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Abstract—Extreme financial events have historically led to
substantial market disruptions and losses for investors, insti-
tutions, and governments. Traditional risk assessment tools,
such as Value at Risk (VaR), often fail to accurately capture
these rare but severe losses due to their reliance on normal
distribution assumptions. This limitation has driven the adop-
tion of Extreme Value Theory (EVT), which offers a more
robust framework for modeling tail risk using the Generalized
Extreme Value (GEV) and Generalized Pareto Distributions
(GPD). This study addresses a critical gap in the literature by
integrating EVT with a Two-Dimensional Non-Homogeneous
Poisson Process (2D-NHPP), allowing the distributional param-
eters—location, scale, and shape—to vary over time as linear
functions of market volatility and interest rates. Unlike most
existing models that assume the independence of extreme events
and static risk levels, the proposed framework dynamically
captures both the frequency and severity of extreme returns
in response to changing economic conditions. Using daily data
from the Nairobi Securities Exchange (NSE) 20 Share Index
and Central Bank of Kenya interest rates from 2014 to 2023,
the model parameters were estimated using the Maximum
Likelihood Estimation (MLE) method. The result shows that
volatility increases all the three measures, meaning that there
will be higher variability and likelihood of extreme losses,
while, interest rate increases are found to decrease the tail
risk. As shown in the case of VaR estimates, the proposed
approach is more responsive and accurate as compared to
traditional methods. The study also establishes that 2D-NHPP
model developed from EVT is a more accurate and flexible
model for risk evaluation in emergent markets. Governments
and regulatory bodies should embrace this model in order to
enhance risk modeling, stress testing and policy making for their
monetary institutions. Further studies should extend the scope
of independent variables and compare the model in various
markets to increase its scope and accuracy.

Index Terms—Value at Risk, Extreme Value theory, Gener-
alized Pareto Distribution, two dimensional non-homogeneous
Poisson process, Maximum Likelihood Estimation

I. INTRODUCTION

R isk management is a critical part of financial decision-
making [1]. Investors, banks, and regulators want to

know how much they might lose when markets become
uncertain. One of the most common tools used for this
purpose is Value at Risk (VaR). It tells us the worst expected
loss over a certain period with a given level of confidence
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[2]. This makes it useful for setting risk limits, evaluating
portfolios, and following regulations [8]. However, traditional
VaR models are not always accurate. Many assume that
returns in financial markets follow a normal distribution.
This means they often miss the extreme losses that happen
during financial crises. These rare but severe events can cause
huge financial damage, as seen during the 2008 global crisis
and the COVID-19 pandemic. Hence when relying only on
normal models, one gets an impression of security [4].

To overcome this challenge, researchers have resorted to
use what is known as Extreme Value Theory (EVT). EVT
relates to outliers, that is, occurrences of rare and exceptional
losses that are not captured by conventional models [3] .
It provides more efficient ways of modeling the tails of
the distribution, where these risks reside [5]. Thus, EVT
is a valuable tool for evaluating risk in actualized financial
markets on Controlled stock. But EVT alone still has some
limitations. This move is based on the assumption that these
extreme events are mutually exclusive and do not have
temporal correlation or relation with changes in the market.
Measures based on financial data, for instance, reveal that
the occurrence of large losses is not uniform and that the
level of risk is not constant over time.

It has created a gap that has prompted researchers to
find models that also focus on the frequency and severity
of the events. One of the models is the Two-Dimensional
Non-Homogeneous Poisson Process (2D-NHPP). This model
measures not only the rate at which the events occur but also
an intensity of the events. It also makes it possible to vary
the level of risk within the game itself whether in the short
term or in the long term. In contrast to standard EVT, the
2D-NHPP may contain other variables such as interest rates
and volatility, making it more reasonable and versatile [6],
[7] Nevertheless, very limited research has investigated the
combination of EVT and 2D-NHPP. Despite the availability
of both models, few studies utilize both the models in
calculating VaR particularly in emerging markets such as the
Kenyan market. This is quite a significant weakness because
the emerging markets tend to operate differently. They are
more likely to be shifted in value, have low marketability
and react more to changes in the business cycle. It may not
be effective to use models that were developed for developed
markets to implement in this context.

