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Abstract—This paper focuses on combining the fourth-order
central difference scheme with the fourth-order exponential
time-differencing Runge-Kutta (ETDRK4P) method based on
Padé rational approximation of matrix exponential, along with
dimensional splitting. The resulting ETDRKP-IF scheme is
applied to solve the Allen-Cahn equation with logarithmic
Flory-Huggins potential. The proposed method achieves fourth-
order accuracy in both time and space. Numerical experiments
verify the convergence and energy stability of the scheme,
providing a reliable method for numerical simulation of the
Allen-Cahn equation with logarithmic Flory-Huggins potential.

Index Terms—Allen-Cahn equation, logarithmic potential,
exponential time differencing, fourth-order time stepping, di-
mension splitting.

I. Introduction

IN various phase-field models, the Allen-Cahn (AC) e-
quation with logarithmic Flory-Huggins potential demon-

strates significant importance in describing physical process-
es. Compared to the commonly used quartic polynomial
potential, it more accurately reflects real physical phenom-
ena. In this paper, we primarily focus on the following AC
equation [1]:
∂tu = ε2∆u − f (u), (t, x) ∈ (0,∞) ×Ω
F(u) = θ [u ln u + (1 − u) ln(1 − u)] + θcu(2 + u), 0 < u < 1

u|t=0 = u0,
(1)

where Ω ⊂ R2 is a bounded domain, u is a real-valued
function, ε is the mobility coefficient, F(u) denotes the
logarithmic Flory-Huggins potential and f (u) = F′(u). θ and
θc are the absolute and critical temperatures respectively. In
this paper, we assume that θc = 1. It is well known that the
Allen-Cahn equation can be regarded as the L2-gradient flow
of the free energy functional E(u), defined as:

E(u) =
∫
Ω

(
ε2

2
|∇u|2 + F(u)

)
dx (2)

and for smooth solutions of (1), the energy E(u) is non-
increasing in time, satisfying:

d
dt

E(u) ≤ 0. (3)

We plot the functions F(u) and f (u) for different values
of θ in Fig. 1.

In practice, let g denote the number of uniformly distribut-
ed grid points in each spatial direction. The spatial derivatives
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Fig. 1: The logarithmic Flory-Huggins potential.

in (1) are first discretized on a partition of Ω with g2 points
to obtain a system of ordinary differential equations (ODE):

 dU
dt + LU = N(U(t), t)

U(x, 0) = U0(x),

where

U =


u1
...

ug

 ,
L is the discrete approximation of −ε2∆ and N(U(t),t) is used
to approximate all − f (u) on the numerical grid.

From a physical perspective, the logarithmic Flory-
Huggins potential is more realistic than the double-well
potential. However, its application to the Allen-Cahn equa-
tion presents two major difficulties: the logarithmic singu-
larity when the phase variable approaches 0 or 1 and the
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strong nonlinearity of the potential function. Current research
primarily addresses these issues through two approaches:
At first, constructing specialized numerical schemes. For
instance, [2] established a solution framework for the CH/AC
system with logarithmic potential and proved properties of
the solution but two-dimensional computations require the
costly conjugate gradient method. [3] developed an implicit
Euler discretization scheme for the one-dimensional case.
Secondly, regularization techniques, [4] proposed a stabilized
energy decomposition method to prove energy stability, while
[5] introduced an efficient algorithm through logarithmic reg-
ularization. These contributions provide important references
for handling logarithmic potential problems, which arise
from the highly nonlinear and stiff nature of the diffusion
and reaction terms, as well as the strong nonlinearity of
the function F(u). Numerical studies of the Allen-Cahn
equation with logarithmic Flory-Huggins potential remain
challenging. Additionally, instability may occur if the initial
data lacks sufficient smoothness or if the energy parameters
are improperly set or incompatible with boundary values. We
adopt the dimensional splitting idea from [6], [7] and [8]
and employ the exponential time-differencing Runge-Kutta
(ETD-RK) scheme from [9] to approximate the exact solution
of the ODE system.

Traditional ETD-RK scheme suffers from computational
efficiency issues due to matrix exponential operations. To
address this, researchers have proposed various improve-
ments. Among them, the ETDRK-Padé scheme in [10], [11],
[12] and [13] significantly improves computational speed by
using Padé rational approximations for matrix exponentials,
with both second-order and fourth-order versions currently
available. Additionally, the ETD-RDP scheme in [14], which
employs real distinct pole (RDP) rational functions, can
further optimize computational performance. To enhance the
efficiency of second-order ETD-RK scheme for multidimen-
sional problems, references [15] and [16] proposed improved
schemes based on dimensional splitting techniques combined
with Padé(1,1) approximation and RDP rational functions,
respectively. Recently, the ETDRK4P22-IF scheme proposed
in [17] is a more efficient fourth-order exponential time
differencing method. It combines dimensional splitting tech-
niques with Padé(2,2) rational approximation for matrix
exponentials to solve reaction-diffusion equations, achieving
fourth-order accuracy in these systems.

