
 

  
Abstract—An asymmetric train schedule optimization 

method is proposed to solve the problem of subway tidal 
passenger flow in view of the contradiction between service 
quality and operating energy consumption in urban rail transit 
systems. Firstly, the passenger loading process is considered, 
and the coupling relationship between the train operation status 
and the dynamic evolution of passengers is established. Based 
on this, a passenger satisfaction piecewise function is 
constructed, and the waiting time of passengers on the platform 
is used to quantify their dissatisfaction. The total train energy 
consumption and passenger dissatisfaction are taken as the dual 
objectives of the model, while train operation constraints are 
considered to establish an asymmetric timetable optimization 
model. To solve this complex timetable optimization problem, 
an improved non-dominated sorting genetic algorithm 
(SNSGA-II) based on simulation is designed. The optimization 
results show that by comparing timetable optimization schemes 
under three different passenger flow disturbance scenarios, 
when the per capita dissatisfaction is identical, the optimized 
timetable reduces train energy consumption by 5.7%, 9.8%, 
and 17.6% respectively compared with its benchmark timetable 
under different passenger flow environments. Sensitivity 
analysis of the model parameters demonstrates that adjusting 
the weighting of passenger travel can adapt to operational 
requirements. Performance comparison between the proposed 
asymmetric and symmetric timetables under tidal passenger 
flow reveals that the asymmetric timetable achieves up to 7.12% 
energy consumption optimization, indicating its effectiveness in 
adapting to directional and temporal passenger flow variations 
with more flexible and efficient optimization potential. 
 

Index Terms—Urban rail transit, Asymmetric timetable, 
Passenger satisfaction, Train energy consumption. 
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I. INTRODUCTION 
ith the continuous expansion of urban rail transit, the 
total operating energy consumption is increasing year 

by year, leading to an increase in carbon emissions from 
transportation companies. According to operational data 
statistics, train traction energy consumption accounts for 
more than 50% of urban rail transit electricity consumption. 
In addition, a relationship of mutual influence and restriction 
exists between traction energy consumption and service 
quality. For the same line, the higher the service level, the 
greater the required traction energy consumption. In the 
context of energy conservation and carbon reduction, 
reducing traction energy consumption while ensuring the 
service level of rail transit has become an urgent problem to 
be solved. For operating companies, configuring a better train 
timetable is related not only to the service quality of urban 
rail transit, but also can help them improve transportation 
efficiency and reduce train energy consumption. Therefore, 
developing a train timetable that is guided by passenger time 
needs and takes train energy consumption into consideration 
is of great significance to the operation organization of urban 
rail transit. 

In existing studies, many scholars directly convert 
passenger time demand into passenger waiting time for 
optimization. Yuan et al. [1] developed a passenger flow 
control model based on the network level system to reduce 
the total waiting time of passengers outside the station and on 
the platform and the number of stranded passengers, taking 
into account the coordination between variable passenger 
demand and station capacity and train capacity. Zhang et al. 
[2] took passenger waiting time and enterprise profit loss 
caused by train passenger capacity as the objective function 
to optimize the train operation plan, reducing waiting time, 
profit loss, and train quantity demand. Ran et al. [3] 
conducted a comprehensive study on multi-unit operation 
mode and train undercarriage turnover to optimize the train 
timetable, reducing the total waiting time of passengers and 
train operation costs. Sun et al. [4] considered the optimal 
idling time point of the train during section operation, the 
appropriate stop time, and headway, and designed a new 
two-layer solution method based on deep reinforcement 
learning (DRL) and non-dominated sorting genetic algorithm 
II (NSGA-II) for model calculation to achieve energy saving 
of subway trains and reduce passenger waiting time. 

On this basis, some scholars have considered the tidal 
characteristics of urban rail transit passenger flow. Gong et al. 
[5] considered the unbalanced temporal and spatial 
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distribution of passenger demand on two-way subway lines, 
proposed an integrated optimization method for train 
timetables and rolling stock circulation plans with flexible 
short turns and energy-saving strategies, optimized and 
reconstructed a quadratic constrained quadratic programming 
(QCQP) model, aiming to minimize the weighted sum of 
passenger waiting time and energy cost. Zhou et al. [6] 
considered the joint optimization of train timetables and 
vehicle circulation plans on a tidally oversaturated subway 
line, deployed different types of rolling stock with different 
loading capacities to match the unbalanced passenger flow, 
solving with passenger waiting time and operating cost as the 
optimization objectives. 

Although the objective and actual waiting time of 
passengers can represent the service level of urban rail transit 
in a macro sense, passenger satisfaction under different 
waiting times is inherently subjective and cannot fully reflect 
actual passenger perceptions. Zhang et al. [7] divided 
passenger waiting time into waiting time outside the station 
and waiting time inside the station based on time-varying 
passenger flow, introduced a penalty coefficient to correct 
perception errors between station areas, used a 
simulation-based two-stage genetic algorithm to solve the 
problem, and obtained a relatively optimal train schedule. 
Chen et al. [8] introduced an exponential function as a 
platform waiting perception coefficient to correct deviations 
between passengers' objective waiting time and their 
psychological perception thereof. 