Thus this study intends to address this gap by devel-
oping model that incorporates extreme value theory and
two dimensional non homogeneous poisson process. This
study employs data from the Nairobi Securities Exchange
(NSE) 20 Share Index from 2014 to 2023. This time frame
involves significant economic incidences that impacted on
the financial markets both worldwide and in the country. By
including the interest rates and volatility as other components
of risk, this model intends to reflect the circumstances in the
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real world to measure the actual risks in the Kenyan stock
market.

The rationale behind is that the existing models are not
enough to handle extreme market movements. Investors
and policymakers in emerging economies need better tools
to measure and manage risk. A combined EVT-2D-NHPP
model provides a more complete picture of financial risk. It
shows not only how big a loss can be, but also how often
such losses might happen.

II. MATERIALS AND METHODS

A. Data Collection and Processing

TThe research employs a quantitative methodology in the
modeling of financial risk by using daily data from the
Nairobi securities exchange (NSE) 20 share index and CBK
interbank interest rate. This data covers the period between
January 2, 2014 to December 31, 2023. Daily frequency
was chosen to capture short-term volatility and rare extreme
events crucial for Value at Risk (VaR) estimation. A census
of the entire period was utilized, and analysis was conducted
using R statistical software.

B. Data Transformation

The daily closing prices of the NSE 20 Share Index were
converted into continuously compounded log returns to sta-
bilize variance and achieve stationarity. This transformation
ensured variance stabilization and stationarity. The return at
time t is computed as:

rt = ln

(
pt

pt−1

)
(1)

where pt and pt−1 are the index values at time t and t−1,
respectively.

C. Distributional Properties of Returns

Descriptive analysis and diagnostic tests were conducted
to verify the suitability of the data for EVT:

• Normality: Tested using Q-Q plots, density plots, and
the Shapiro-Wilk test.

• Stationarity: Verified through the Augmented Dickey-
Fuller (ADF) test.

• Serial Correlation: Checked using Autocorrelation
Function (ACF) and Partial ACF (PACF).

• Volatility Clustering and ARCH Effects: Assessed
using the ARCH-LM test.

D. Value at Risk

For a long position, Value at Risk (VaR) over a horizon n
at confidence level 1− α is defined as:

V aRα = inf {x ∈ R : P (Ln > x) ≤ α} (2)

Using the extreme value approach, the VaR can also
be expressed under the Generalized Extreme Value (GEV)
framework. If Mn is the minimum return over n periods,
then:

P

(
Mn − bn

an
≤ x

)
→ G(x) as n → ∞ (3)

E. Generalized Extreme Value (GEV) Distribution

The limiting distribution G(x) for normalized extremes is
given by:

G(x) = exp

{
−
[
1 + k

(
x− µ

σ

)]−1/k
}
,

where 1 + k

(
x− µ

σ

)
> 0 (4)

Depending on the value of k, the GEV distribution in-
cludes:

• Type I (Gumbel): k = 0
• Type II (Fréchet): k > 0
• Type III (Weibull): k < 0

F. Peak Over Threshold Method and Generalized Pareto
Distribution (GPD)

The Peak Over Threshold (POT) approach focuses on
returns rt that exceed a threshold η. The exceedance is
defined as:

yt = rt − η, wherert > η (5)

The exceedances follow the GPD with probability density
function:

f(y) =
1

σ

(
1 + k

y

σ

)− 1
k−1

(6)

and cumulative distribution function:

F (y) = 1−
(
1 + k

y

σ

)−1/k

(7)

G. Two-Dimensional Non-Homogeneous Poisson Process
(2D-NHPP)

Let (ti, yi) denote the time and exceedance of the i-
th event, where yi = rti − η. These pairs form a two-
dimensional point process. A baseline period D (252 trading
days) is set. The intensity function over a space-time region
is:

P (N(A) = k) =
[Λ(A)]ke−Λ(A)

k!
(8)

with intensity measure:

