, September 2025, Pages 2954-2962

TAENG International Journal of Applied Mathematics

RANK DATE USER RESULT TIME MEM LANG

1 . Fdl (users/fadelpm2002/) accepted 240 19M CPP
2023-10-30 .

2 09:17:00 Rully Soelaiman (/users/arena/) accepted 243 26M CPP
2023-10-31

3 165712 Fdl (/users/fadelpm2002/) accepted 246 24M CPP14
2023-12-01

4 17304 Oleg (fusers/defrager/) accepted 278 29M CPP14
2020-06-10 .

5 03:47:29 [Rampage] Blue.Mary (/users/xilinx/) accepted 2.88 8.5M CPP
2020-08-04

6 084721 suhash (/users/suh_ash2008/) accepted 5.26 19M CPP14
2020-11-30 S~ .

7 00:39:39 Jakub topuszanski (/users/gbolec/) accepted 7.20 7.3M CPP14
2023-05-01 . | . . | d

8 203351 Viplov Jain (/users/viplov/) accepte 862 11M CPP14

Fig. 12. Statistics of all solutions submitted by all users received by Sphere Online Judge
25 REFERENCES
[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to Algorithms, 3 Edition. Cambridge: The MIT Press,
20 A 19 19 19 19 19 19 19 19 19 19 Mean: 19 20009.

[2] Flannery, B. P., Press, W. H., and Teukolsky, S. A. Numerical Recipes
= in C: The Art of Scientiffic Computing, 2" Edition. New York:
= 151 Cambridge University Press, 1992.
£ [3] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics,
5 2" Edition. Reading: Addison-Wesley, 1994.

5 101 [4] J. M. Pollard. (1971, April). The Fast Fourier Transform in a Finite
= Field. (Online). pp- 365-374 Auvailable:
https://www.ams.org/journals/mcom/1971-25-114/S0025-5718-1971-
5 4 0301966-0/S0025-5718-1971-0301966-0.pdf.

[5] Moenck, Robert T. (1976). Practical Fast Polynomial Multiplication.
(Online). pp. 136-144 Available:

0 https://dl.acm.org/doi/pdf/10.1145/800205.806332.
A ® 'D\, ‘ © In?' ‘ﬁo, '0 ‘ > ' b ‘hq, [6] Pachocki, Jakub, and Jakub Radoszewski. (2013). Where to Use and
SV ,\S?" & F P TP D NS A How not to Use Polynomial String Hashing. (Online). Available:

S https://ioinformatics.org/journal/INFOL119.pdf.

Submission date (04/03/2024) [7]1 Smykalov, Vladimir. (2017). fft: optimizations. (Online). Available:

Fig. 13. External performance memory usage graph of dynamic https://neerc.ifmo.ru/trains/toulouse/2017/fft2.pdf.

programming method and Fast Fourier Transform by Sphere Online Judge

IV. CONCLUSION

In this paper, the dynamic programming method is
designed and analyzed for solving combinatoric problems,
which is calculating the number of hash values for a given
string length. The method begins by modeling the number of
hash values as a polynomial equation, followed by the use of
fast multiplication on polynomials, namely the Fast Fourier
Transform. A recurrence relation is derived, reducing the
number of polynomial multiplication calculations to be done
only in log, Ny, times with N,,,, being the maximum
length of the string in the test case. As a result, to calculate
the number of hash values, the overall time complexity is
O(IOgZ Nmax * Mlogz M)

Experimental results for this problem have shown that the
proposed approach using dynamic programming techniques
and Fast Fourier Transform method can provide consistently
valid answers by using efficient resources both time-wise and
space-wise.

(8]

(9]

[10]

[11]

Weimerskirch , Andr’e, dan Christof Paa. (2006). Generalizations of
the Karatsuba Algorithm for Efficient Implementations. (Online).
Auvailable: https://eprint.iacr.org/2006/224.pdf.

Yendri, S., Soelaiman, R., Yuhana, U. L., and Yendri, S. “Dynamic
Programming Approach for Solving Rectangle Partitioning Problem,”
IAENG International Journal of Computer Science, vol. 49, no.2, pp.
410-419, 2022.

Yendri, S., Soelaiman, R., and Purwananto, Y., “Hybrid Algorithm to
Find Minimum Expected Escape Time From a Maze,” Engineering
Letters, vol. 31, no.1, pp. 346-357, 2023

Zahin, Sabit. (2021). A collection of algorithms, data structures and
templates for competitive programming. (Online). Available:
https://github.com/sgtlaugh/algovault/blob/master/code_library/fft.cp
p.

Volume 55, Issue 9, September 2025, Pages 2954-2962