In existing research on reducing train energy consumption, 
the academic community has proposed various methods to 
improve energy efficiency through train timetable 
optimization. Some scholars consider optimizing train 
operation strategies in sections to ensure each train adopts 
optimal operation curves. Huang et al. [9] established a 
mixed integer nonlinear programming model for 
energy-saving train timetables considering passenger 
demand and rolling stock circulation plans, reducing energy 
consumption by optimizing traction strategies for each train 
in sections. Zhou et al. [10] divided lines into track sections 
by substations, developed train flow strategies per timetable, 
and designed an efficient particle swarm algorithm to save 
traction energy in sections while enhancing regenerative 
braking energy utilization. Yin et al. [11] simultaneously 
optimized timetables and train operation curves, constructed 
two linear-form optimization models, and decomposed the 
original problem into sub-problems via a Lagrangian 
relaxation-based heuristic algorithm to achieve higher 
computational efficiency. 

In addition, some scholars have considered optimizing 
train energy consumption by combining other operating 
modes and environments. Deng et al. [12] proposed a train 
operation curve optimization method based on control 
parameters such as control force and speed under 
express/local modes, and obtained energy-saving operation 
curves for sections under both modes. Yao et al. [13] used 
ambient temperature, train departure interval, and passenger 
load as input variables to analyze train energy consumption 
and service levels. Tian et al. [14] employed virtual coupled 
train set (VCTS) control technology as a train control strategy, 
introduced four control modes, and investigated energy 
consumption, safety, and comfort during operation. 

Finally, some scholars have conducted noteworthy 
research, including efficient algorithms. Zhang et al. [15] 
established a two-level optimization model to optimize 
timetable stability and train energy consumption, designing 
an integrated optimization method with particle swarm 
algorithm. Xu et al. [16] adjusted travel time and station stop 
time through timetable optimization to improve customer 
experience and energy efficiency. Yin et al. [17] established 
an approximate dynamic programming method to avoid 
dynamic programming's curse of dimensionality, achieving 
faster computation than genetic and differential evolution 
algorithms. In separate work, Yin et al. [18] established a 
real-time scheduling algorithm for nonlinear Markov 
transition processes, utilizing expert knowledge and 
reinforcement learning to improve energy consumption, 
passenger comfort, and train delays. Haahr et al. [19] 
developed a model considering line constraints, designing a 
dynamic programming solution to obtain the optimal traction 
energy consumption, with the solution strategy based on 
particle swarm algorithm. 

Through the above literature analysis, although using 
perception coefficients can correct deviations between total 
waiting time and passengers' total psychological perception 
time, the individual differences in passenger waiting time 
will lead to inaccurate correction results. Secondly, while 
optimizing traction strategy selection for trains in sections 
achieves energy consumption optimization, the energy 
consumption reduction is relatively limited compared to 
increasing train frequency. 

Based on the above analysis, we characterize satisfaction 
using passenger waiting time and optimize per-capita 
passenger satisfaction as the objective function, better 
reflecting actual travel experiences. Additionally, we propose 
a train energy consumption calculation method based on train 
motion equations to achieve precise scheduling control. This 
paper establishes state equations for trains and passengers, 
introduces a time-satisfaction function to quantify 
satisfaction based on actual waiting time, adopts per-capita 
satisfaction and total train energy consumption as dual 
objectives, and constructs an asymmetric train schedule 
optimization model incorporating operational constraints. 
Finally, an improved simulation-based nondominated sorting 
genetic algorithm (SNSGA-II) solves the model, with a 
tidal-flow bidirectional line case study validating the model's 
rationality and algorithm efficiency. 

II. PROBLEM STATEMENT 
This paper considers a bidirectional urban rail transit line 

with tidal phenomena. The number of stations on the line is 
K , station 1 and station K  represent the starting station and 
the terminal station of the line respectively. Depot are set at 
both ends of the station, the train marshaling method is fixed. 
Since urban rail transit lines usually include two directions, 
up and down, let 1f =  represent the up direction, and 2f =  
represent the down direction. Since the two directions are 
opposite, the passenger flow demands between uplink and 
downlink can be considered independent of each other. In 
order to intuitively describe the operation of the two 
directions, K  stations are abstracted into 2K  platforms. 
When the train arrives at the terminal, there are two options: 
turn back in front of the Depot, or drive into the Depot and  
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Fig. 1.  The layout of the considered urban rail line.

wait for departure instructions. The train is sent from Depot 1 
or after turning back, passes through platforms 1,2, , 1K −  
in sequence, and then arrives at the terminal platform of the 
direction. After passing Depot 2 or the train turns back, the 
train continues to run in the down direction, passes through 
platforms 1, 2, , 2 1K K K+ + −  in sequence, and finally 
arrives at the terminal platform 2K   of the down direction. 
Set station collection to { }max1,2, , ,K k k=   , and the train 

collection to { }1,2, , , fI i i=   . The operation diagram of a 

certain urban rail transit line is shown in Fig. 1. 

III. OPTIMIZATION MODEL 

A. Assumptions 
To facilitate mathematical modeling, this paper adopts 

these assumptions: 
(1) Passengers queue in arrival order at each platform, with 

uniform distribution across platform screen doors. 
(2) Passenger waiting time includes train dwell time at 

stations. 
(3) Line conditions are ideal; only train basic resistance is 

considered. 
(4) Trains stop at all stations without overtaking. 
(5) Trains adopt acceleration, coasting, and braking modes 

in sections. 

