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Fixed Theorems in New Extended B Metric Spaces
and Applications to System of Linear Equations

B Padmavathi, M V R Kameswari, M Madhuri and A Bharathi

Abstract—This study aims to introduce generalized 6 —
extended Z-contractions within new extended b metric spaces
and investigates the existence of fixed points for such contrac-
tions. To reinforce the developed theory, we present several
illustrative examples. Additionally, we apply the theoretical
results to solve a system of linear equations. As a practical
demonstration, a numerical example is included to compute
the current in an electrical circuit.

Index Terms—Fixed points, generalized o — ¥ extended Z-
contractions, New extended b metric spaces, Triangular /-
orbital admissible map with respect to 7, Simulation functions,
System of linear equations.

I. INTRODUCTION

Etric spaces play a crucial role in mathematics and its
applications, inspiring several efforts to generalize
their structure. These include the introduction of b-metric
spaces[3], extended b metric spaces[6], new extended
b metric spaces[1] and various other novel generalizations.

We begin with the following definitions.

Definition I.1: ([3]) Consider a mapping
dpm, : O x U — R, where U is a nonempty. The mapping
dpm, 18 termed as b metric, when a constant S > 1, is such
that dp,, fulfills the subsequent axioms: V oe, 7 and A € U

1) dbm(]7()3):0 <~ ] =0,
2) dbm(]>03) = dbm(oemj)’
3) dbm(],(E) S S[dbm(jvk) +dbm()\,CE)]-

Then (U, dp,,) is designated as b metric space shortly
BMS.

An extended version of the generalized b-metric
space, known as the extended b-metric space, was introduced
by Kamran et al. [6].

Definition 1.2: ([6]) Consider ¥ : U x U — [1,00) and
depm : O x U — RT be two mappings, where U is non
empty set. depy, 1S extended b metric , if d.p,, satisfies the
following: for all ,ce and A € U

i depm (7,0¢) = 0 if and only if 7 = ce,
ii debm(], 03) = depm ((E,])
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iii debm (7, 2) < 9(9,00)[debm (2, A) + depm (A, €)]-
Then (U, dep,) is designated as extended b metric space.

Recently, in 2019, new type of generalized b metric space

specifically new extended b metric space added by Aydi et
al. [1].
Definition 1.3: ([1]) A mapping ¢ : U x U x U — [1,00)
and depm, : U X U — RT be two mappings, where U is non
void. dep,, 1s called new extended b metric, if d,,cp,, fulfills
the subsequent axioms:V j,ce and A € O

1) dpebm (g, ) = 0 if and only if j = e,

2) dnebm (3, ) = dpebm (e, ),

3) dnebm(]7 03) < 19(.77 e, Y)[dnebm(]a A)"'dnebm(kv 03)]
Then (U, dyepm) is termed as new extended b metric space.

If ¥(3, e, &) = ¥(3, ), the above definition coincide with
Definition 1.2 and if 9(y, e, A) = s, for s > 1, we get
b metric space.

Definition I.4: ([1]) Consider a new extended b metric space
(U, dpepm) with 9.

1) A sequence {©,} in (U, dnepm) 1S dpepm convergent
to ©* € U if for € > 0, there is N, € N such
that dpepm(©n,0%) < ¢ for all n > N.. ie,
limn, 000, = OF.

2) A sequence {O,} in (U, dnetm) i8S dnepm Cauchy
sequence if
Hmm,n—)-{-oo dnebm(@na @)m) =0.

3) A new extended b metric space (U, dyeprm ) is complete
if every Cauchy sequence in U is convergent to some
point in O.

The concept of comparison functions was introduced by

Rus [9] and has since been widely explored by various re-
searchers to develop broader classes of contractive mappings.

Definition 1.5: ([9]) A mapping C : [0,00) — [0,00) is a
b-comparison function if it meets the following criteria:
1) C is nondecreasing

2) 3p, € N,ce0,1),S >1 and
nonnegative series Zzozl ¥, which is convergent such
that SPHLCPHL(¢) < SPCP(t) + ), for p > po and
any t > 0.
Lemma L6: ([9]) If C : [0,00) — [0,00) is a b-comparison
function then:
1) for any ¢ € [0,00); the series > .o, s'C'(¢) converges
2) bs : [0,00) — [0,00) defined as bs = Y 0, ST (0)
is nondecreasing and is noncontinuous at ¢ = 0.
A function ( is referred to as a b-comparison function if it
satisfies the following properties:

D 0@ <t
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2) lim,_,o, C"(t) = 0 for each ¢ > 0.

From this point forward, we denote ®, the class of all

b- comparison functions and it will be assumed that all newly
introduced extended b-metric spaces possess the property
of continuity, ensuring that the associated distance function
behaves continuously with respect to its arguments.

