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Abstract—The partition energy Pk(G) is defined as the sum
of absolute values of k-partition eigenvalues of G. In this
paper, we consider two regular graphs G and H with n and
m vertices respectively and construct lexicographic product
G[H] and G[H1], where H1 = H∇K1. We investigate the
spectra and hence energy with respect to a partition Pn

of these graphs and their generalized complements, which
relate to the 1-partition energies of the factor graphs H
providing a deeper understanding of their combined spectral
characteristics. Further more, we construct graphs which are
equienergetic with respect to partition Pn.

Index Terms—k-partition eigenvalues, k-partition energy,
Lexicographic product, equienergetic Graphs and block cir-
culant matrix.
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I. INTRODUCTION

SPectral graph theory focuses on exploration of rela-
tionship between the structure of a graph, eigenvalues

and eigenvectors of matrices associated with them such as
adjacency matrix, Laplacian matrix, distance matrix, color
matrix, Harary matrix, partition matrix, Albertson matrix etc.
These matrices encode important properties of the graph
and their spectral properties reveal insights like clustering,
expansion, connectivity of graphs.

For spectra and energy with respect to above matrices of
various graph structures, one can refer to [1], [4], [5], [6],
[8], [12] and [19].

In the study of graph energy, various graph operation
and transformation such as graph products, partitions and
complements play significant roles. They enrich the study of
graph energy by unveiling relationships between structural
modification and spectral properties.

Graph partitions play a crucial role in spectral clustering,
where eigenvalues of partitioned graphs help identify struc-
tural patterns. An application of graph partition in medical
field to partition RNAs and classification of frame-shifting
elements in viruses can be found in [13].

Let G(V,E) be a graph. Let {V1, V2, . . . , Vk} be non-
empty disjoint subsets of V . Then Pk = {V1, V2, . . . , Vk} is
called a partition of vertex set V [18].

In [19], the authors have introduced partition energy of
a graph as follows. Let G(V,E) be a graph of order n and
Pk = {V1, V2, . . . , Vk} be a partition of V . Then the partition
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matrix Pk(G) = [aij ] is a unique square symmetric matrix
with zero diagonal defined as follows:

aij =



2 if vi and vj are adjacent where vi, vj ∈ Vr,
−1 if vi and vj are non-adjacent where

vi, vj ∈ Vr,

1 if vi and vj are adjacent between the sets
Vr and Vs for r ̸= s where vi ∈ Vr and

vj ∈ Vs,

0 otherwise

This partition matrix determines the partition of vertex set
of graph G uniquely. The eigenvalues of this matrix are
called partition eigenvalues of G. Further, k-partition energy
of a graph G denoted by EPk

(G) is defined as the sum of
the absolute values of k-partition eigenvalues of G, where
eigenvalues of Pk(G) are k-partition eigenvalues of G.

The complement of a graph G is a graph G on the same
vertices such that two distinct vertices of G are adjacent if
and only if they are not adjacent in G.

In literature, we can see different types of complements
such as complement of a graph G(V,E) with respect to a
subset S ⊆ V called partial complement and complement
of a graph with respect to a partition Pk called generalized
complements.

More on partial complements of a graph and associated
energy concepts can be found in [2] and [9].

If Pk is a partition of the vertex set of G, we can also
determine partition energy of two types of complements
of given graph called k-complement and k(i)- complement
graph introduced by E. Sampathkumar in [17]. If the vertex
set of a graph G of order n is partitioned into n sets then the
partition energy matches with the usual energy of a graph.
So partition energy may be considered as a generalization
of energy of a graph introduced by I. Gutman in [10]. More
information on partition energy can be found in [16], [20],
[21], [22], [23] and [24].

Graph products combine two graphs to form a new graph,
and analyzing the energy of the resulting graph can reveal
insights in to the spectral properties of the original graph.
Various graph products are introduced in [11] and one
notable product among them is the lexicographic product
which is defined as follows.

Definition I.1 ([11]). Let G and H be two graphs with n
and m vertices respectively. Then lexicographic product of
two graphs G and H is formed by taking one copy of G and
n copies of H and joining any two vertices (u, v) and (x, y)
if and only if, either u is adjacent to x in G or u = x and
v is adjacent to y. This graph is represented by G[H] and
is also called as composition of graphs.