B. Passenger Behavior 
The passenger arrival time period is discretized into 

several unit time intervals tΔ , and the passenger flow 
intensity in each time interval is counted. Assuming a

,( )i kG t  

is the passenger flow intensity arriving at station k  at the a
,i kt  

time interval, The cumulative passenger flow between 
adjacent trains is as follows 

 
s
,

s
1,

a
,

cum
, ( )

i k

i k

t

t
k i kiq G t

−

= ∑  (1) 

Where, s
,i kt  is the departure time of train i  at station k ; a

,i kt   
is the time when the passenger flow  arrives at platform k ; 

a
,( )i kG t  is the intensity of the passenger flow arriving over 

time; and cum
,i kq  is the cumulative passenger flow from time 

period s
1,i kt −  to s

,i kt . 
Passenger boarding numbers are constrained by both the 

arriving train's residual capacity and alighting passenger 
volume. Alighting passenger calculations follow the method 
in [20]. Since onboard passenger numbers correlate 

proportionally with alighting volumes, proportionality 
coefficients determine alighting quantities. dep

, 1i kq −  is the 
number of passengers on the train when train i  is about to 
arrive at station k , and .i kn  is the proportionality coefficient 
of passengers getting off when train i  arrives at station k . 
Then off

,i kq  is the number of passengers getting off train i  at 
station k . 
 off dep

, . , 1i k i k i kq n q −=  (2) 
Assume that the passengers arriving at time 

e s s
, 1, ,[ , ]i k i k i kt t t−∈  just cannot take the train i  at station k . 

When the train capacity is insufficient, passengers will board 
the train in order according to the principle of queuing, and 
the passengers who arrive later will inevitably wait for the 
next train. When the train capacity is sufficient, all the 
accumulated passengers in time period s s

1, ,[ , ]i k i kt t−  can take 

this train. Then e
,i kt  can be determined by the following 

formula. 

 ( ) { }
e
,

s
1,

a dep off strand cum
, , 1 , 1, ,min ,

i k

i k

t

i k i k i k i k i k
t

G t Q q q q q
−

− −= − + −∑  (3) 

Where, Q  is the capacity of the train; strand
1,i kq −  is the number of 

stranded passengers who were unable to board train i  at 
station k . 

Since this article assumes that if a passenger fails to take 
the first train he encounters, he must take the second train. 
Therefore, when the cumulative passenger flow plus the 
number of stranded people exceeds the remaining capacity of 
the train, a new number of stranded people will appear. 

 ( )
s
,

e
,

strand a
, ,

i k

i k

t

i k i k
t

q G t= ∑  (4) 

Based on the above analysis, the number of passengers on 
board when train i  departs from station k  can be 
determined by the number of stranded passengers in the 
previous stage and the number of passengers boarding in the 
current stage. 

 ( )
e
,

s
1,

dep dep a strand
, , 1 , , 1,(1 )

i k

i k

t

i k i k i k i k i k
t

q q n G t q
−

− −= − + +∑  (5) 

When the initial state of the operating time, the number of 
passengers at the station and the number of passengers 
stranded at the station is determined, the number of stranded 
passengers at each stage and the number of passengers when 
the train departs can be solved through the given timetable. 
Furthermore, the satisfaction of passengers about time at each 
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station can be solved through the number of stranded 
passengers at each stage and the waiting time w

,i kt  of 
passengers. 
 w s a

, , ,i k i k i kt t t= −  (6) 

C. Train Operation 

Since this paper sets the train's stop time as a fixed value, 
the departure time of train i  at station k  is equal to the 
departure time of train i  at station 1k +  minus the train's 
stop time and the train's running time from station i  to 1k + . 
 r ps s

, , 1 , , 1i k i k i k i kt t t t+ += − −  (7) 

Where, r
,i kt  is the running time of train i  between stations k  

and 1k + ; p
,i kt  is the stop time of train i  at station k , which 

is a fixed value given in advance. 
The traction force, braking force, and traction energy 

required for train operation in sections are determined by the 
train's dynamic equations. 

 f b r
dep

0 , 1

( ) ( ) ( (
)
))d

d (1 )
( ) ( )

/( 1000i k

F v t F v t F v tv
t m q m

− −
=

+ +φ
 (8) 

Where, φ is the traction rotation mass coefficient; 0m  and 

1m  are the train's own weight and unit passenger weight 
respectively; fF  and bF  are the maximum traction and 
braking force that the train can output at speed v . 

rF  denotes the train's basic resistance, comprising air 
resistance and mechanical friction resistance, exhibiting 
positive correlation with instantaneous speed. 
 2

r ( )( )F A B v t tC v= + ⋅ + ⋅  (9) 
Where, A , B  and C  is the empirical coefficient, and its 
calculation method is based on [21]  

The train operation strategy in sections consists 
exclusively of acceleration, coasting, and braking. Therefore, 
the train's running time in an interval equals the sum of its 
acceleration, coasting, and braking times; similarly, the 
interval running distance equals the sum of acceleration, 
coasting, and braking distances. 
 r f d

, ,
b

, ,i k i k i k i kt t t t= + +  (10) 

 bf d
, , ,i k ik k i kL l l l= + +  (11) 

Where, kL  is the interval running distance between stations 
k  and 1k + . 

D. Objective Function 
(1) Average passenger dissatisfaction 
Passenger dissatisfaction exhibits positive correlation with 

station waiting time: longer waits yield higher dissatisfaction. 
Within a

, 1 ,
s

,
s[ , ]i k i k i kt t t−∈ , Passengers arriving at the platform 

within one hour before train departure board sequentially 
according to queuing principles. Since this paper considers 
passenger flow demand across the entire operating period, 
passenger satisfaction during off-peak periods is 
characterized solely by platform waiting time. During peak 
hours, some passengers cannot board the first arriving train 
due to capacity constraints, resulting in significantly reduced 
satisfaction. After arriving at the platform, passengers form 
an expected train arrival time under waiting psychology 

perception, constituting a waiting time window min[0, ]t . 
However, passenger waiting time cannot always be 
guaranteed within min[0, ]t  due to inevitable deviations in 
vehicle arrival times. 