Lemma 1.7 Consider a new extended b metric space on
a non empty set O, 7 : U — O. If
3 a sequence {t,}neny D t, > 1 and

Y (On, Oni1, Onia) <t for all m >n and n € N.
Moreover,

0< dnebm(@n; @n+l) < E(dnebm(@n7 @n—l)) (1)
for all n € N, © € ® then the sequence {©,,} defined by
O, = TO,_; for all n € N is a Cauchy sequence in U.

Proof: We define a sequence {©,} in U by
O, = TO,_1. Through successive application of inequality
(1), it follows that

dnebm(@n; @n+l) S En(dnebm(@07 @1))

In view of property C, we get
lim dnebm(@n7 @n+1) =0.
n— oo

In view of Definition 1.3, we attain

dnebm(ena S) )
< 19(@717 enJrla )

[dnebm(@na @n+1) + dnebm( n+1, @m)}
< 19(@", Op11,0 ) nebm(@m @n+1)+
19(@”, @n+17 @m)ﬁ(@fH—la @n+2a @m)
[dnebm(@n+1a @n+2)+ dnebm(@n+27 em)]
< (On, Ont1, Om)dnebm(On, Ont1) + ¥ (On, Oni1, Om)
HOnt1, Onta, Om)dneom (Ont1; Onga)eent
V(On, On11,01m)9(Ont1,On12,01)9(Ony2,0n13, 1)
........ HOm—2,0m-1,0m)dnebm (Om—1,Om)
< (01, 09,0,,)9(O2,05,0,,)9(O3,04,O,,)......
900,041, 0.,)0"(dpepm (©0, 1)
+0(01,03,0,,)9(O2,03,0,,)9(03,04, Opn)......
9(On11,On+2,01)0" 1 (depm (©0, ©1))
Fo 4+ 9(01,04,0,,)9(02,03,0,,)9(03,04,0.)....

19(®m—27 em—h em) Em_l(dnebm(@Oa el))
Let Qn = 2?21 Ej (dnebm((;)Ov @1)) Z:l ﬁ(@ia (;)i-i-lv @m),
for all n € N.

We deduce that 9(0,,,0,,+1,0,,) < Q1 — Q1 for
all m > n.
Let
Zflozl En( nebm(@Ovel))H (61;914—179 )
Let p = max{p1, p2, ..-pn}- We have
J
an = B"(dneom (00, 01)) [[ (64, ©is1, Om)

i=1

S [:n (dnebm(@Oa 61))pn

In light of Lemma 1.6, we have
C™(dnebm (0, ©1))p” converges.

that the series

Applying comparison tests for series convergence,
we derive

> ne1 B (dnebm (90, ©1))
converges, and hence

z:l 19(@’“ @i+17 em)

lim dnebm(@n7 @m) =

n,Mm—00
thus {©,} is a Cauchy sequence.

Definition L1.8: ([8]) Consider U a nonempty set and ¢ :
Ux U — [0,00). A mapping T : U — U is ¢- orbital
admissible mapping if @ € U whenever d(ce, Te) > 1 it
follows that §(7ce, T2ce) > 1.

Definition 1.9: ([8]) Consider U a nonviod set and ¢ : U x
U —[0,00) . T : U — U is triangular 0- orbital admissible
mapping if ), ce € U whenever 6(ce,7) > 1 and 6(3,Ty) > 1
it follows that 6(ce, 77) > 1.

Definition 1.10: ([4]) Consider a selfmap 7 : U — U and
0,9 : U x U — [0,00) be two mappings, T is d-orbital
admissible mapping with respect to 9 if for every ce € U the
condition

0(oe, Toe) > Y(oe, Toe) ensures that

6(Toe, T?0e) > I(Toe, T?ce).

Definition I.11: ([4])Let 7 : U — U and §,7 : U x U —
[0,00), T is triangular 6-orbital admissible mapping with
respect to 9 : if for all ce,y) € O

1) d-orbital admissible mapping with respect to 9.

2) 6(ce,3) > V(ee,3) and 6(3,Ty) > 93, Ty =
6(ce, Tg) = V(ce, Ty).

Lemma 1.12: ([4]) Let 7 be a triangular §-orbital admissible
mapping with respect to ©). Suppose that there exists an
element 3 ug € U such that §(ug, Tug) > Hug, Tug),
we define a sequence {u,} by setting u,1 = Tu,. Then
for m,n € N with m < n, it follows that &(tum,,u,) >
I U, U ).

Definition 1.13: ([5]) Consider 4,9 : U x U — [0.00),
where U is a nonvoid set. A mapping 7 : U — U is
d — ¥ continuous if for each sequence {u,} in U with
O(Up, tpy1) = Fup,upsq) for all n € N and u, — u
as n — oo implies Tu, — Tu as n — oo.

Alternatively, Khojasteh et al. [7] introduced a novel class
of mappings known as simulation functions and demon-
strated that numerous existing results in the literature follow
as direct consequences of their established findings.