Λ ([D1, D2]× (r,∞)) =

∫ D2

D1

∫ ∞

r

1

α

×
(
1− k

(
r − β

α

)) 1
k−1

×dr dt (9)
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H. Maximum Likelihood Estimation

The likelihood function for estimating parameters k, α,
and β under the 2D-NHPP is:

L(k, α, β) =

Nη∏
i=1

1

α

(
1− k

(
rti − β

α

)) 1
k−1

·

exp

{
−D

α

[
1− k

(
η − β

α

)] 1
k

}
(10)

Its log-likelihood form is:

lnL =

Nη∑
i=1

[
− lnα+

(
1

k
− 1

)
ln

(
1− k

(
rti − β

α

))]

−D

α

[
1− k

(
η − β

α

)] 1
k

(11)

I. Modeling Parameters with Covariates

The model allows parameters to vary with explanatory
variables such as volatility and interest rates:

kt = γ0 + γ1 ·Volatilityt + γ2 · InterestRatet (12)

ln(αt) = δ0 + δ1 ·Volatilityt + δ2 · InterestRatet (13)

βt = θ0 + θ1 ·Volatilityt + θ2 · InterestRatet (14)

The updated intensity function becomes:

Λ =

∫ D2

D1

∫ ∞

r

1

αt

(
1− kt

(
r − βt

αt

)) 1
kt

−1

· dr dt (15)

and the log-likelihood becomes:

lnL =

Nη∑
i=1

[
− lnαti +

(
1

kti
− 1

)]
· ln

(
1− kti

(
rti − βti

αti

))
−

T∑
t=1

1

αt

[
1− kt

(
η − βt

αt

)] 1
kt

(16)

This formulation enhances risk estimation by accounting
for economic conditions through time-varying parameters.

III. RESULTS AND DISCUSSION

IV. RESULTS

A. VaR Estimation and Backtesting

Figure 1 visually presents the backtesting of the 95% Value
at Risk (VaR) model using daily return data from the NSE
20 index. The chart illustrates the daily returns (blue line),
the VaR threshold at the 95% confidence level (red dashed
line), and specific VaR violations (orange dots)—instances
where actual returns fell below the predicted VaR level. This

visualization provides an intuitive assessment of how well
the model captures extreme downside risk.

To statistically validate the accuracy of the VaR model,
Kupiec’s Proportion of Failures (POF) test was applied. This
test compares the observed proportion of violations to the
expected proportion, given the model’s confidence level. For
a 95% VaR model, the expected violation rate is p = 1 −
0.95 = 0.05. The computed Kupiec test statistic was 0.0061,
with an associated p-value of 0.938.

This high p-value indicates that we fail to reject the
null hypothesis that the observed frequency of violations
aligns with the expected rate. Thus, the model is statistically
consistent with actual market behaviour in terms of violation
frequency. However, it is important to note that this test does
not evaluate the magnitude of the violations. For a more
comprehensive validation, complementary methods such as
Christoffersen’s conditional coverage test could be employed.

B. Conditional Extreme Value Theory with Interest Rates

Figure 2 shows a QQ (quantile-quantile) plot that evaluates
the fit of a Generalized Pareto Distribution (GPD) to the
negative tail of the return distribution. The plot is generated
using the Peaks Over Threshold (POT) approach, where the
excesses are calculated as the amount by which returns fall
below the 5th percentile threshold. These excess losses are
then fitted to a GPD using maximum likelihood estimation.

The QQ plot compares the empirical quantiles of the
excess losses to the theoretical quantiles implied by the
fitted GPD model. The red diagonal line represents perfect
agreement between the empirical and theoretical quantiles.
Most data points lie close to this line, particularly in the lower
and middle quantile ranges, suggesting a good fit. Minor
deviations in the upper quantiles may reflect the presence of
extreme outliers—common in heavy-tailed financial data.

While this plot represents an unconditional fit, the broader
goal is to incorporate macroeconomic covariates, such as in-
terest rates, to capture time-varying tail risk. In a conditional
EVT framework, interest rates can be used to model dynamic
thresholds or shape parameters, enhancing the responsiveness
and accuracy of risk estimates under changing market con-
ditions.