When the passenger arrives at s s
1, ,[ , ]i k i kt t−  and plans to take 

the train i  at station k , the following situations will occur: 
 When the passenger's arrival time is  

, 1 ,
e

,
s[ , ]i k i k i kt t t−∈  and 

w
, min[0, ]i kt t∈ , the train arrival time meets the passenger's 

psychological expectations, the dissatisfaction is 0.  When 
the passenger's arrival time is a

, 1 ,
e

,
s[ , ]i k i k i kt t t−∈  and 

w
, min max[ , ]i kt t t∈ , since the train arrival time does not meet the 

passengers' psychological expectations, the passengers will 
perceive the waiting time as long, which will increase their 
dissatisfaction. after the waiting time exceeds the 
psychological expectation, the waiting time and 
dissatisfaction are not linearly related. The greater the 
deviation between w

,i kt  and mint , the greater the 
dissatisfaction. Due to variability in train departure intervals, 
this paper models passenger satisfaction change with waiting 
time under maximum departure intervals. When passengers 
board the first train after waiting only the maximum interval, 
their dissatisfaction equals -1.  When ,

sa
, ,

e[ ],i k i k i kt t t∈ , the 
passenger arrives at station k  and cannot take the train i  but 
takes the train 1i + , the passenger does not take the first train. 
At this time, the passenger's dissatisfaction is -1. 

Based on situation  and , a satisfaction piecewise 
function is constructed using passenger waiting time to 
evaluate passenger travel quality. Introducing the time 
satisfaction piecewise function ( )w

,i kF t . 

 ( ) ( )
( )

w
, min

ww
, min,

min maxw
i

w

, m n
,

0 0

2 exp
]

1 e
[

xp

[ , ]

,

i k

i ki k
i

k
k

i

t t

t tF
t

t
t t

t t

 ∈
  ⋅ −ϕ −=   −  + −ϕ −

∈
  

(12) 

Where, mint  is the minimum departure time interval; maxt  is 
the maximum departure time interval; ϕ  is the time 
sensitivity coefficient, ϕ > 0 , The function sensitivity 
increases as ϕ  increases. The function example is shown in 
Fig. 2. 
 

 
Fig. 2.  Passenger dissatisfaction function. 
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As shown in Fig. 2, when the passenger dissatisfaction is the 
lowest, w

,( ) 0i kF t = , and when the passenger dissatisfaction is 

the highest, w
,( ) 1i kF t = . The second segment of the piecewise 

function is a satisfaction function constructed using a 
decreasing exponential Sigmoid function, where this function 
is generated by transforming the Tangent Sigmoid function. 

Based on situation , the dissatisfaction of passengers 
who failed to take the first train they encountered is -1. We 
only need to calculate the number of stranded people strand

,i kq  
who took train i  at station k  to get this part of the 
dissatisfaction. 

Average passenger satisfaction represents passenger 
experience. Total satisfaction comprises: the satisfaction 
from boarding the first train within passengers' expected time, 
the satisfaction from boarding the first train beyond expected 
time, which varies nonlinearly with waiting time, and the 
stranded passenger satisfaction. 

 ( )
e s
, , min

s s
, min 1,

a a w strand
tot , , , ,( ) ( )

i k i k

i k i k

t t t

i k i k i k i k
t t t

S FG t G t t q
−

−

−

= + −∑ ∑  (13) 

The average satisfaction per person is determined by total 
passenger satisfaction divided by total boarding count. Since 
minimization is required, the objective function avgS  is 
obtained by multiplying the original function by -1. 

 
( )

( )
tot

,
avg a

,
,

i I k K

i k
i I k K

S
S

G t
∈ ∈

∈ ∈

= −
∑

∑
 (14) 

(2) Train energy consumption 
This paper employs total train energy consumption to 

represent enterprise transportation benefits. During operation, 
trains utilize maximum traction and braking forces during 
acceleration/deceleration phases, determining required 
traction force, braking force, speed, and traction energy for 
each train in sections. 

The traction energy consumption of train i  in section 
[ ], 1k k + . 

 ( ) ( ) ( ) ( ) ( )
yf

, ,T r
, 0 0f fd di k i ktt

i kE t F t v t t F t v t t= ∫ ⋅ + ∫ ⋅  (15) 

The regenerative braking energy of train i  in section 
[ ], 1k k + . 

 ( ) b
,B r

, 0 b ( ) ( )di kt
i kE t F t v t tη= ∫ ⋅ ⋅  (16) 

Where, η  is the regeneration coefficient that determines the 

efficiency of the regenerative braking system, [ ]0,1η ∈ . 
Regenerative braking energy can be stored and reused. 

Thus, sectional net energy consumption equals traction 
energy consumption minus regenerative braking energy. 
 ( ) ( ) ( )r T r B r

, , ,i k i k i kE t E t E t= −  (17) 

Since traction force varies with passenger load in sections, 
energy consumption differs among trains running identical 
sections. The total energy consumption totE  equals the sum 
of energy consumed by all trains across all sections. 
 r

tot ,
,

( )i k
i I k K

E E t
∈ ∈

= ∑  (18) 

Where, iL  is the distance from station k  to station 1k + . 