Definition 1.14: ([7]) A mapping (s, : [0,00) x [0,00) —
(—00, 00) defines a simulation function if (s, meets the
subsequent conditions:

D) Cm(0,0) =0
2) (sm(u,0) <o —u, forall u,v >0
3) if {u,} and {v,} are sequences in (0,00) such that
lim, yoot, = lim, 4000, = I € (0,00) then
lim sup,, _, o, Com (0n,upn) < 0.
Several examples of simulation functions can be found in
the related literature, such as [4,7].

In a recent study, Chifu and Karpinar [4] proposed the no-
tion of admissible extended Z-contraction mappings within
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the framework of extended b-metric spaces and derived fixed
point results for these mappings.

Definition I.15: ([4]) Let (U, depr,) be a extended b metric
space equipped with the function ¢ : U x U — [1,00). A
mapping 7 : U — U is referred as admissible extended Z
contraction if there exists a simulation function (s, € Z
such that

Com (6(0, 7)debm (Toe, T7),C(My(ce, ) >0,
where C € ¥ and for all 5, ce € U,

Mﬂ(oem?) debM(]>T3)}'

Definition 1.16: ([3]) Let (U, depy) be an extended b metric
space endowed with a function ¥ : U x U — [1,00).
Assume that there exists a sequence {Y,},ecn such that
¥ On, Om) < Yy, for all m > n. Furthermore, if 7 : 0 — U
is admissible extended Z- contraction satisfying:

(2)

= max{debm(oe, ])7 debm(mu T@),

1) 7 is triangular §-orbital admissible mapping;
2) there exists Oy € U such that §(©g, TOp) > 1;
3) 7T is continuous;
or
4) if {u,} is a sequence in U such that §(up, tny1) > 1
for all n and u,, — u € U as n — oo, then there exists
a subsequence {u,x)} of {u,} such that
O(Un(ry,u) > 1 for all k.
Under these conditions, it follows that 7 admits a fixed point
©* € U. Further, {T"©y} is converges to O*.

Definition L.17:([2]) Let (U, dyepm) be a new extended b
metric space associated with the function ¥ : U x U x U —
[1,00). A function 7 : U — U is termed a nonlinear
contraction if there exist a continuous, increasing function
© with ¢"(t) — 0 as n — oo for all ¢ > 0 such that the
following conditions hold:

Com(Toe, Ty) < o(M(ce, 7))
for all ce, 7 € U and
M (ce, )

(3)

= ma"r{dnebm(oea ])u dnebm((ﬁa T(B),

Defintion L.18: ([2]) Let (U, dyepm) be a new extended b
metric space associated with the function

¥ : UxUxU — [1,00). The mapping T : U — U satisfying
condition (3) in addition to the following conditions:

1) sup,,>; limn_ﬂm%ﬁ((%nﬂ, Opi2,0,) <1,
where ©,, = T"0p, n € N.

2) For €0, limn—moﬁ(.]a On, (;)n+l)
and 1imy,— 009(9, O, T7) exists and are finite.

Then 7 has a fixed point in U.

Motivated by the works of Chifu and Karpinar[4], Karan
et. al [6]., and Aydi et. al., [2], we discuss generalized
0 — 9 extended Z-contractions (Definition II.1) within the
frame work of new extended b metric spaces. We obtained
fixed points for these contractions (Theorems I1.2, 1I.3 and
IL.4). We provide illustrative examples (Examples IIL.3. II1.4
and IIL.5) to support the developed theory. As a practical
application, we obtain solution to a system of linear equations
(Theorem IV.1). Finally, we provide a numerical example
demonstrating the computation of electric current flowing
through a circuit.

dnebm (]7 T]) } .

II. MAIN RESULTS
Defintion IL1: Let (U, dyepm) be a new extended b metric
space associated with the function ¢ : U x U x U — [1,00).
A mapping 7 : U — O is an generalized § — U extended
Z contraction for all y,ce € U if there exists a simulation
function (s, € Z, L € ¥ and L > 0 such that 6(ce,7) >
¥(ce, 7) implies

Csm(dnebm(Twa T]), C(Mﬁ (037 .])) + LN19 ((Ev .]))

where My(ce, 7)

>0, (4

_ dnebm (08,7 ) dnebm (3,7 7)

= 7’)’LCLI{dneb1n(O3 ]) L 1+dnebm(08b,7) ’

dnebm(mwT])dnebm(JaTm) Anebm ((E Tm)(l"l'dnebm(J T(E)]
T+dnebm (ce,7) ’ 1+dnebm (c,7)

dpebm (J,T(P) [1+dneb7n (mvaﬂ }
1+dnebm (ce,7)

and

N((Ea]) = Tnzn{dnebﬂl(CE T]) nebm (j7 TCE)
nebm(('e TJ)[]"""dnebm 77T(E)] }

1+dnebm(ce,7)