Definition I.2 ([14]). Two non-isomorphic graphs G1 and
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G2 of same order are said to be equienergetic if
E(G1) = E(G2).

Some definitions and results which are essential for our
computation are as follows.

Definition I.3 ([7]). Let A1, A2, . . . , Am be square matri-
ces of order n. A block circulant matrix of type (m,n) (of
order mn) is an mn×mn matrix of the form

bcirc(A1, A2, . . . , Am) =


A1 A2 · · · Am

Am A1 · · · Am−1

...
...

. . .
...

A2 A3 · · · A1

 .

If each Ai for 1 ⩽ i ⩽ n is circulant then we call the above
matrix as block circulant with circulant blocks.

Theorem I.4 ([19]). If G is a r-regular graph with n
vertices and 3r−n+1, λ2, λ3, . . . , λn are the eigenvalues of
P1(G), then 1-partition eigenvalues of its 1(i)-complement
(G)1(i) are 2n− 3r − 2,−λ2 − 1,−λ3 − 1, . . . ,−λn − 1.

Theorem I.5 ([3]). Let C be an A-factor block circulant.
Then

C = VAP (DA)V
−1
A ,

where VA is block Vandermonde matrix and P (z) is the
representor of C. Moreover, the set of A-factor circulants
coincides with the set of matrices of the form

VAdiag[M1,M2, . . . ,Mm]V −1
A ,

that is, P (DA) = diag[M1,M2, . . . ,Mm] for a matrix
polynomial

P (z) = C1 + C2z + · · ·+ Cmzm−1 if and only if

[C1C2 . . . Cm]VA = [M1M2 . . .Mm].

The following result is a consequence of the Theorem I.5.

Corollary I.6 ([3]). The factor circulant C can also be
expressed as

C = RF ∗
mnP (KΩ)FmnR

−1

where Fmn is a block Fourier matrix,
Ω = diag[I, ωI, ω2I, . . . , ωm−1I] (ω = exp(2πim )),K is
the principal mth root of the non-singular matrix A and
R = diag[IKK2 . . .Km−1]. In particular if C is a block
circulant then it can be represented as

C = F ∗
mnP (Ω)Fmn.

II. LEXICOGRAPHIC PRODUCT OF TWO REGULAR
GRAPHS

In this section, we determine the n-partition energy of lex-
icographic product of two regular graphs G and H denoted
by G[H], where G is circulant and also their generalized
complements with respect to a partition Pn. Further we
establish relationship not only between spectra of G[H] and
its generalized complements but also relationship between
spectra of G[H] and its generalized complements with 1-
partition spectra of H and (H)1(i).

Now we give a brief description of the vertex partition Pn

of lexicographic product of two graphs considered through-
out this paper. Let G and H be two graphs with vertex sets

{u1, u2, . . . , un} and {w1, w2, . . . , wm} respectively. Then
the lexicographic product G[H] will have mn vertices of
the form vij = (ui, wj). Let Pn = {V1, V2, . . . , Vn} be
a partition of the vertex set of G[H] where Vi = {vij},
for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. With this kind of
partition, we observe that the graph induced by vertices of
Vi is isomorphic to H .

 

Fig. 1: C3[P2]

For example in Figure 1, the lexicographic
product of C3 and P2 that is C3[P2] is
shown above. Its vertex partition is given by
P3={V1, V2, V3}, where V1={(u1, w1), (u1, w2)}={v11, v12},
V2={(u2, w1), (u2, w2)}={v21, v22} and
V3={(u3, w1), (u3, w2)}={v31, v32}. Here we can observe
that the graphs within each partition are isomorphic to P2.

In [24], the authors have discussed partition energy
of lexicographic product of two graphs like Cm[Kn],
Km[Cn], Cm[Cn], Sm[Kn] and Km×2[Kn]. Motivated by
this, we are considering lexicographic product of two graphs
G and H where G is r1-regular circulant and H is r2-regular
respectively and discuss partition energy of G[H] and its two
types of complements obtained with respect to the partition
considered as above in terms of 1-partition energy of H and
(H)1(i) respectively.