C. Rolling Window EVT Analysis

To address the dynamic nature of financial risk, a 30-day
rolling window approach was applied to estimate Value at
Risk (VaR) violations over time using Extreme Value Theory
(EVT). This approach allows the model to adapt to evolving
market conditions by estimating VaR violations in shorter,
overlapping intervals rather than over the entire sample.

For each rolling window, the number of VaR violations
was counted and modelled using a Poisson regression, with
the 30-day average interest rate as an explanatory variable.
This methodology enables analysis of whether short-term
fluctuations in interest rates correlate with the frequency of
extreme losses.

The Poisson regression produced a positive coefficient for
the average interest rate (β = 0.0086), suggesting a potential
association between higher interest rates and more frequent
VaR violations. However, the coefficient was not statistically
significant at the 5% level (p = 0.105). This indicates that
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Fig. 1. Daily Returns and VaR Violations for NSE 20 Index

Fig. 2. QQ Plot of GPD Fit to Negative Tail
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within the observed data period, interest rate variations did
not have a strong or statistically meaningful effect on the
likelihood of extreme negative returns in the NSE 20 index.

TABLE I
POISSON REGRESSION OF VAR VIOLATIONS ON AVERAGE INTEREST

RATE

Variable Coefficient (β) Std. Error p-value
Intercept 0.3647 0.037 < .001
Avg Rate 30d 0.0086 0.005 .105
Model: Poisson regression with log link; N = 2475

D. Time Series Plots

Figure 3 illustrates the daily performance of the NSE
20 Share Index from January 2014 to December 2023.
A general downward trend is observed, with substantial
declines in 2017 and a notable crash in 2020, coinciding
with the COVID-19 pandemic. Volatility clustering is evi-
dent—periods of high volatility tend to be followed by more
high volatility, a classic feature of financial time series.

The log return plot in Figure 4 confirms these volatility
clusters, with prominent spikes in 2014, 2017, and 2020.
These observations support the application of Extreme Value
Theory (EVT) for modeling rare events and justify the use
of the Peak Over Threshold (POT) method with a two-
dimensional non-homogeneous Poisson process (2D-NHPP).

E. Summary Statistics and Normality Assessment

TABLE II
SUMMARY STATISTICS OF LOG RETURNS SERIES

Statistic Value

Mean -0.000474
Median -0.000397
Variance 0.000049
Standard Deviation 0.006989
Skewness -0.496171
Kurtosis 21.942656
Minimum -0.086022
Maximum 0.086344

The negative mean suggests declining returns on average,
while high kurtosis (21.94) and negative skewness (-0.49) in-
dicate a heavy-tailed, asymmetric distribution. This validates
the choice of heavy-tail models over normal distributions.
Shapiro-Wilk test results (W = 0.8882, p < 2.2 × 10−16),
Q-Q plots, and density plots all confirm non-normality.

F. Q-Q Plot of Log Returns

Figure ?? presents the Quantile-Quantile (Q-Q) plot for the
log returns of the NSE 20 Share Index. The plot compares the
empirical quantiles of the log return data (blue dots) against
the theoretical quantiles of a standard normal distribution (red
reference line). A normal distribution would produce points
that lie approximately along the red line. However, in the
plot, there are significant deviations from the straight line in
both tails. The left tail shows more pronounced divergence,
indicating the presence of extreme negative returns (losses),
while the right tail also exhibits upward curvature, though
less severely. This pattern confirms the presence of heavy
tails and departures from normality. The Q-Q plot therefore

reinforces the findings from the Shapiro-Wilk test (W =
0.8882, p < 2.2× 10−16) and the kurtosis value of 21.94 in
Table I, which also suggest that the log returns distribution
is leptokurtic and non-normal. These diagnostics validate the
decision to apply Extreme Value Theory (EVT), as conven-
tional models assuming normality would underestimate the
probability of extreme losses.