E. Model Constraints 

(1) Train operation related constraints 
Train departure intervals must exceed the minimum 

interval to ensure operational safety, while remaining below 
the maximum interval to prevent excessive passenger 
waiting. 
 x

s
min 1, , ma

s
i k i kt t t t+≤ − ≤  (19) 

To ensure passengers entering stations during operational 
hours can board, the last train's departure time must be no 
earlier than the subway service end time. 
 

max

s end
,i kt t≥  (20) 

Train speed remains equal when entering and exiting 
sections, while continuously satisfying maximum speed 
constraints. 

 
( ) ( ) ( )

( )

s s r
, , ,

max

0

0
i k i k i kv v t v t t

v t V

 = = +


≤ ≤
 (21) 

(2) Restrictions on passenger behavior 
The number of passengers at each station and train at the 

start of the operating hours is 0. 

 
plat
0,
dep
,0

0
0

k

i

q
q

 =
 =

 (22) 

This paper stipulates that passengers stranded due to 
insufficient train capacity must board the subsequent train, 
requiring the second train's capacity to exceed the stranded 
passenger count. 
 strand dep off

, 1, 1 1,i k i k i kq Q q q+ − +≤ − +  (23) 

IV. ALGORITHM DESIGN 

Considering that the optimization objectives in the model 
include satisfaction based on passenger waiting time and 
train energy consumption level, and the timetable 
optimization problem has a complex structure, involving 
both micro and macro levels. Each train timetable solution is 
determined by the departure time of each train at the 
departure station. Solution evaluation requires simulating 
inter-station operations to derive intermediate variables, 
necessitating calculation of boarding/alighting volumes per 
train per station, onboard passengers at departure, and 
waiting passengers per station per time interval for energy 
and dissatisfaction metrics. To simulate passenger loading 
and compute these variables, an improved Simulation-based 
Nondominated Sorting Genetic Algorithm (SNSGA-II) is 
designed. SNSGA-II retains non-dominated sorting and 
crowding distance calculation while incorporating simulation 
models and adaptive genetic operations, achieving superior 
balance between computational efficiency and solution 
quality. 

According to the above analysis, the algorithm is divided 
into two parts. Algorithm 1 (the above behavior is used as an 
example) can derive relevant intermediate variables and 
target variables based on the train schedule obtained by the 
NSGA-II algorithm. The NSGA-II algorithm evaluates the 
quality of the current solution based on the objective function 
value obtained by Algorithm 1. Algorithm 1 is shown in 
Table. I. 
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TABLE I 
SIMULATION ALGORITHM OF THE PASSENGER LOADING PROCESS 

Algorithm 1 

Input: The generated solution l
rX , passenger demands a

,( )i kG t . 

Related intermediate variable(s): cum
,i kq , dep

,i kq , off
,i kq , e

,i kt , w
,i kt  and 

strand
,i kq . 

Output: avgS  and totE . 

1: for 1:i I=  do 
2:     for 1:k K=  do 
3:         calculate cum

,i kq , strand
,i kq  and dep

,i kq  constraints (1), (4) and (5) 

according to l
rX , a

,( )i kG t ; 
4:         if 1k >  then 
5:             calculate off

,i kq  by constraints (2) according to dep
,i kq ; 

6:         end if 
7:         calculate e

,i kt  by constraints (3) according to off
,i kq , dep

,i kq , 
strand
,i kq , cum

,i kq ; 

8:         calculate w
,i kt  by constraints (6) according to l

rX , a
,( )i kG t ; 

9:         calculate avgS  according to constraints (13), (14); 

10:         calculate totE  according to constraints (18); 
11:     end for 
12: end for 
13: Retrun avgS  and totE  

 
According to Algorithm 1, the SNSGA-II framework is 

designed as shown in Algorithm 2. Set the maximum number 
of iterations maxl  and the population size M , define l  and r  
as the number of iterations and the encoding index of the 
individual, l

rX  is the individual r  in the generation l , p is 

the parent of the lth generation, and { }1 , , ,l l l
l r MP X X X=   . 

Each individual represents a train schedule plan, and the 
decision variable is the set of train departure times at the 
departure station: { }s

,1it t i I= ∈,∀ . Encode the decision 

variables and randomly generate M  feasible solutions as the 
initial population 0

rX . SNSGA-II algorithm is shown in 
Table. II. 

 
TABLE II 

FRAMEWORK OF “NSGA-II + ALGORITHM 1” ALGORITHM. 
Algorithm 2 

Input: Timetable generation constraints, passenger demands a
,( )i kG t . 

Output: The best found solution maxl
rX . 

1: 0P ← by initialize population( M ) according to Timetable 
generation constraints; 

2: for max0 :l l=  do 
3:     Tournament selection; SBX crossover; Polynomial mutation; 
4:     calculate avgS  and totE  according to Algorithm 1; 

5:     evaluate( lP ); 
6:     if 0l ≠  then 
7:         R ← '

l lP P ; 
8:         Assign-rank-and-crowding( R ); 
9:         Elitist strategy; 

10:     else 
11:         Assign-rank-and-crowding( 0P ); 
12:     end if 
13: end for 
14: Retrun maxl

rX . 