Theorem II.1. Let H be a r-regular graph with m ver-
tices and Jm×m is a matrix of ones, then the char-
acteristic polynomial of C = P1(H) + uJm×m and
D = P1((H)1(i)) + uJm×m are

(i) ϕC(λ) =
ϕP1(H)(λ)

λ− (3r −m+ 1)
[λ− (3r −m+ 1 + um)]

(ii) ϕD(β) =
ϕ
P1((H)1(i))

(β)

β − (2m− 3r − 2)
[β − (2m− 3r − 2 + um)]

where u is a constant.

Proof. (i) Let λ0, λ1, . . . , λm−1 be the eigenvalues of
P1(H). Since H is regular, the 1-partition matrix P1(H)
will have the row sum λ0 = 3r −m + 1 as an eigenvalue.
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It can be observed that the corresponding eigenvector is
Jm×1. Also the row sum in Jm×m is m which is same for
all the rows. This implies that m is an eigenvalue of Jm×m

with the corresponding eigenvector Jm×1 and its remaining
eigenvalues are zeros.

Consider

(C)Jm×1 = (P1(H) + uJm×m)Jm×1

= P1(H)Jm×1 + (uJm×m)Jm×1

= (3r −m+ 1)Jm×1 + umJm×1

= (3r −m+ 1 + um)Jm×1

which implies that 3r − m + 1 + um is an eigenvalue of
P1(H) + uJ . Let Xi = (x(i1), x(i2), . . . , x(im))

T be the
eigenvector of P1(H) corresponding to the eigenvalue λi

for i = 1, 2, . . . ,m− 1. This implies that

x(i1) + x(i2) + · · ·+ x(im) = 0. (1)

It can be observed from equation (1) that Xi is also is an
eigenvector of Jm×m corresponding to the zero eigenvalues.

Therefore for i = 1, 2, . . . ,m− 1

(P1(H) + uJm×m)Xi = λiXi.

Hence

ϕC(λ) =
ϕP1(H)(λ)

λ− (3r −m+ 1)
[λ− (3r −m+ 1 + um)].

(ii) With similar argument as above,

ϕD(β) =
ϕ
P1((H)1(i))

(β)

β − (2m− 3r − 2)
[β− (2m−3r−2+um)]. 2

Theorem II.2. Let S = G[H], where G is a r1-regular
circulant graph with n vertices and H is a r2-regular
graph with m vertices. If Pn = {V1, V2, . . . , Vn} where
Vi = {vi1, vi2, . . . , vim} for i = 1, 2, . . . , n is a partition
of vertex set of S, then

(i) EPn
(S) =nEP1

(H)− n|3r2 −m+ 1|

+
n−1∑
t=0

|3r2 −m+ 1 + αtm|.

(ii) EPn((S)n) =nEP1(H)− n|3r2 −m+ 1|
+ |3r2 −m+ 1 + (n− r1 − 1)m|

+
n−1∑
t=1

|3r2 −m+ 1 + (−1− αt)m|.

(iii) EPn((S)n(i)) =nEP1((H)1(i))− n|2m− 3r2 − 2|

+
n−1∑
t=0

|2m− 3r2 − 2 + αtm|.

where αt are adjacency eigenvalues of G.

Proof. (i) Since G and H are r1 and r2 regular respectively,
it follows from the construction of lexicographic product that
S = G[H] is also regular of degree r1 + r2. Noted that the
matrix of S with respect to the given partition Pn is a block
circulant matrix which can be represented as

Pn(S) = bcirc(P1(H), H2, H3, . . . ,Hn)n×n

where P1(H) is the 1-partition matrix of H and remaining
Hi’s are either zero matrices or matrices with all of whose
entries are ones. All these matrices are of order m.

Since H is r2-regular, let λ0 = 3r2−m+1, λ1, . . . , λm−1

be the 1-partition eigenvalues of H . Let us take H2 = Jm×m

and H3 as zero matrix. Since G is r1-regular, their will be r1
numbers of Jm×m matrices and (n−r1−1) numbers of zero
matrices. We know that diag(3r2 − m + 1, λ1, . . . , λm−1)
and diag(m, 0, . . . , 0) are the matrices of eigenvalues of
P1(H) and J respectively. Since G[H] is block circulant,
from Corollary I.6, the diagonal form is

diag(P1(H) + α0J, P1(H) + α1J, . . . , P1(H) + αn−1J)

where αt for t = 0, 1, . . . , n − 1 are adjacency eigenvalues
of G. Applying Theorem II.1 to each of P1(H)+uJ , we get

ϕPn(S)(λ) =

(
ϕP1(H)(λ)

λ− (3r2 −m+ 1)

)n

×
n−1∏
t=0

[λ− (3r2 −m+ 1 + αtm)].

