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Study on the Logistic Model of Mosquito
Population Involving Caputo-Fabrizio Fractional
Derivative
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Abstract—This study extends the logistic model, which
describes the population dynamics of wild female mosquitoes
in the absence of intervention by Wolbachia-infected male
mosquitoes, to the case involving fractional derivative. A
novel fractional logistic equation is formulated utilizing the
Caputo-Fabrizio fractional derivative. By using the properties of
the Caputo-Fabrizio fractional calculus, the implicit analytical
solution of the proposed model is derived. Additionally,
numerical simulations are performed to explore the influence of
the fractional order and various parameter values on mosquito
population dynamics.

Index Terms—Fractional logistic equation, Caputo-Fabrizio
fractional derivative, Analytical solution, Mosquito population
dynamics

I. INTRODUCTION

NE classical logistic equation

dx
5 = s —=2(),
has been widely employed to characterize population
growth dynamics, particularly within biological and
ecological frameworks. Its solution reflects the influence of
environmental carrying capacity, exhibiting an initial phase
of rapid growth followed by stabilization. In recent years,
the scope of the logistic model has substantially broadened
to encompass various disciplines, including epidemiology,
economics, biomedical sciences, cyber-physical systems,
and the modeling of opinion dynamics on networks [1,
2]. Accordingly, the logistic equation has emerged as a
fundamental analytical tool in the study of nonlinear behavior
in complex systems. As a representative application, Zhang
et al. [3] introduced a modified logistic model to examine
the population dynamics of wild female mosquitoes in the
absence of Wolbachia-infected male mosquito intervention,
formulated as
= ax(t) — (u+ Ealt))atr),
where a > p corresponds to the intrinsic birth rate of
wild mosquitoes, and p, & denote the density-independent

t>0, D

t >0, 2
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and density-dependent mortality rates, respectively. The
model predicts that, in the absence of intervention, the
mosquito population stabilizes at an equilibrium level of
(a—p)/&. As model (2) describes the dynamic evolution of
populations over time, it provides a theoretical foundation
and framework for further research on how external
interventions, such as releasing Wolbachia-infected male
mosquitoes, can effectively suppress the population of wild
female mosquitoes.

It is well recognized that the classical logistic model
of integer order exhibits inherent limitations when applied
to systems with pronounced memory effects and nonlocal
behavior. In recent years, fractional calculus has attracted
significant attention due to its enhanced flexibility and broad
scope of applicability [4, 5]. The principal advantage of
fractional derivatives lies in their capacity to effectively
characterize the historical dependence and nonlocal features
intrinsic to complex dynamical systems [6]. The application
of fractional derivatives provides a more generalized
mathematical framework for the classical logistic equation,
enabling it to describe non-local effects and time-delay
characteristics inherent in complex systems. Recently,
researchers have extensively and comprehensively studied the
solutions of fractional logistic equations under different types
of fractional derivative frameworks [7-19]. For instance,
Izadi and Srivastava [8] developed approximate solutions for
a fractional logistic equation involving the LiouvilleCCaputo
derivative via a collocation scheme based on fractional-order
Bessel and Legendre basis functions. Jornet and Nieto [9],
based on the L-fractional derivative framework, analyzed
fractional logistic equation through a power series expansion
method and derived results concerning the local analytic
solutions. El-Saka et al. [10] discussed the stability and Hopf
bifurcation phenomena of Caputo fractional logistic equation
with two distinct time delays using the method of key
curve analysis methods. Abreu-Blaya et al. [17] investigated
the qualitative behavior of conformable fractional logistic
equations, formulating generalized derivatives with a kernel
of the form T'(¢, o) = e(®~1*, and further examined solution
stability and inverse problem modeling with empirical data.
Abdeljawad et al. [19] explored higher-order nonlinear
extensions, including quadratic and cubic formulations of
fractional logistic equations under the ABC-type fractional
derivative framework, and proposed numerical schemes
utilizing multi-parameter Mittag-Leffler kernels to establish
existence, uniqueness, and stability results.

The Caputo-Fabrizio fractional derivative is a novel
form of fractional-order derivative introduced by Caputo
and Fabrizio in 2015 [20]. Its primary aim is to
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address challenges encountered in traditional fractional
derivatives, such as the Riemann-Liouville and Caputo
derivatives, particularly the complexity and computational
difficulties arising from singular kernels. This fractional
derivative is distinguished by its incorporation of a
non-singular exponential-type kernel and its linear growth
characteristics, rendering it well suited for modeling systems
exhibiting memory and hereditary properties. Owing to its
desirable analytical features, the CaputoCFabrizio derivative
has garnered substantial interest across diverse scientific
and engineering disciplines, with applications spanning
epidemiological modeling and disease control [21-24],
food processing technologies [25], electrical circuit analysis
[26], biomedical systems [27, 28], plant pathology [29],
climate and ecological dynamics [30], as well as financial
systems [31, 32]. Given the extensive application of the
Caputo-Fabrizio fractional derivative in modeling complex
systems, the Logistic-type equations formulated under the
CaputoCFabrizio framework have recently become a focal
point of study.