G. Stationarity and Serial Correlation

The Augmented Dickey-Fuller (ADF) test confirmed sta-
tionarity (ADF = -12.44, p = 0.01). The autocorrelation and
partial autocorrelation functions showed short-term serial de-
pendencies, with significant spikes at lags 1–4. Furthermore,
the ARCH-LM test (χ2 = 681.6, p < 2.2×10−16) confirmed
the presence of ARCH effects, which supports modeling
volatility using GARCH-type models.

H. Autocorrelation Function and Partial Autocorrelation
Function plots

The Autocorrelation Function (ACF) and Partial Autocor-
relation Function (PACF) plots provide essential insights into
the time series properties of the log returns of the NSE
20 Share Index. These diagnostic tools help identify the
presence and nature of autocorrelation within the data, which
is critical when selecting appropriate models for time series
forecasting or risk estimation. In this case, both plots suggest
a pattern of short-term dependence, particularly in the first
few lags. The ACF plot in Figure 6 shows a prominent spike
at lag 1, followed by a rapid decay toward zero, with most
subsequent lags falling within the 95% confidence bounds.
This pattern implies that the correlation between current
and past values is primarily limited to the immediate past.
Such behavior is typical of a Moving Average (MA) process,
specifically of order one, denoted as MA(1). It indicates that
the time series is influenced more by the most recent noise
(or shock) rather than by long-term dependencies. In contrast,
the PACF plot shown in in Figure 7, exhibits significant
spikes at lag 1 and possibly lag 2, after which the values
taper off and remain within the confidence bounds. This
suggests the presence of an Autoregressive (AR) process,
likely AR(1) or AR(2), where the current value is linearly
dependent on one or two past values of the series. The
partial autocorrelation isolates the direct effect of each lag,
confirming that beyond the second lag, the contribution of
earlier values becomes statistically insignificant.

I. Volatility Modeling Using GARCH(1,1)

The GARCH(1,1) model was employed to capture the
conditional heteroscedasticity present in the log returns of the
NSE 20 Share Index as shown in Table ??. The estimation
results show that the model effectively accounts for time-
varying volatility, a common feature in financial time series
where large market movements tend to cluster together. In
the mean equation, the constant term (µ) is estimated at
−0.0002818 and is statistically significant at the 1% level
(p < .001), with a t-value of −63.87. This negative estimate,
though small in magnitude, indicates a slight downward
drift in average daily returns during the study period. The
narrow 95% confidence interval [−0.0002904, −0.0002731]
confirms the precision of this estimate.
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Fig. 3. Time series plot for the NSE 20 Share Index

Fig. 4. Time series plot for the NSE 20 Share Index log returns

The volatility equation, comprising the parameters ω, α1,
and β1, provides insight into the structure of market volatility.
The estimate for ω, which represents the long-term aver-
age variance, is 0.000004846 and is statistically significant
with an extremely small standard error. This result reflects
a consistent low-level variance in returns, reinforcing the
suitability of the GARCH framework for modeling baseline
volatility. The α1 parameter, estimated at 0.2000, captures
the short-term reaction of volatility to market shocks, indicat-
ing that recent squared returns (news or innovations) have a
notable impact on current volatility levels. The β1 parameter,
which measures the persistence of volatility, is estimated at
0.7000 and is highly significant. This value indicates a strong

memory in the volatility process, meaning that once volatility
increases, it tends to remain elevated for some time—a key
characteristic known as volatility clustering.

Together, the sum of α1 and β1 equals 0.90, suggesting
high but mean-reverting persistence in volatility. This means
the effects of a volatility shock dissipate slowly over time,
but the process remains stationary. Such findings confirm
that volatility in the NSE 20 Share Index is both responsive
to new information and persistent across time, making the
GARCH(1,1) model an appropriate tool for volatility model-
ing in this context. These volatility estimates are crucial for
informing the subsequent stages of this study, particularly
the modeling of risk through the 2D-NHPP-based EVT
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Fig. 5. Q-Q plot of log returns for the NSE 20 Share Index (2014–2023)

Fig. 6. ACF plot of log returns for the NSE 20 Share Index (2014–2023)

framework, where conditional volatility is used as a covariate
to explain the occurrence and magnitude of extreme market
events.