Hence,

EPn(S) = nEP1(H)− n|3r2 −m+ 1|

+
n−1∑
t=0

|3r2 −m+ 1 + αtm|.

(ii) The matrix of ((S)n) is

Pn((S)n) = bcirc(P1(H), H2, H3, . . . ,Hn)n×n

Since G is r1-regular, their will be r1 numbers of H2

matrices and (n − r1 − 1) number of H3 matrices. Here
H2 is zero matrix, and H3 = Jm×m. The diagonal form of
Pn((S)n) is

diag(P1(H) + (n− r1 − 1)J,

P1(H) + (−α1 − 1)J, . . . , P1(H) + (−αn−1 − 1)J)

Applying Theorem II.1, we get

ϕ
Pn((S)n)

(λ) =

(
ϕP1(H)(λ)

λ− (3r2 −m+ 1)

)n

× [λ− (3r2 −m+ 1 + (n− r1 − 1)m)]

×
n−1∏
t=1

[λ− (3r2 −m+ 1 + (−1− αt)m)].

Hence,

EPn
((S)n) = nEP1

(H)− n|3r2 −m+ 1|

+ |3r2 −m+ 1 + (n− r1 − 1)m|

+
n−1∑
t=1

|3r2 −m+ 1 + (−1− αt)m|.

(iii) The matrix (S)n(i) is

Pn((S)n(i)) = bcirc(P1((H)1(i)), H2, . . . ,Hn)n×n

we know that the matrix of eigenvalues of Jm×m is
diag(m, 0, . . . , 0) and of P1((H)1(i)) is
diag(2m− 3r2 − 2,−λ1 − 1,−λ2 − 1, . . . ,−λm−1 − 1).
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We can diagonalise Pn((S)n(i)) as

diag(P1((H)1(i)) + r1J,

P1((H)1(i)) + α1J, . . . , P1((H)1(i)) + αn−1J),

From (ii) of Theorem II.1, we get

ϕ
Pn((S)n(i))

(β) =

(
ϕ
P1((H)1(i))

(β)

β − (2m− 3r2 − 2)

)n

×
n−1∏
t=0

[β − (2m− 3r2 − 2 + αtm)] .

Hence,

EPn
((S)n(i)) = nEP1

((H)1(i))− n|2m− 3r2 − 2|

+
n−1∑
t=0

|2m− 3r2 − 2 + αtm|. 2

Note:

1. As the graph S contains n copies of H , it can be
observed that the eigenvalues λ1, . . . , λm−1 of P1(H)
are eigenvalues of Pn(S) and Pn((S)n) repeated n
times.

2. As Pn((S)n(i)) contains P1((H)1(i)), it can be ob-
served that −λ1 − 1, . . . ,−λm−1 − 1 are eigenvalues
of Pn((S)n(i)) repeated n times.

III. CONSTRUCTION OF SOME EQUIENERGETIC GRAPHS

In this section, we consider two graphs H1 and H2 of same
order and same degree which are 1-partition equienergetic.
We consider a graph G which is r1-regular circulant and
construct new graphs G[H1] and G[H2] which are also
equienergetic.

Definition III.1. Two non-isomorphic graphs G1 and G2

of same order are said to be partition equienergetic if
EPn(G1) = EPn(G2) with respect to Pn.

Let V = {v1, v2, . . . , v12} and U = {u1, u2, . . . , u12} be
the vertex sets of two graphs G1 and G2 respectively. We
now construct new graphs H1 and H2 using graph operations
between G1 and G2 as follows.

The graph H1 is obtained by inserting the edges viui for
i = 1, 2, . . . , 12 as shown in the schematic diagram Fig. 2.

Similarly, The graph H2 is obtained by inserting the edges
viui for i = 1, 2, . . . , 12 and also the edges viui+1, vi+1ui

for i = 1, 3, 5, 9, 11 as shown in the schematic diagram
Fig. 3.

In the graph H1, let us choose the component graphs
G1 = G2 = K12. Then the 1-partition spectra of H1 is

13 once
1 11 times
31 once
−5 11 times

and EP1
(H1) = 110.