For instance, Khalouta [33] investigated the existence and
uniqueness of solutions to a nonlinear fractional logistic
differential equation by employing a novel decomposition
transformation technique alongside Banach’s fixed point
theorem. Kumar et al. [34] adopted the fixed point approach
for analyzing a class of CaputoCFabrizio fractional logistic
model, further supplemented by numerical simulations
using iterative schemes. Fahel et al. [35] extended the
analysis to quadratic and cubic logistic systems, leveraging
Lagrange polynomial-based fractional iterative methods to
establish exact solutions. EL-Fassi et al. [36] examined a
Richards-type fractional equation under the CaputoCFabrizio
framework and successfully derived analytical solutions,
thereby expanding the theoretical foundation for logistic-type
systems in fractional contexts. Of particular note, Nieto
[37] formulated a fractional-order extension of the classical
logistic equation (1) by employing the CaputoCFabrizio
derivative, and considered the initial value problem:

{ oty =0 =),
x(0) = o,

t>0, 3

where o € (0,1), “D* denotes the Caputo-Fabrizio
fractional derivative of order «v. By utilizing the properties of
Caputo-Fabrizio fractional calculus, the author derived that
(3) possesses an analytical solution in the following implicit
form
o) —a2() _ wo—af
(L=a(®)* (=)™

Motivated by reference [37], the present work employs the
Caputo-Fabrizio fractional derivative to extend the model (2)
to the fractional-order form and investigates the initial value
problem for the following fractional logistic equation

{ CEDa(t) = ax(t) — (u+ x(t))=(t),
x(0) = xo,

t>0, @)

where a € (0,1), a,p, & € RY and a>p, “F' D denotes
the Caputo-Fabrizio fractional derivative of order «. By
applying the relevant properties of Caputo-Fabrizio fractional
calculus, we will derive the analytical solution of the
fractional logistic model (4). The significance of exploring

the analytical solution of the fractional logistic model (4) can
be summarized as follows:

e Diversity in dynamic behaviors: The fractional logistic
model (4) exhibits more complex and diverse dynamic
behaviors compared to integer-order model (2). This
provides new perspectives for understanding the
population dynamics of male mosquitoes without
Wolbachia infection.

e Flexibility in parameter control: The analytical solution
offers explicit expressions that can be used to investigate
the specific effects of the fractional order «, parameters
a, v and & on the system’s behavior. This is crucial
for optimizing the system model and fine-tuning its
parameters.

e Universality of the Model: If the parameters a, p, and
¢ take specific values, such as a = 1, p =0, £ =1,
model (4) degenerates into the fractional logistic model
(3), thereby uncovering the hierarchical structure and
universal applicability of the model.

The remainder of this paper is structured as follows:
In Section 2, we recall the fundamental definitions and
properties of Caputo-Fabrizio fractional calculus. In Section
3, we analysis of model (4), deriving its implicit analytical
solution and demonstrating through a corollary that the result
presented in [37] is a special case of this study. Additionally,
numerical simulations are performed for various values of the
fractional order o and the parameters a, p, and £. Finally,
Section 4 concludes with a concise summary of the principal
findings of this study.

II. PRELIMINARIES

In this section, we first recall some definitions and
properties of the Caputo-Fabrizio fractional calculus.
Definition 1. ([38]) The Caputo-Fabrizio fractional integral
of order « € (0,1] of an integrable function x : [0, +00) —
R is defined by

CFrowt) = (1 — a)[z(t) — 2(0)] + oz/o xz(s)ds, t>0.

Definition 2. ([20]) Let T > 0, o« € (0,1). The
Caputo-Fabrizio fractional derivative of order « for a
function z € C'(0,7T) is defined by

1 't a
CFpag(t) = / e w90/ (5)ds,
11—« 0

Remark 1. ([20]) Let a € [0,1) and = € C1(0,T), then
CEPO2(t) = x(t) — z(0), lim “FDYx(t) = 2'(¢).
a—

te(0,7).

Lemma 1. ([39]) Let a € [0,1) and = € C*(0,T), then

e

CEDACE o0 (1) = 2(t) — 2(0)e” T,
CF1aCE Dog(t) = 2(t) — 2(0).

III. MAIN RESULTS

In this section, we provide the analytical solution to the
initial value problem (4).
Theorem 1. Let z(t) € C1(0,T) be the solution of the initial
value problem (4), then there holds

(i) For a € (0,1], if 29 = 0, then z(t) = 0.

Volume 55, Issue 9, September 2025, Pages 3006-3010



TAENG International Journal of Applied Mathematics

(i) For a € (0,1], if 29 = (a — p)¢~ 1, then x(t) =
Pt
(iii) For a € (0,1), if z(t) # 0, (a — p)€~1, then z(t) can
be expressed in the following implicit form
& [a )] (@ — p) — Ea(1)]
[(a — ) — ()™
g t(a— ) — €wo)
(@ = 1) = arg] "/
[1—(a—m]lala—w) .
Proof. Integrating both sides of equation (4), we obtain

= Fr*ax(t) — (u+ Ex(t)z(t)).