Theorem I1.1: Consider a new extended b metric space
(O, dpebm) associated with the function
¥ : UOXU XU — [1,00). Assume that there exists a sequence
{Yn} with Y,, > 1 such that }(0,,,0,+1,0m) < Y, forall
n € N and m > n. Additionally, assume that the mapping
T : U0 — U is a generalized 0 — U extended Z contraction
satisfies the following conditions :

1) The transformation 7 is a triangular §-orbital

admissible with respect to ¢/

2) 3 ©; € U such that §(01,T701) > ¥(O©1,70O1), and

3) T is § — ¢ continuous mapping.
Under these conditions, it follows that 7 admits a fixed point
©* € X . Further, for any ©; € U {7T"O;} is converges to
©* with respect to the extended b-metric dy,cpm, -

Proof: Consider an initial point ©; € U. From condition (%)
of our premises, i.e., 6(01,T01) > ¥(01,T©O1), define a
sequence {©,} in U by

=76, (5)
for all n € N. Suppose that ©,,, = ©,,,11 then ©,,, follows

as a fixed point of 7. Hence, Suppose that ©,, # ©,,4; for
all n e N.

In view of Lemma 1.12, we have
5(@117 @ﬂ+1) > 19(@”, @n+1)-

for all n € N.

Utilizing condition (4) when ce = ©,,_; and j = ©,,, we
have
Com (dnebm (On, Ont1), My(On_1,0,)+

n+1

(6)

LNy(©p-1,0,)) >0, (7
where
Mﬂ(gn—h@n)
:max{dnebm( n— I;T@n 1)
Anebm (On—1,TOn_1)dnebm (On,TOn )
1+dnebm(®n)@n 1)
nebm(@n 1;T® )dnebm(®n7T®n 1)
1+dneb7n(() On 1)
nebm(()n ]Ton 1)[1+dnebm(0 Ton 1)]
1+dneb7n(® @'n. 1)
Anebm (©n,TOn 1) [1+dnebm (On—1,TOn_1 ]}
1+dnebm(o On— 1)
S ma'r{dnebm(@nv @n—l)v dnebm(@n; @n+l)} (8)

and Ny (©,_1,0,) =
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min{dnebm(@n; Tgn—l); dnebm((;)n—la T(;)n);
dnebm(971.—17T®n)[1+dnebm(®n)T@n—1)]} =0
1+dnebm (On,Opn—1) e

Suppose that dnebm(@n; Qn—l) < dnebm((;)nv @n-i-l),

then from (7), (8) and (9), it follows that
0 < Csm (dnebm(@n; @n+1)7 E(dnebm(@n; @n-i-l))
< E(dnebm(@n7 en-i-l) - dnebm(ena @n-l—l))-
Consequently,

©

dnebm(ena en+l) < E(dnebm(@na 9n+1))
< dnebm (On, Ont1)s

a contradiction. Therefore

nebm(On, On—1) > dnebm(On, Ont1).

Similarly, we can prove that

Anebm(On—1,0n-2) > dneom(On, On_1).

Hence from (10) and (11), we conclude that

dnebm(@n7 @n-i-l) > dnebm(@n-i-h @n+2)
for all n € N.

Thus from (4), we have,
0 S Csm (dnebm((;)n-i—l; (;)n)v E(dnebm(@n; Qn—l))
< E(dnebm(@Tu @n—l)) - dnebm(@n7 ®n+1)
which implies
dnebm(on-i—l;

(10)

Y

) < [:( nebm(@n; (;)n—l))

< B (dnebm (00, 01)). (12)

On letting n — oo and in light of property of C, it follows
that

limn—ﬂ)odnebm(@nv @n+l) =0. (13)

From Lemma 1.7 together with condition (13), it follows
that the sequence {©,,} is a Cauchy sequence in the space
O. In view of U is a complete extended b metric space, we
may therefore can choose ©® € U such that

1My — colnebm (On, ©) = 0. (14)
By the property of 7 is continuous, it follows that
limp— oo dnebm (T On, TO) =0 (15)

this implies © = 7 O.
Hence the theorem.

Theorem IL.3: Let (U, d) be a new extend b metric space
equipped with a function ¢ : U x U x U — [1,00) and
consider a sequence {p,} such that p, > 1 for all n € N,
with the property that ¥(©,,, 0,11, O,,) < pp. Also, assume
that 7 : U — U is generalized § — ¢ extended Z contraction
satisfying conditions (i), (ii) of Theorem II.2 along with

(iii) a sequence {O©,} in U is such that 6(©,,,0,11) >
¥ (Opn,Opyq) forall m € A and ©,, — O as n — oo,
then there exist a sub sequences {O,, } of {©,} such
that §(0,,,,0%) > 9(O,,,,0*) for all k € NV.
Then 7 has a fixed point ©* € U and {7T"O:} is
converges to ©* is a fixed point of 7.
Proof. Proceeding in the manner of the proof of Theorem
I1.2, we construct a sequence {©,,} by the iteration ©,,,1 =
TO,, and establish that it converges to ©* € O.