Fig. 2: H1

Fig. 3: H2

In the graph H2, let us choose the component graphs
G1 = G2 = K6×2. Then the 1-partition spectra of H2 is

13 once
1 17 times
25 once
−11 5 times.

Thus, EP1(H2) = 110.
Hence, H1 and H2 are non cospectral 1-partition equiener-

getic.
The above example confirms the existence of 1-partition

equienergetic graphs which leads to the following theorem.

Theorem III.2. Let G be a r1-regular circulant graph
with n vertices. If H1 and H2 are r2-regular graphs with
m vertices which are 1-partition equienergetic then

(i) G[H1] and G[H2] are equienergetic with respect to Pn.

(ii) (G[H1])n and (G[H2])n are equienergetic with respect
to Pn.

Proof. Given H1 and H2 are 1-partition equienergetic.

∴ EP1
(H1) = EP1

(H2) (2)
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Using equation (2), in (i) and (ii) of Theorem II.2, it follows
that G[H1] and G[H2] are equienergetic with respect to Pn.
Also (G[H1])n and (G[H2])n are equienergetic with respect
to Pn. 2

IV. LEXICOGRAPHIC PRODUCT OF REGULAR GRAPH
WITH SEMI REGULAR GRAPH

In this section, we consider lexicographic product G[H1]
of an r1-regular circulant graph G of order n with a semi
regular graph H1 = H∇K1, where H is any r2-regular
graph of order m and discuss its partition energy with respect
to Pn and its generalized complements.

Following theorem is useful to find the spectra of G[H1].

Theorem IV.1. [15] Let C = P1(H1) + uJm×1 where u
is a constant and Jm×1 is a matrix in which all entries are
ones and D = P1((H1)1(i))+uJm×1, then the characteristic
polynomials of C and D are respectively,

(i)
ϕP1(H)(λ)

(λ− 3r2 +m− 1)
[λ2 + λ(m− 3r2 − u(m+ 1)− 1)

+ u(3r2 − 5m+ 1)− 4m].

(ii)
ϕ
P1((H)1(i))

(λ)

(λ− 2m+ 3r2 + 2)

× [λ2 + λ(3r2 + 2(1−m)− u(m+ 1))

+ u(4m− 3r2 − 2)−m].

In the following theorem, we consider lexicographic prod-
uct of an r1-regular graph G with the semi regular graph
H1 defined as above and obtain energy of G[H1] and its
generalized complements with respect to Pn.

Theorem IV.2. If Pn = {V1, V2, . . . , Vn} where Vi =
{vi1, vi2, . . . , vi(m+1)} for i = 1, 2, . . . , n is a partition of
vertex set of G[H1], where G is an r1-regular graph with n
vertices, then

(i) EPn
(G[H1]) = nEP1

(H)− n|3r2 −m+ 1|

+
n−1∑
t=0

[|βt + γt|+ |βt − γt|]

(ii) EPn
(G[H1])n = nEP1(H)− n|3r2 −m+ 1|

+ |η + ζ|+ |η − ζ|

+
n−1∑
t=1

[|δt + ρt|+ |δt − ρt|]

(iii) EPn((G[H1])n(i)) = nEP1((H)1(i))

− n|2m− 3r2 − 2|

+
n−1∑
t=0

[|µt + νt|+ |µt − νt|]

where

βt =
−(m− 3r2 − αt(m+ 1)− 1)

2
,

γt =

√
(m− 3r2 − αt(m+ 1)− 1)2

−4[αt(3r2 − 5m+ 1)− 4m]

2
,

η =
−(m− 3r2 − (n− r1 − 1)(m+ 1)− 1)

2
,

ζ =

√
(m− 3r2 − (n− r1 − 1)(m+ 1)− 1)2

−4[(n− r1 − 1)(3r2 − 5m+ 1)− 4m]

2
,

δt =
−(m− 3r2 − (−1− αt)(m+ 1)− 1)

2
,

ρt =

√
(m− 3r2 − (−1− αt)(m+ 1)− 1)2

−4[(−1− αt)(3r2 − 5m+ 1)− 4m]

2
,

µt =
−(3r2 + 2(1−m)− αt(m+ 1))

2
,

νt =

√
(3r2 + 2(1−m)− αt(m+ 1))2

−4[αt(4m− 3r2 − 2)−m]

2
.