In this paper, we employ the ETDRKP-IF scheme to
solve the Allen-Cahn (AC) equation with logarithmic Flory-
Huggins potential. Compared to the strongly split method
with logarithmic Flory-Huggins potential for solving the
AC equation in [1], our approach significantly improves
error accuracy and increases the convergence order from
second-order to fourth-order. Last but not least, through
numerical experiments, we verify the fourth-order accuracy,
effectiveness, and energy stability of the ETDRKP-IF scheme
for solving the AC equation.

The remainder of this paper is organized as follows.
Section 2 presents the spatial discretization. Section 3 intro-
duces the ETDRKP-IF scheme derived from Padé rational
approximation of matrix exponentials. Section 4 presents
numerical experiments. Finally, conclusions are given in
Section 5.

II. Discretization in space

Now construct the two-dimensional Laplacian operator
using the Kronecker product. In two dimensional (2D) case,
Let L = L1 + L2 be the matrix approximation of Laplacian
with L1 and L2 as the matrix approximations of ∂xx and ∂yy

respectively in 2D. Let Lp serves as the matrix approximation
of the second-order partial derivative in one dimension, and
I is an p-dimensional identity matrix. Then L1 = Lp ⊗ Ip

and Ł2 = Ip ⊗ Lp. Since references [12] and [13] have
proved that the matrices L1 and L2 commute, so we can
perform dimensional splitting. By decomposing L into L1
and L2, we reduce the number of non-zero diagonals, thereby
accelerating the solution of the linear system.

Similarly, in three dimensional (3D) case we have

L = L1 + L2 + L3 with
L1 = Ip ⊗ Ip ⊗ Lp, L2 = Ip ⊗ Lp ⊗ Ip and L3 = Lp ⊗ Ip ⊗ Ip.

Next, discretize the Laplacian ∆ = ∂xx+∂yy on the domain
[c, d]× [c, d]. A uniform mesh is constructed by partitioning
each spatial direction into g grid points with mesh size h =
d−c
g−1 with g ≥ 5. Then we set x j = c+ jh with j = 0, 1, . . . , g−
1. The second-order partial derivative of a function v(x, t)
with respect to x at x j can be discretized using the fourth-
order central difference scheme

∂xxV |x j =
1

12h2 (−V j−2+16V j−1−30V j+16V j+1−V j+2)+O(h4),
(4)

where j = 2, 3, . . . , g − 3, with V j ≈ v(x j, t).
When performing numerical calculations using central dif-

ference scheme, we need to consider the treatment of bound-
ary values for both homogeneous Dirichlet and Neumann
boundary conditions. For homogeneous Dirichlet boundary
condition, we employ fourth-order Lagrange interpolation
polynomials to extrapolate and approximate the values at
boundary points. For homogeneous Neumann boundary con-
ditions, we introduce symmetric assumptions about virtual
node values to approximate the values at boundary points.
These methods utilize high-order interpolation and symmetry
treatment, effectively ensuring the accuracy and stability of
numerical computations near boundaries.

III. Discretization in time

In two dimensional, we present the dimensionally split
form ETDRKP-IF of the fourth-order exponential time dif-
ferencing Runge-Kutta (ETD-RK) scheme using Padé (2, 2)
rational function approximation ([18],pp. 436]) to solve
semilinear ordinary differential equation (ODE) systems.

Un+1 = e−kLUn + P1(kL)N(Un, tn)

+ 2P2(kL)
[
N

(
an, tn + k

2

)
+ N

(
bn, tn + k

2

) ]
+ P3(kL)N(cn, tn + k),

an = e−
k
2 LUn + P̃(kL)N(Un, tn),

bn = e−
k
2 LUn + P̃(kL)N

(
an, tn + k

2

)
,

cn = e−
k
2 Lan + P̃(kL)

[
2N

(
bn, tn + k

2

)
− N(Un, tn)

]
,

(5)
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where

P1(kL) = 1
k2 (−L)−3

[
− 4I + kL + e−kL(4I + 3kL + k2L2)

]
,

P2(kL) = 1
k2 (−L)−3

[
2I − kL − e−kL(2I + kL)

]
,

P3(kL) = 1
k2 (−L)−3

[
− 4I + 3kL − k2L2 + e−kL(4I + kL)

]
,

P̃(kL) = −L−1(e− k
2 L − I

)
.

(6)

Next, we incorporate the dimensional splitting technique
into this scheme to obtain the fully discrete fourth-order ex-
ponential time differencing Runge-Kutta (ETD-RK) scheme
in split form like in [17]. The ETDRK-IF scheme is given
as follows:

Un+1 = e−kL1 e−kL2 Un + P1(kL2)e−kL1 N(Un, tn)

+ 2P2(kL2)e−
k
2 L1G

(
ān, b̄n, tn +

k
2

)
+ P3(kL2)N(c̄n, tn + k),

ān = e−
k
2 L2 e−

k
2 L1 Un + P̃(kL2)e−

k
2 L1 N(Un, tn),

b̄n = e−
k
2 L2 e−

k
2 L1 Un + P̃(kL2)N

(
ān, tn +

k
2

)
,

c̄n = e−
k
2 L2 e−

k
2 L1 an + P̃(kL2)

[
2e−

k
2 L1 N

(
b̄n, tn +

k
2

)
− e−kL1 N(Un, tn)

]
,

(7)

where

G
(
ān, b̄n, tn +

k
2

)
= N

(
ān, tn +

k
2

)
+ N

(
b̄n, tn +

k
2

)
.