Furthermore, it holds 6(©,,0,11) > ¥(O,, 0, +1), for all

n € N. According to our assumption (iii), there exist a

sub sequence {O,,} of {©,} such that §(0,,,0%) >

¥(O,,,0%) for all k& € N. Utilizing condition (4) when

7=0% and e = ©,,, we have

0< CSM(dnebm(T@an@*)a E(Mﬁ(@nm @*))
+LNy(0,,,0%))

< C(Mﬁ(@nk R 9*))+LN19(Onk , @*)

which implies

nebm (Tenk ) T@* )

dnebm(T@nk ) Te*) < C(Mﬁ(@nk ) 6*)) + LNﬂ(('_)nku
(16)

My(©n,,0%)
dnebrn((_)n;C 7T@n(k))dnebm(®*v7—@*)

= maz{dncom(On,,, 0%), 1+dneom (On, ,0%)
dnetm (0", TOn,; Vdnetm (On, , TO™)
1+dnebm(®nk7® ) ’
dnebm (©7, T@nk )[1+dnebm(®nk 7T@n(k))]
1+dnebm(®’nk o )

dnebm (Ony ;T On(k)) [1+dnebm (07, TOn, )]
- ’CHdn(C’;;(@nk;ﬂ 2% (17)
and
Nﬂ(@nkae ) mzn{dnebm(@nkaTe ) nebm(@ T@nk)

dnebm (Ony , TO") 1+dnerm (0%, TOn, )]
T neom @y 07 2=} (18)

Letting limsup as k — oo, in the inequalities (17) and (18),
we attain

limsupg—soo My (0y,, 0%) = (19)

limsupg— oo Ny (O, ,0%) = (20)

Thus from (16), (19) and (20), we get
limsupg— oo dnebm (T On, , TO*)
< limsupy— 0oC(dnetm (On,,, TO¥))
which implies d,epm (0, TO*) = 0. Hence 7O* = ©*.

Theorem I1.4: Along with the hypotheses of Theorem I1.3,
assume the following:

(£) 2 9 # e € 8,3 2 € U such that 6(y,x) > 9(y,),
d(ce,z) > V(ce,z) and §(x, Tz) > J(x, Tx), under these
conditions 7 admits a unique fixed point.

Proof. Assume that u* , v* be two fixed points of 7 with

uw* #£ vt

Hence, by our presumption, 3 2z € U such that 6(y,z) >
9(3,2), 8(ce,x) > Voe,z) and 6(x,Tx) > I(z, Tx).

Using Theorem I1.2, it follows that {7z} converges to a
fixed point z*(say).

In view of 7 is triangular d-orbital admissible map with
respect to ), we have

0(z, T"xz) > ¥(x, T™x) and hence

O(u*, T"x) > d(u*, T"x) and 6(v*, T x) > J(v*, T"x)
(21)

N0W7 dnebm (U*v Tnx) S M19 (dnebm (U*v Tnz))

Anebm (W Tu*)dnebm (T2, T a)

< max{dnebm (u*, Tz), T dnopm (u*, T ") )
dnebm(u* 7Tn+1u)dnebm(7—nma7—u*)
I+dneom (u*,Tme) ’

dpetm (T"u, Tu) [1+dpepm (T2, T 2)]
1+dneb7n(71*-,7-nx) ?

dnebm (T" 2, T @) [1+dnebm (T u, Tu™)] }
1+dneb7n(U*anm) ’
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Therefore
llmsupn—M)oMﬂ (dnebm (U*7 Tnx)) = dnebm (U*a Z*)-

Also
N19 (dnebm(U* 5 Tnz))

= min{dpepm (u*, T 12), dpepm (T, Tu*),

dnebm (TnmaTn+1x) [1+dneom (T u, Tu")] }
1+dnebm (u*, T ) ’

Thus
llmsupn—)ooNﬂ (dnebm (U*v Tn$)) =0.

We now show that u* = z*.
Now from (4) and (21), we have

O S Csm (dnebm (Tu*; Tn+lx))a E(Mﬂ (dnebm (U*a Tnx)))
which implies
dnebm(U*an+1I) < E(Mﬂ(dnebm(U*a T"x))).

Letting limtsupt as n — oo, we have
Anem (27, u*) < limsupp oo C(My (dpepm (2%, T"T)))
< C(dpepm (2%, u*))
< dpepm (2%, u*),
this leads to a contradiction. Therefore z* = u*.

In a similar manner, we can prove that v* = z*.
Thus, it follows that u* = v*.

Thus 7 admits a unique fixed point.