(a—

where m =

CFIaCFDax(t)

This, together with Lemma 1, implies
(t)—2(0)

= (1 - a)laz
—az(0) +

()= (u+&x(t))z(t)
(1 + £2(0))z(0)]

+a / laz(s) — (1 + Ex(s))(s)]ds.

Differentiating both sides of the above equation with respect
to the variable ¢, it follows that

2'(t) = (1 - a)aa’(t) — &' (D) (t) —
+afax(t) — (p+ &x(t))x(t)],

(1 + (1))’ (1)]

that is,

(1= (a—p)a'(t) + ala — p)a'(t)
+28x ()’ (t) — 2ax ()’ (t)

= ax(t)[(a — p) — Ex(t)]. (5)
Note that as o« — 1, equation (5) degenerates into the logistic
equation (2). It is easy to see that equation (5) has the trivial
solutions z(t) = 0 and z(t) = (a — )¢~ L. Thus, (i) and (ii)
hold. For o € (0,1), if (t) # 0, (a — pn)&~1, then equation
(5) can be rewritten as

[1 = (a—p]a'(t)

, lla=—w = 262(0)'()

ax(®)[(a - m( g ex®] T (- ) — ()]
28x! (¢ B
RO
which then yields
Lm0 o) ) — €2(0)]

az(t)[(a - p) —
2d
T adt In|(a - p)

£z ()]
— ¢x(t)| = 1.

By integrating both sides of the above equation with respect
to the variable ¢, we obtain

DA TS

” — &u(t)]

Iw( )l(a fx( )

+ In |( )7 ()|2/a =t+Cy, Ci;€eR.

Further computation of the above expression gives
e e I <2 O R 20 (G e <4 0)]
ala—p)  [(a—p)=Ex(t)] |(a—p) =€ (t)[2/*
=t+C, CeR.

Therefore, we have

{ ca(t) } aOlle—p)~€a()] ;o
(a—p)—&x(t) [(a—p)—&x]/ @ ’
that is,
1—(a—p) 1-(1—a)(a—p)
ETH O T - p -] _ o
(@ — ) — (b))~

Using the initial condition x(0) = z, we can derive
1-(1-a)(a=p)

N (GO

(0 p) — €xo] T

Substituting (7) into (6), we find that equation (4) has the
following implicit solution

1—(a—p)

GC _ 5 a(a—m) Zg

§zo]

(7

1—(a—p) 1-(1—a)(a—p)

§ala=m [x(t)] ala—mn) [( — ) — §x(t)]
(a—p)
[(a— ) — Ex(t) ~e
1—(a—p) 1z(-o)(a=w)
B f a(a—p) xo ala—p) [(a _ ) 51’0] t (8)
B 1t+(a—p) .
[(a — p) — Exp) ala=m

This completes the proof.
Corollary 1. The initial value problem for the fractional
logistic equation

ferzraty =,
x(0) = w0,

t>0
=Y ©)

where o € (0,1). The initial value problem (9) has the
following implicit analytical solution
t) — 2%(t — 3
P Tl | B8 (10)
1=z (1—mz)""
Proof. Taking a — 1, = 0,& = 1, from equation (8), we

directly obtain (10). Clearly, this result coincides with that
presented in reference [37]. The proof is complete.

IV. NUMERICAL SIMULATION

Currently, under the initial condition o = 1, we plot
the solution curves of equation (4) for different fractional
orders o and varying values of the parameters a, p and &.
Meanwhile, we compare the solutions of the integer-order
logistic equation (2) (corresponding to a= 1) with those of
the Caputo-Fabrizio fractional logistic equation (4), which
include cases where o = 0.9, o = 0.7, a= 0.5, a= 0.1 (see
Fig. 1, Fig. 2 and Fig. 3). The results indicate that the solution
of the integer-order logistic equation is significantly greater
than the solutions of the Caputo-Fabrizio fractional logistic
equation.

V. CONCLUSION

In this work, the traditional integer-order logistic model
was extended by incorporating the Caputo-Fabrizio fractional
derivative, resulting in the construction of a generalized
fractional logistic equation. Numerical simulations were
performed, illustrating the significant impacts of the
fractional order and model parameters on population
dynamics, thereby providing new insights into mosquito
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Fig. 1. Illustrates the solution curves of the logistic equation (4) under the
parameters a = 1.5, 4 = 0.5 and £ = 0.5.

1.7

— a=01 =1
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Fig. 2.  Represents the solution curves of the equation (4) under the
parameters a = 1, 4 = 0.2 and £ = 0.15.
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Fig. 3. Demonstrates the solution curves for the equation (4) under the
parameters a = 1, 4 = 0.1 and £ = 0.2.

population control strategies and ecological modeling. Future
investigations will aim to extend model (4) to stochastic

fractional logistic systems and undertake a comprehensive
analysis of the existence and stability properties of their
solutions.
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