Proof. (i) The matrix Pn(G[H1]) is a block circulant matrix
of order n(m+ 1) which is denoted by

Pn(G[H1]) = bcirc(P1(H1), H2, . . . ,Hn)

where P1(H1) = P1(H∇K1) and remaining H ′
is are either

zero matrices or matrices with all of whose entries are ones.
All these matrices are of order m+ 1.

Since H is r2-regular, λ0 = 3r2 − m + 1, λ1, . . . , λm−1

be the 1-partition eigenvalues of H . Let us take H2 = J and
H3 as zero matrix.

Since G is r1-regular, their will be r1 numbers of J
matrices and (n − r1 − 1) numbers of zero matrices. Thus
the diagonal form of Pn(G[H1]) is

diag(P1(H1) + α0J, P1(H1) + α1J, . . . , P1(H1) + αn−1J)

where αt =
n∑

k=1

ak e
2πit(k−1)

n for t = 0, 1, . . . , n − 1

are adjacency eigenvalues of G and a1, a2, . . . , am are
first row elements of G. Let At = P1(H1) + αtJ for
t = 0, 1, 2, . . . , n − 1. Using (i) of Theorem IV.1, we get
the spectra of Pn(G[H1]) as follows{

λi for i = 1, 2, . . . ,m− 1 n times
βt ± γt, 0 ≤ t ≤ n− 1 once,
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where λi are 1-partition eigenvalues of H ,

βt =
−(m− 3r2 − αt(m+ 1)− 1)

2
and

γt =

√
(m− 3r2 − αt(m+ 1)− 1)2

−4[αt(3r2 − 5m+ 1)− 4m]

2
.

Hence,

EPn
(G[H1]) = nEP1

(H)− n|3r2 −m+ 1|

+
n−1∑
t=0

[|βt + γt|+ |βt − γt|].

(ii) The diagonal form of Pn(G[H1])n is

diag(P1(H1) + (n− r1 − 1)J,

P1(H1) + (−1− α1)J, . . . , P1(H1) + (−1− αn−1)J)

with similar discussion as above, we get the spectra of
Pn(G[H1])n as

λi for i = 1, 2, . . . ,m− 1 n times
η ± ζ once
δt ± ρt, 1 ≤ t ≤ n− 1 once,

where λi are 1-partition eigenvalues of H ,

η =
−(m− 3r2 − (n− r1 − 1)(m+ 1)− 1)

2
,

ζ =

√
(m− 3r2 − (n− r1 − 1)(m+ 1)− 1)2

−4[(n− r1 − 1)(3r2 − 5m+ 1)− 4m]

2
,

δt =
−(m− 3r2 − (−1− αt)(m+ 1)− 1)

2
and

ρt =

√
(m− 3r2 − (−1− αt)(m+ 1)− 1)2

−4[(−1− αt)(3r2 − 5m+ 1)− 4m]

2
.

Hence,

EPn(G[H1])n = nEP1
(H)− n|3r2 −m+ 1|

+ |η + ζ|+ |η − ζ|

+
n−1∑
t=1

[|δt + ρt|+ |δt − ρt|].

(iii) The diagonal form of Pn((G[H1])n(i)) is

diag(P1((H1)1(i)) + r1J,

P1((H1)1(i)) + α1J, . . . , P1((H1)1(i)) + αn−1J)

using (ii) of Theorem IV.1, and proceeding as above, we get
the spectra of Pn((G[H1])n(i)) as{

−1− λi for i = 1, 2, . . . ,m− 1 n times
µt ± νt, 0 ≤ t ≤ n− 1 once,

where, −1− λi are 1-partition eigenvalues of (H)1(i),

µt =
−(3r2 + 2(1−m)− αt(m+ 1))

2
and

νt =

√
(3r2 + 2(1−m)− αt(m+ 1))2

−4[αt(4m− 3r2 − 2)−m]

2
.

Hence,

EPn((G[H1])n(i)) = nEP1((H)1(i))

− n|2m− 3r2 − 2|

+
n−1∑
t=0

[|µt + νt|+ |µt − νt|]. 2

Note. If we choose H = Cm then H1 = W1,m which
is a wheel graph. So by putting r2 = 2 in the above
Theorem IV.2, we can obtain n-partition energy G[W1,m]
and its generalized complements.
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