Fig. 7. PACF plot of log returns for the NSE 20 Share Index (2014–2023)

TABLE III
GARCH(1,1) ESTIMATION RESULTS FOR NSE 20 SHARE INDEX LOG

RETURNS (N = 2,503)

Parameter Estimate Std. Error P-value

Mean Equation
µ –0.0002818 0.0000044 < .001

Volatility Equation
ω 0.000004846 4.87e–11 < .001
α1 0.2000 0.0216 < .001
β1 0.7000 0.0243 < .001
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J. Extreme Value Detection

Density plots in Figure 8 and histograms in Figure 9 reveal
extreme positive and negative returns. There is a greater
concentration of extreme losses, emphasizing downside tail
risk. These characteristics underscore the need for a formal
EVT-based modeling approach.

K. Justification for POT over GEV Approach

Although the Generalized Extreme Value (GEV) distribu-
tion is appropriate for modeling block maxima, this study
utilizes the Peak Over Threshold (POT) method with the
Generalized Pareto Distribution (GPD). POT is preferred for
high-frequency financial data as it captures more extreme
events by modeling exceedances over a threshold rather
than relying on block maxima. This improves estimation
efficiency and better reflects the dynamics of daily stock
market returns.

L. Threshold Determination

1) Quantile Method: A threshold at the 95th percentile
(0.00944) of the log returns was chosen to define extreme
events. This level captures the most significant deviations
in the data while retaining enough observations for reliable
estimation.

2) Mean Residual Life Plot: The MRL plot confirmed that
the data followed a linear trend between the 90th and 95th
percentiles, validating the selection of the 95th percentile
threshold for GPD modeling.

M. GPD Parameter Estimation

TABLE IV
GPD PARAMETER ESTIMATES (THRESHOLD = 0.00944)

Parameter Estimate Standard Error

Scale (σ) 0.00334 0.00034
Shape (ξ) 0.24510 0.09606
Negative Log-Likelihood -557.0063 N/A

The positive shape parameter confirms a heavy-tailed
distribution. The relatively small scale parameter indicates
that while extreme events exist, their spread is contained.
The negative log-likelihood value supports a good model fit
to the observed exceedances.

N. Model Estimation via Log-Likelihood Maximization

The parameters for the 2D-NHPP were estimated by
maximizing the log-likelihood function derived under the
assumption of time-varying parameters. Numerical optimiza-
tion was conducted using quasi-Newton methods in R. The
low standard errors and highly significant p-values validate
the model’s robustness and precision.

O. 2D-NHPP with Covariates

The two-dimensional non-homogeneous Poisson process
based on Extreme Value Theory was estimated using the
Maximum Likelihood Estimation (MLE) method. In this
model, the parameters kt, αt, and βt were expressed as
linear functions of the explanatory variables: volatility of

NSE 20 Share Index returns and the interbank interest rates.
The estimated coefficients and their corresponding standard
errors and p-values are summarized in Table V.

All estimated coefficients were statistically significant at
the 1% level, with p-values effectively equal to zero. This
confirms that both volatility and interest rates play a sig-
nificant role in determining the shape, scale, and location
parameters of the GPD model within the 2D-NHPP frame-
work.

Parameter Interpretation:
Shape Parameter kt:

kt = 0.0003448139 + 0.0009956535 ·Volatilityt
−0.0044906778 · InterestRatet (17)

The positive and significant coefficient of volatility implies
that increases in market volatility correspond to heavier
tails in the distribution of returns, indicating greater risk
of extreme losses. Conversely, higher interest rates reduce
the heaviness of the tail, implying a more stable market
environment.

Scale Parameter ln(αt):

ln(αt) = −5.5679734737 + 62.6763138145 ·Volatilityt
−0.0614310886 · InterestRatet (18)

The large positive coefficient for volatility suggests that
greater market turbulence increases the scale of the dis-
tribution, leading to potentially larger losses. The negative
coefficient for interest rates supports the stabilizing role of
monetary policy in suppressing the magnitude of extreme
events.