III. COROLLARIES AND EXAMPLES

Corollary IIL.1: Let U a new extended b metric space
equipped with the functional ¥ : U x U x U — [1,00).
Assume that there exists a sequence {Y,} ; Y, > 1, such
that ¥(0,,0p,41,0,) < Y, holds for all n € N and
m > n. Assume that 7 : U — U is a generalized ¢ extended
Z contraction i.e., for all oe,y € U

Csm(dnebm (T ce, TJ)7 C(Mﬂ (ce, ]))) >0

where C € ® and My(ce, ) is defined as in Definition IL1.
Furthermore, suppose that

(22)

1) T is a triangular J-orbital admissible mapping with
respect to 1J.

2) there exists Oy
3(O1,TO1),

3) either T is continuous

€ U such that 6(0,,70;) >

or
4) if {©,,} is a sequence in U such that 6(©,,,0,,41) > 1,
holds for all n € N and ©,, — © as n — oo, then
there exist a subsequence {©,,, } of {6,,} with
§(0,,,0%) > 1.
Then 7 has a fixed point ©* € U and {770} is converges
to ©*.
Moreover, for all j,ce € Fix(T), we have §(y, ) > 1,

where Fixz(T) denotes the set of fixed points of T, then T
has a unique fixed point.

Proof. Proof follows by choosing L = 0 and ¥(j,ce) = 1 in
Theorem II.2,Theorem II.3 and Theorem I1.4 respectively.

Corollary IIL.2: Consider a new extended b metric space
U with a functional ¢ : U x U x U — [1l,00) and 6,9 :
U x U — [0,00) be two mappings. Further, suppose that
there exists a sequence {Y,} ; Y, > 1, forall n € N
such that ¥(0,,,0,11,0,,) < Y, for all m > n. Consider,
T:0—=0Uisad—19 extended Z contraction i.e.,

dnebm (Toe, TJ) S C(Mﬂ(wa ])) + LNﬁ(Oea ])

where 0 € ® , L > 0, My(ce, ) and N (ce, ) are defined as
in Definition II.1. Further, suppose that

(23)

1) T is a triangular §-orbital admissible mapping with
respect to o

2) there exists Oy
¥(01,7T61), and

3) T is § — 9 continuous mapping

€ U such that §(01,70;) >

or

4) {©,} is a sequence in U such that §(6,,,0,11) > 1
foralln € N and ©,, — © as n — oo, then there exist
a subsequence {0, } of {©,,} such that §(0,,,,0*) >
1.
Then 7 has a fixed point ©* € U and {7"©O;} is converges
to ©%.

Proof. Proof follows by choosing d(t, s) = s —t in Theorem
I1.2, Theorem II.3 and Theorem II1.4.

Example IIL3: Let U = [0, 1], we define
9:0xUxU—[0,00) by

_ 1 (t)+oe(t)+d(t)
(e, 7,d) = g T SUD¢e(o,1] I-Jﬁ-](t)fw(t)—&-d(t)

and dy,epm : U X U — [0,00) by
0 if o=

dnebm(oaa]) =

(2 —9)* if e #).
Clearly, d;,cpm (e, 7) forms a new extended b-metric space
with respect to 9.
Also, suppose that 0(t) = L.
It is easy to see that [ is increasing and

Cm(0)I1_, (04, ©:4101,) = t(i)"(g)” = t(55)" < 0.

Hence C is a b-comparison function.
We now define 7 : U — U by
Erifgelo, 3]
Ty =
1—4if ye(3,1].
Further, suppose that 6,79 : U x U — [0, 00) by

5+e®  if g0 €0,4]
6(g,00) =
0 otherwise,
24+e®  if 5, €0, 3]
and U9(y,) =
3 otherwise.

When o €
I(Toe, TTee).

Hence 7 is d-orbital admissible with respect to 9.

Suppose that §(ce, 7) > 9¥(ce, 7) and &(ce, T ) > O(ce, Ty),

then j,ce,77 € [0,3] which implies that 6(ce,T7) >

[0,1], we have &(Toe,TTce) >
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¥(ce, T7). Hence T is triangular § orbital admissible with
respect to 1.

Consider a sequence ©, € N such that ©,, — ©* as
n — oo and 6(©,,0,411) > (O, 0,11) for all n € N,

then {©,,} C [0, 1] for all n € NV.
Then limy, 00 7Oy = limy o0 22 = lim, 00 82 41 =
T+1=Ts

hence 7 is § — ¢ continuous .

We now verify the inequality (2.1.1) with d : [0,00) X

[0,00) by d(t,s) = 5 —t and L = 0.
d(dnebm (T(E T]) ( (dnebm(wvj))))

= d(d/nebm(()E)T-"_l m) Mﬂ(dnebm(oevj)))

= éMdnebm(oea]) - TGdHEbm((E7])
> db(?»]) - f_ﬁdnebm(%a]) = dnEbylnG(OBJ) 2 0.

Hence 7T satisfies all the hypotheses of Theorem I1.2 with
= l and 2 are the fixed points of 7.