V. STUDY ANALYSIS 

A. Overview of Routes and Passenger Flow 
In order to verify the effectiveness of the SNSGA-II 

algorithm, this paper takes a subway line as an example for 
calculation. The total length of the line is 26.055 km, with 12 
stations throughout the line. The tidal passenger flow 
phenomenon is obvious on this line. The Up direction 
passenger flow demand is shown in Fig. 3, and the Down 
direction passenger flow demand is shown in Fig. 4. The 
proportion of passengers getting off at each station is shown 
in Fig. 5. The historical reference data of the original interval 
distance and running time are shown in Fig. 6. 
 

 
Fig. 3. Up direction passenger flow demand. 
 

 
Fig. 4. Down direction passenger flow demand. 
 

 
Fig. 5.  Section passenger flow alighting rate. 
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Fig. 6.  Section running distance and time. 
 

The relevant parameters are shown in Table. III. 
 

TABLE III 
MODEL RELATED PARAMETERS 

Symbol Meaning Numeric 
φ  Traction rotation coefficient 0.06 

0 / tm  Train weight 192 

1 / kgm  Average passenger quality 60 

Q  Train capacity 1468 
A  Resistance empirical coefficient 5.023 
B  Resistance empirical coefficient 0.045 
C  Resistance empirical coefficient 0.0009 
ϕ  Time Sensitivity Factor 0.05 
η  Regenerative braking coefficient 0.5 

min / st  Minimum departure time interval 240 

max / st  Maximum departure time 600 
p
, / si kt  Train stop time 30 

/ st∆  Unit time granularity 1 

 

B. Optimization Results Analysis 
In the optimization calculation, the passenger flow 

condition is the given historical passenger flow demand. The 
population size is set to 50. After generating the initial 
solution, 100 iterations are performed. At the same time, the 
fitness value of the objective function of each generation is 
recorded to better reflect the convergence of the SNSGA-II 
algorithm. The change of the fitness value of the objective 
function of each generation is shown in Fig. 7. The 
relationship between the total energy consumption of the 
train and the per capita satisfaction during the iteration of the 
SNSGA-II algorithm is shown in Fig. 8. 
 

 
Fig. 7. Convergence diagram of SNSGA-II algorithm. 

 
Fig. 8.  Pareto frontier solution of SNSGA-II algorithm. 
 

As shown in Fig. 7, the fitness value of the SNSGA-II 
algorithm has remained unchanged at the 31st generation, 
indicating that the algorithm has converged at the 31st 
generation. The fitness value changes relatively smoothly, 
indicating that the SNSGA-II algorithm has a high 
adaptability to this case.As shown in Fig. 8, overall, the 
SNSGA-II algorithm took 579 s to iterate 100 generations, 
and from the 30th generation, as the number of iterations 
increases, the overall trend of the population has stopped 
changing, indicating that the population has converged. In 
terms of the distribution range of the solution, when the per 
capita passenger dissatisfaction changes from 0.018 to 0.569, 
the train energy consumption level changes from 112.446 10×  
to 109.64 10×  J. From the change of the target value, the 
higher the per capita satisfaction, the more energy 
consumption is required. This is because in order to reduce 
the waiting time of passengers, the train will choose to 
maintain a smaller departure time interval. Overall, except 
for the random generation of the initial solution, the 
distribution of the solution is relatively uniform. Finally, the 
train energy consumption level is positively correlated with 
the per capita dissatisfaction, that is, the higher the passenger 
dissatisfaction value, the greater the energy consumption. 

C. Comparison of Timetable Options under Different 
Passenger Flow Scenarios 

This paper considers three passenger flow disturbance 
scenarios, namely “weak tidal passenger flow”, “tidal 
passenger flow” and “strong tidal passenger flow” (“Scenario 
1”, “Scenario 2” and “Scenario 3”). The "tidal passenger 
flow" scenario refers to historical data, and there are obvious 
passenger flow peaks in the morning and evening. For 
example, at 08:00, the downward direction is about 4 times 
that of the upward direction, and at 17:45, the upward 
direction is about 3 times that of the downward direction. 
"Weak tidal passenger flow" and "strong tidal passenger 
flow" are generated based on historical data by keeping the 
passenger flow OD structure unchanged and adjusting the 
passenger travel time. For example, for a certain passenger, 
his boarding location and destination remain unchanged, but 
the travel time is adjusted from peak period to off-peak 
period (weak tidal passenger flow), or from off-peak period 
to peak period (strong tidal passenger flow). Examples of 
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changes in up and down direction passenger flow demand for 
three disturbance scenarios are shown in Fig. 9 and Fig. 10. 
 

Fig. 9.  Up direction passenger flow demand in three scenarios. 
 

 
Fig. 10.  Down direction passenger flow demand in three scenarios. 
 

This paper optimizes the timetables for the passenger flow 
scenarios of "weak tidal passenger flow", "tidal passenger 
flow" and "strong tidal passenger flow". For comparison, 
designed a time-divided scheduling strategy as a benchmark 
solution, taking the departure interval of 06:30-08:00 and 
16:00-19:00 as 5min30s, and the departure interval of the 
remaining time periods as 8min. During the optimization 
process, the population size is set to 50, and 100 iterations are 
performed. The horizontal and vertical axes of the figure 
represent the two optimization goals of per capita 
dissatisfaction and total train energy consumption, 
respectively. Lines of different colors represent different 
scenarios, and each point in the figure represents a complete 
timetable solution.Benchmark and optimized solution 
performance per scenario appears in Fig. 11. 