Location Parameter βt:

βt = 0.0366819993 + 1.2794835187 ·Volatilityt
−0.0021601651 · InterestRatet (19)

The baseline level of risk, represented by βt, is positively
related to volatility, reinforcing the link between market
uncertainty and increased financial risk. Interest rates are
again negatively associated with βt, suggesting that rising
rates reduce systemic vulnerability.

All covariates are highly significant (p < 0.0001). Volatil-
ity positively impacts all parameters, increasing the likeli-
hood and magnitude of extreme events. Conversely, interest
rates reduce the parameters, suggesting a stabilizing effect
on financial risk.

P. Temporal Behavior of Parameters

To identify an appropriate threshold for modeling extreme
stock return values, the 95th percentile of the log returns
was selected. This corresponds to the most extreme 5% of
observations and represents a reasonable cut-off for defining
tail events. Values exceeding this threshold, calculated as
0.00944, were considered extreme and modeled using the
Generalized Pareto Distribution (GPD).

To validate this choice, a Mean Residual Life (MRL) plot
was employed. The MRL plot helps assess the suitability of
various thresholds by examining the average excess over a
range of candidate thresholds. As shown in Figure 10, the
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Fig. 8. Density plot of log returns with extreme value thresholds

Fig. 9. Histogram of log returns with highlighted extreme values
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TABLE V
ESTIMATED PARAMETER COEFFICIENTS WITH STANDARD ERRORS AND P-VALUES

Parameter Estimate Standard Error P-value

γ0 0.0003448139 0.00000001 0.0000
γ1 0.0009956535 0.00000001 0.0000
γ2 -0.0044906778 0.00000001 0.0000
δ0 -5.5679734737 0.0000017511 0.0000
δ1 62.6763138145 0.0000000105 0.0000
δ2 -0.0614310886 0.0000081371 0.0000
θ0 0.0366819993 0.0000745592 0.0000
θ1 1.2794835187 0.0000004408 0.0000
θ2 -0.0021601651 0.0000000143 0.0000

MRL plot exhibited an approximately linear trend between
the 90th and 95th percentiles, supporting the selection of the
95th percentile threshold. This threshold provides a balance
between capturing enough extreme events for reliable esti-
mation and maintaining the linearity assumption required for
valid GPD modeling.

The location parameter βt remained relatively stable, in-
dicating insensitivity to short-term market fluctuations. The
scale parameter αt fluctuated significantly during periods of
heightened volatility, while the shape parameter kt was the
most sensitive, capturing changes in tail risk during financial
turbulence.

Q. Value at Risk (VaR) Estimation

Using observed values from December 29, 2023 (volatility
= 0.00647, interest rate = 13.7786), VaR estimates were
obtained as follows:

TABLE VI
ESTIMATED DAILY VALUE AT RISK (VAR)

Confidence Level VaR Estimate

90% 0.01320
95% 0.01259
99% 0.01161

The decreasing VaR across higher confidence levels aligns
with EVT theory. The negative shape parameter under current
conditions implies a bounded tail distribution, suggesting
capped losses under extreme events. The inclusion of macro-
financial variables enables a dynamic and realistic risk esti-
mation framework.

V. DISCUSSION

Effective risk management remains a central concern
in financial decision-making, particularly in uncertain and
volatile market environments [1]. Value at Risk (VaR) has
long served as a foundational tool to quantify potential
losses with a specified level of confidence [2]. However,
traditional VaR models often rely on the assumption that
financial returns follow a normal distribution, which under-
represents the likelihood and magnitude of extreme losses.
Such limitations became especially evident during global
financial crises, including the 2008 crash and the COVID-
19 pandemic, where models based on normality failed to
anticipate severe market disruptions [[8], [4]].