Here we observe that condition (H) fails to hold at ce =

and j = 1, then there is no x such that 6(3,z) > (3,
and §(1,z) > ¥(1,x).
Example IIL4: Let U = [0, £], we define by
Y:0xUxU—[0,00) by oe,3,9) =ce+y+9+1.
and dpepm : O X U — [0,00) by

0 if e=

3
x)

dnebm(%uj) =

(@ +9)° ife#).
Clearly, dyepm (e, ) forms an extended b-metric space
with respect to 9.

5t
43"
It is easy to see that 0 is decreasing and

() =t

Hence 6 is an extended comparison function.
We now define that 7 : U — U by
1if €0,

suppose that (t) =

Cm()IT_,9(O:, i1, O) = 1(

Ty =
J__zf]€(275]
Further, suppose that 6, : U x U — [0,
et if g€ [0, 3]

o0) by

6(,c) = 2 ifyeli1],e=0

0 otherwise,
and

if 9,00 €10, 3]

V(g,00) = 1 ifjeli1],e=0

3 otherwise.

When ce,; € [0,3], we have §(Tce,TTce) >
(T e, TTee).

Hence 7T - is d-orbital admissible with respect to 9.

Suppose that §(ce, ) > 9(ce, 7) and §(ce, T9) > I(ce, T9),
then j,ce,7) € [0,1] which implies that §(ce,T7) >
¥(ce, Ty). Hence T is triangular ¢ orbital admissible with

respect to ). Also, T is § — 9 continuous .

We now verify the inequality (4) with d : [0, 00) x
by d(t,s) =% —tand L = 0.

= d(dnebm( 1 Z)a 43M19(db((£ .])))

[0, 00)

10
= 129Mdnebm(%vj) dob((ﬂ,])
10d cbm s 1
2 % 64dnebm(ma])
_ 511dpebm ()
- 8256 > 0.

Hence 7T satisfies the inequality (4). Also, since for any
e # 3 € U, we have 6(3,0) > 9(3,0), 6(ce,0) > P(ce,0)
and §(0,70) > 1¥(0,70), T satisfies condition (H). Hence
T satisfies all the hypotheses of Theorem 1.2 and 7 = 0 is
the unique fixed point of 7.
Example IIL5: Let U = [0,
U — [0,00) by

¥(ee,5,0) =g+0e+9+1.

and dy,epm : U X U — [0,00) by

0 if e=y

2], we define by (g : U X U x

dnebm(oe;]) =
(@ +7)? ifae#).
Clearly, dpepm(ce,7) forms an extended b-metric space
with respect to 9.

suppose that 0(t) = L

21"
It is easy to see that 6 is increasing and
; 1 1
" (DI, 904, O111, 1) = H57)"(7)" = U(35)" < oo.

Hence ( is b comparison function.
We now define that 7 : U — U by
2if y€l0,4]

+3if1€(3,3)

3 if 1=3

T

a+5 if 1€(35.2]
Further, suppose that 6,9 : U x U — [0,00) by

6J+Oe Z.f J, e e [05 %]
0 otherwise,
and
€ 2 Zf],(BE[O,%]
19(]7@) = 1 ije(%,l},oe:%

3 otherwise.

When o € [0,4], we have §(Toe,TTce) >
H(Toe, TTee).

Hence T- is é-orbital admissible with respect to 9.

Suppose that d(ce, 7) > (e, 7) and (e, T7) > I(ce, T7),
then j,ce,77 € [0,3] which implies that d(ce,T7) >
¥(ce, T7). Hence T is triangular § orbital admissible with
respect to . Let d : [0, 00) x [0, 00) by d(t,s) = 5 —t Also,
T is § — ¢ continuous.

We verify the inequality (4)

Case(i) When j € [0, 7] and ce € (5, 1) then
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d(dnebm (T]’ T(P)v E(Mﬂ (dnebm (.]a (P))) + LN(.]? (P))

_ 1142 [14(e+2) 1
= JEREEIA ) Lo+ g+ §)?

Case(ii) When ce, j € (1, 1) then

d(dnebm (T,77 TO@), C(Mﬁ (dnebm (]7 Oe))) + LN(]> Oe))
3+ 3) 2 [1+ (24 3)?

_ %[(oe 7 124_)(][+oe()239 3)7] + L(ce+ g+ %)2)] . (oe+j)2,

Hence T satisfies the inequality (4) for any L > 0.

Case(iii) When e = §, j€ (§,4) ory=1, 7€ (5, 3)

then

d(dnebm (7;Ja TO@Z), C(My(dnebm (9, ®))) + LN (3, e))
241 +1

= SR I L 16+ D)) -2+ D)2

Hence 7T satisfies the inequality (4) for any L > 47.