 
Fig. 11.  Comparison of timetable options for each scenario. 
 

As shown in Fig. 11, all timetable optimization schemes 
are optimized when the passenger flow conditions are the 
same. Besides, when passenger dissatisfaction is the same, 
the train energy consumption of the schedule optimization 
scheme is significantly lower than that of the baseline scheme. 
The comparison of the three scenarios shows that at the same 
train energy consumption level, the more significant the tidal 
characteristics, the higher the per capita passenger 
dissatisfaction, because insufficient train capacity occurs 
during peak passenger flow periods, resulting in more 
stranded passengers, which significantly increases passenger 
dissatisfaction. The train energy consumption and passenger 
dissatisfaction of the three passenger flow disturbance 
scenarios are shown in Table. IV. The benchmark scenarios 1, 
2, and 3 in Table IV correspond to passenger flow scenarios 1, 
2, and 3, respectively. 

As shown in Table. IV, compared with the benchmark 
solution, under the premise of ensuring that passenger 
dissatisfaction does not increase, the train energy 
consumption levels in the "weak tidal passenger flow", "tidal 
passenger flow" and "strong tidal passenger flow" scenarios 
are reduced by 5.7%, 9.8% and 17.6% respectively. And 
under the condition of the same train energy consumption, 
the per capita dissatisfaction optimization rate of the three  
scenarios compared with their benchmark solutions reached 
16.9%, 18.8% and 24.7%. The optimization rate of the 
solution is low in the weak tidal passenger flow scenario, 
because the symmetric scheduling strategy adopted by 
thebenchmark solution performs better in the "weak tidal 
passenger flow" scenario, and the benefits of optimizing the 
thebenchmark solution performs better in the "weak tidal 
passenger flow" scenario, and the benefits of optimizing the 
timetable are small. When the tidal characteristics of urban 
rail transit passenger flow are obvious, significant benefits 
can be brought by designing an asymmetric timetable. 

TABLE IV 
COMPARISON OF ENERGY-SAVING OF OPTIMIZATION SCHEMES 

Name Benchmarks 1 Benchmarks 2 Benchmarks 3 Scenario 1 Scenario 2 Scenario 3 
Net energy consumption/(1011) 1.749 1.953 2.113 0.821-2.017 0.964-2.446 1.121-2.741 

Passenger dissatisfaction 0.096 0.175 0.215 0.011-0.522 0.018-0.569 0.025-0.587 
Net energy consumption optimization rate/(%) - - - 5.7 9.8 17.6 

Dissatisfaction optimization rate/(%) - - - 16.9 18.8 23.7 
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D. Parameter Analysis of Time Sensitivity Coefficient ϕ  

This section reflects the changing relationship between 
passenger satisfaction and train energy consumption by 
conducting a sensitivity analysis on the time-sensitive 
coefficient ϕ . The passenger flow condition adopts the 
historical passenger flow demand, and the train interval 
running time and distance, and the proportion of getting off 
refer to historical data. In the optimization calculation, the 
population size of both scenarios is 50, and 100 iterations are 
performed. The impact of the parameter changes of the 
simulation optimization model on the optimization results is 
shown in Fig. 12 and Fig. 13. 
 

 
Fig. 12.  Pareto frontier solution of SNSGA-II algorithm when ϕ = 0.1 . 

 

 
Fig. 13.  Pareto frontier solution of SNSGA-II algorithm when ϕ = 0.15 . 

 
As shown in Fig. 12 and Fig. 13, When ϕ = 0.1 , the 

average passenger dissatisfaction changes from 0.018 to 
0.524, and the train energy consumption level changes from 

112.510 10×  to 109.45 10×  J. When ϕ = 0.15 , the average 
passenger dissatisfaction changes from 0.017 to 0.488, and 
the train energy consumption level changes from 

112.467 10×  to 109.36 10×  J. The larger the time sensitivity 
coefficient ϕ , the smaller the upper limit of the passenger 
satisfaction interval. And while keeping the passenger 
satisfaction unchanged, reducing the value of parameter ϕ  
will require more train energy consumption. This is because 
the larger the ϕ , the higher the sensitivity of the function. 

Under the same passenger waiting time, when ϕ  increases, 
the passenger satisfaction will increase. Therefore, in 
practical applications, the value of parameter ϕ  can be 
adjusted to control the value weight of passenger travel and 
train energy consumption. 

E. Advantages of Asymmetric Timetable 
This section compares the performance of the symmetric 

and asymmetric timetables. An asymmetric timetable is one 
in which the departure intervals in the up and down directions 
are not exactly the same due to differences in the up and 
down passenger flow characteristics. The passenger flow 
conditions of both scenarios are based on historical passenger 
flow demand, and the train interval running time and 
alighting ratio refer to historical data.. In the optimization 
calculation, the population size of the two scenarios is 50, and 
100 iterations are performed. The optimization results of the 
symmetric and asymmetric schedules in the same passenger 
flow scenario are shown in Fig. 14. 
 

 
Fig. 14.  Comparison of symmetric and asymmetric timetable schemes. 
 