To overcome these limitations, researchers have increas-
ingly turned to Extreme Value Theory (EVT), which offers

robust techniques for modeling tail risk and rare financial
events [[3], [5]]. In line with this shift, our study adopts
a Peak Over Threshold (POT) approach under EVT and
successfully models the tail behavior of the NSE 20 Share
Index returns. Our findings confirm the presence of heavy
tails and volatility clustering, supporting the need for tail-
sensitive risk modeling frameworks.

Furthermore, we extend beyond conventional EVT
applications by incorporating a Two-Dimensional Non-
Homogeneous Poisson Process (2D-NHPP). While EVT cap-
tures the severity of extreme events, the 2D-NHPP accounts
for their timing and intensity. This joint framework addresses
the critique that EVT often assumes independence between
extreme events and overlooks time-varying risk levels [7].
Our model explicitly incorporates market volatility and in-
terest rates as covariates, enhancing its ability to adapt to
evolving financial conditions.

This approach builds upon earlier work by [6], who em-
phasized the value of integrating macroeconomic factors into
risk models. However, while Fabiani et al. primarily focused
on developed markets, our study applies this methodology
in an emerging market context—specifically Kenya where
financial systems are more susceptible to shocks, liquidity
constraints, and regulatory inconsistencies. This localized
adaptation fills a significant research gap noted in the litera-
ture, where most EVT and 2D-NHPP applications overlook
the dynamics of emerging economies.

By using daily data from the NSE spanning 2014 to 2023,
a period that captures both global and domestic economic
shocks, our model not only estimates the magnitude of
extreme losses but also their likelihood of occurrence. The
inclusion of macroeconomic covariates shows that increased
volatility significantly raises tail risk, whereas rising interest
rates tend to reduce it. These findings align with economic
intuition and empirical studies (e.g., Beaumard, 2023), rein-
forcing the validity and practical relevance of our model.

The estimated VaR values at multiple confidence levels
further underscore the model’s utility. Unlike traditional
VaR estimates that may underestimate potential losses, our
dynamic EVT-2D-NHPP model provides conservative yet
realistic estimates that reflect real market risk. This is par-
ticularly important for institutional investors, regulators, and
policymakers in emerging markets who require reliable tools
to navigate financial uncertainty.

VI. CONCLUSION

This work aimed at creating a more accurate and flexible
model to estimate financial risk by integrating the EVT with
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Fig. 10. Mean Residual Life (MRL) Plot for Log Returns

the 2D-NHPP model. Employing the daily return data of the
NSE 20 Share Index over the period of ten years and with
interest rates and market volatility as control variables, the
model offers an efficient procedure for measuring both the
intensity and the occurrence of shock events.

The results from the analysis show that accounting for
macroeconomic variables enhances the accurate estimation of
the location, scale, and shape parameters of the GPD model.
It was also found that the more volatile a market is, the higher
the value of all three parameters, which implies that a higher
level of market volatility increases the probability of rare
events, shifts baseline risk up and increases kurtosis of return
distribution. On the other hand, the level of interest rates had
an inverse relationship with the same parameters, supporting
their role of mitigating volatilities in the financial markets,
proxied by containing the intensity and occurrence of large
losses. These findings supports the theoretical framework and
existing literature review relating to similar studies.

Compared to static VaR models, the dynamic charac-
teristics of EVT-2D-NHPP make it appealing by allowing
the model parameters to incorporate time dependencies and
changes in economic conditions. This dynamic modelling ap-
proach is particularly useful in the context of the developing
countries such the Kenyan scenario where financial structures
are highly fragile to shocks and volatility or of liquidity.

In conclusion, the study provides a framework that is
practical and quantitative in nature for the evaluation of
risk that can be useful for investors, policymakers, and
regulators to make confident financial decisions. The ability
to incorporate explanatory variables makes the model more
valuable in its capacity to predict and apply to real-life
situations.

Further research might seek to expand the above model by
defining new predictors, which include such options as in-
flation rates, fluctuations in the exchange rates or worldwide
economic indicators. This would also help identify cross-
sectional risk characteristics and or value-at-risk for other
asset classes or even other complex and diverse financial
markets. Extending the model in these directions would go
even a long way in enhancing the establishment of robust
and evidence based financial risk management frameworks.
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