Case(iv) When j = 1,

with out loss of generality suppose that ce # % then

d(dnebm (T]a TCE)v E(Mﬁ (dnebm (]a (E))) + LNﬁ (]a 03))
+1)2)(3+1)2

= JE R + Lo+ DD - 2+ D)2

Hence T satisfies the inequality (4) for any L > 22,

Case(V) When e, ) =
dnebm (T3, Toe) = 0, henc

d(dnevm (T, T ), E(Mﬁ (dnebm (3, @))) + LN(3,02)) > 0
Hence T satisfies the inequality (4).

we(horw=1 se(h),

3 [0, 1] then we have
e

Also, since for any 7 # ce € U, we have 6(3, 3) > 9(3, 1),
5(ce,2) > (ce,2) and 6(3,7%) > (3, T3), T satisfies
condition £.. Hence 7 satisfies all the hypotheses of Theorem
I1.2 and j = { is the unique fixed point of 7.

Also, when j = % and e = i, dnebm (T3, Toe) = % and
My(y,ce) = %, by virtue of conditions on ¢, there does not
exist any ¢ such that equation (3) is satisfied hence 7T is not a
nonlinear contraction. Hence we conclude that Theorem 1.18,
cannot be applied to this example. Hence, we can conclude
that our results are more general than the results due to Chifu

et. al,[4] and Aydi et. al. [2].

IV. SOLVING A SYSTEM OF LINEAR EQUATIONS

In this segment, we will make an attempt to find unique
solution of system of linear equations and we apply this
method to solve a RLC Circuit. Consider the following
system of equations.

t111 + 01292 + oo + 0100 = p1
02191 + 02192 + ... + 62000 = p2
03171 + 03292 + oo + O390 = p3
Hnl]l + 9n2]2 + ... + enn.]n = Pn (24)
consisting of n linear equations in n variables, where
J € U, where [6),,] is a coefficient matrix and let U = R™.

We define depm : O X U — R by

dnebm(]a (P) = SUPtelo,1] |](t) - (P(t)
d

(1), (1), d(t)) = 2 + sup LAEROLAO

Then U is complete new extended b-metric space.

%

Example IV.1: Let (U, dpepm) be new extended b metric
space with the function ¥} : UxUxU — [1, 00). Then system

of linear equations defined by (24) has a unique solution if
Z?:l,j:l |0:5] < 0.5.

Proof: Let 0,V : UxU — [0, 00). We define a linear mapping
T : U — U when (g, ce) > 9(g, ce) such that

Ty=T9+ M where 7= (31,72, ..--, Jn) € R" and M =

(P12 pn) € R™ and
011 01n
021 02n
F =
onl Onn

We now prove that 7 is contraction mapping. Consider
dnebm (T 7, Tee)
— 2mawr<ical (5304505 + p5) — (S20ijoe; + pj)|?

= 2mazi<i<nl (5703 (5; — o)

< 2maxy<i<n (3710i5]%17; — cej?)

< 2mawi<i<n 20|01 [2] % mazi<icnls; — ol

< 0.5mazi<i<nl|); — Oej|2

< 0.5(2maz1<i<nlg; — &j]?)

< 0.5dpetm (7, )

< 0.5dnebm My (3, )

< C(dnebm My (g, ce)),

where C(t) = 1 <1 and

1

5

Hence by Corollary III.2, the system of equations has a
unique solution.

C"(t)HZZlﬂ(@Z, @H_l,@m) < ( )n3n = t(g)n < 0.

To demonstrate this, we consider the following example.

Consider the following LCR Circuit with V; = 0.1 and
Vo =0.1.

0.1
—_—>i3
B
A b—AM—F— AM—c
0.02 0.08
il i2
i i2
V1=10V V2 =10V +
il 0.06

D

Figure 1: Electronic Circuit

We know that from Kirchhoff voltage law “the sum of all
voltage in a closed loop is zero” in this example, we observe
it in three loops (Figure 1).

From the first loop ABCD we have

(0.02 4+ 0.06)i; — 0.06i5 — 0.02i3 = 10
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= 0.08i; — 0.06i5 — 0.02i5 = 10 (25)

From the second loop BCDB we have

—0.06i; + (0.08 + 0.06)i2) — 0.08i5 = 10
= —0.06%1 + 0.1492 — 0.08¢3 = 10 (26)
From the third loop ABCA we have

—0.02i; — 0.08i3 + (0.1 + 0.08 + 0.02)i3) = 0
= —0.02i; — 0.08i5 + 0.02i3 = 0 (27)

So we have below system of linear equations

0.08i1 — 0.06i5 — 0.02i3 = 10
—0.064; + 0.14i5 — 0.08i5 = 10 (28)
—0.02i1 — 0.08i + 0.2i5 = 0

Now on taking the sum of the coelficients I;;, where ¢ =
1,2,3 and j = 1,2, 3, we have

J

> I = 0.08 4 0.06 4 .02 = 0.16 < 0.5
1
J

> I =0.06+0.14 + .08 = 0.28 < 0.5
2

J
> I35 =0.02+0.08+0.02=0.3 < 0.5
3

Hence, from Theorem IV.1, system of equations (28) has
a unique solution.
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