As shown in Fig. 14, the energy efficiency of the 
asymmetric scheme is better than that of the symmetric 
scheme, reaching a peak of 7.12% at a per capita 
dissatisfaction of 0.244. When the per capita dissatisfaction is 
lower or higher than 0.244, the energy saving ratio shows a 
gradually decreasing trend; when the per capita 
dissatisfaction is lower than 0.206 or higher than 0.409, the 
difference between the two schemes is less than 2%. This is 
because when the per capita dissatisfaction is low, the 
shortest departure interval is taken as much as possible in 
both the uplink and downlink directions; when the per capita 
dissatisfaction is high, the longest departure interval is taken 
as much as possible in both the uplink and downlink 
directions. In these two cases, the asymmetric scheme 
degenerates into a symmetric scheme, so there is little 
difference in the optimization objectives. When the average 
dissatisfaction is around 0.244, the timetable is more flexible 
and the optimization space is larger, and the asymmetric 
timetable has a significant optimization effect. Fig. 15 shows 
the part between 06:00-10:00 of the above asymmetric 
timetable optimization scheme. This scheme is a scheme with 
a passenger dissatisfaction of 0.152 and a total train energy 
consumption of 1.918×1011 under the conditions of historical 
passenger flow. 
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Fig. 15.  Optimized timetable. 

 
As shown in Fig. 15, the timetable optimization scheme is 

asymmetric. When passenger dissatisfaction is low, trains 
will run at the minimum departure time interval during peak 
hours. The departure time interval in the upward direction 
after 08:00 is relatively short, because this is the morning 
peak period of the up direction passenger flow. The departure 
time interval in the downward direction is relatively long 
between 06:00 and 10:00, indicating that the downward 
passenger flow is relatively small during this period. In 
addition, by observing the difference in the departure time 
intervals in the upward and downward directions, we can find 
that the passenger flow tidal phenomenon of the line is quite 
obvious. 

VI. CONCLUSION 
In order to improve the energy efficiency of subway train 

operation and passenger travel experience while solving the 
problem of subway tidal passenger flow, this paper 
establishes an energy-saving asymmetric timetable 
optimization model based on train operation status and 
passenger dynamic evolution equations. Taking passenger 
dissatisfaction and total train energy consumption as the 
optimization objectives, a simulation-based SNSGA-II 
solution algorithm is designed to achieve the optimization 
results of the asymmetric train timetable of urban rail transit 
based on the Pareto optimal solution. Using a bidirectional 
line with tidal passenger flow as an example and 
incorporating historical data, the effectiveness of the model 
and algorithm is verified. The main conclusions include six 
points. 

(1) The SNSGA-II algorithm, which integrates adaptive 
genetic operations with train status and passenger flow 
loading simulations, exhibits rapid convergence. The 
algorithm converges within 30 iterations and produces a 
uniformly distributed Pareto solution set. Using the obtained 
Pareto optimal solutions, energy-saving timetable 
optimization can be achieved. Results indicate that when per 
capita dissatisfaction increases from 0.018 to 0.569, total 
train energy consumption decreases significantly, revealing 
an inherent trade-off between service quality and operational 
efficiency in practical operations. 

(2) When passenger flow exhibits strong tidal 
characteristics, symmetric timetables is poorly matched with 
passenger flow, whereas asymmetric timetable designs yield 
substantial benefits. In the comparative experiments between 
the baseline scheme and the optimized scheme under strong 

tidal scenario, the optimized timetable is the most optimized 
compared to the baseline scheme, with the total train energy 
consumption optimized by 17.6%. Under weak tidal 
scenarios, owing to lower passenger volumes, the 
asymmetric timetable yields minimal benefits with only 5.7% 
optimization. 

(3) By quantifying the discrepancy between actual 
waiting time and passengers' psychological perception time, 
the nonlinear relationship between waiting duration and 
dissatisfaction is characterized. A piecewise satisfaction 
function based on passengers' actual waiting time is proposed.  
The dissatisfaction value of each passenger is considered 
when constructing the model, and the optimization result is 
more in line with the actual travel experience of passengers. 
Case analysis shows that the nonlinear dissatisfaction and 
detention penalty mechanism based on passenger waiting 
time can reduce the satisfaction deviation by 23.7% in the 
strong tidal scenario, verifying the influence of psychological 
perception factors on the optimization results. 

(4) Through the sensitivity analysis of the model input 
parameter ϕ , the changing relationship between passenger 
satisfaction and train energy consumption is explored. The 
results show that when the parameter ϕ  is larger, the 
timetable scheme has better performance, but the value 
weight of passengers in travel is weakened, resulting in a 
worse experience for passengers in travel, so in practical 
application, the value of parameter ϕ  should be weighed. 

(5) The energy-saving advantage of asymmetric 
timetables is significant. Under tidal passenger flow scenario, 
the asymmetric timetable can effectively adapt to the 
differences in passenger flow direction and time period by 
flexibly adjusting the departure intervals in the uplink and 
downlink directions, and has a significant optimization effect. 
Experiments show that compared with the symmetric 
timetable, the asymmetric scheme can achieve 7.12% energy 
consumption optimization when the per capita dissatisfaction 
is 0.244. In addition, when the per capita dissatisfaction and 
satisfaction are low or high, the advantages of the asymmetric 
timetable will be reduced. 

(6) This paper considers setting up Depot at both ends of 
the line. In future research, the initial number of trains in the 
Depot at the beginning of the operation time can be 
considered. Based on this expansion, the number of trains can 
be considered. And scheduling strategies such as 
express-slow trains, long-short route, etc. can be added. 
Coordinated optimization of multi-line timetables and 
integration with bus systems can be incorporated. In addition, 
the train operation can also consider the energy-optimal 
interval control strategy. However, since different strategies 
require different operating times, the model complexity will 
increase significantly. 
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