Since both the ETD-RK scheme and ETDRK-IF scheme
involve high powers of matrix inversions and matrix ex-
ponential computations, they result in prohibitively high
computational costs. In some cases (e.g., with coefficient
matrices derived from partial differential equations with
Neumann boundary conditions), these computations may
even become infeasible. To address these challenges, [17]
introduced Padé (2, 2) rational functions to approximate the
matrix exponentials in equation (7).

We denote the Padé (2, 2) approximations of e−kL and
e−

k
2 L by R2,2(kL) and R̃2,2(kL), respectively, thus obtaining

the representations:

e−kL ≈ R2,2(kL)

= (12I − 6kL + k2L2)(12I + 6kL + k2L2)−1, (8)

e−
k
2 L ≈ R̃2,2(kL)

= (48I − 12kL + k2L2)(48I + 12kL + k2L2)−1. (9)

By substituting these approximations into both the ETD-
RK and ETDRK-IF schemes, we derive the following fully
discrete ETDRKP scheme and ETDRKP-IF scheme:

an = R̃2,2(kL)Un + P̃(kL)N(Un, tn),

bn = R̃2,2(kL)Un + P̃(kL)N
(
an, tn + k

2

)
,

cn = R̃2,2(kL)an + P̃(kA)
[
2N

(
bn, tn + k

2

)
− N(Un, tn)

]
,

Un+1 = R2,2(kL)Un + P1(kL)N(Un, tn)

+ 2P2(kL)G
(
an, bn, tn + k

2

)
+ P3(kL)N(cn, tn + k).

(10)

and

ān = R̃2,2(kL2)R̃2,2(kL1)Un

+ P̃(kL2)R̃2,2(kL1)N(Un, tn). (11)

b̄n = R̃2,2(kL2)R̃2,2(kL1)Un

+ P̃(kL2)N
(
ān, tn + k

2

)
. (12)

c̄n = R̃2,2(kL2)R̃2,2(kL1)ān

+ P̃(kL2)
[
2R̃2,2(kL1)N

(
b̄n, tn + k

2

)
− R2,2(kL1)N(Un, tn)

]
. (13)

Un+1 = R2,2(kL1)R2,2(kL2)Un

+ P1(kL2)R2,2(kL1)N(Un, tn)

+ 2P2(kL2)R̃2,2(kL1)G
(
ān, b̄n, tn + k

2

)
+ P3(kL2)N(c̄n, tn + k). (14)

IV. Numerical experiment

In this section in order to demmonstrate the accuracy and
energy stability, we conducted numerical experiments on the
computational domain Ω = [0, 1]2 with periodic boundary
conditions.

Example 1. The initial value is given by

u =

10−5, |x| ≤ 0.35 and |y| ≤ 0.35,
1 − 10−5, otherwise.

We set the spatial discretization is fixed at h = 0.009817,
while the physical parameters are chosen as θ = 0.8,
θc = 1, ε = 0.01 and use the time step sizes τ =
0.05, 0.025, 0.0125, 0.00625. In TABLE I, we give the tem-
poral convergence of the numerical solution u. It can be
easily observed that the proposed scheme is of fourth-
order accuracy for the AC equation. The Fig. 2 confirms
the numerical accuracy and computational efficiency of the
ETDRKP-IF scheme: Fig. 2 (a) illustrates the relationship
between time step size and numerical error, showing that
the error decreases significantly as the time step reduces;
Fig. 2 (b) compares the error versus CPU time, confirming
the superior computational efficiency of this scheme.

TABLE I: Results for ETDRKP-IF to solve AC equation.
τ h error conv time

0.050000 0.009817 2.3086e-04 0.00 1.39122
0.025000 0.009817 1.5278e-05 3.92 2.81636
0.012500 0.009817 9.5036e-07 4.01 5.40061
0.006250 0.009817 6.2458e-08 3.93 10.94418

Example 2. The initial data is given by

u = rand(x, y).

The random data are set between 0 and 1, with parameters
h = 1

80 , θ = 0.8, θc = 1, ε = 0.01, T = 500(final time) and
τ = 0.01. We then plot the evolution of the corresponding
discrete energy in Fig. 3, the graph shows that the discrete
energy decay is most evident when 0 ≤ t ≤ 8 and the discrete
energy strictly decreases and eventually stabilizes over time.
Additionally, Fig. 4 simulates the dynamic evolution of the
phase variable u at t = 0, 20, 100, 150, 200, 500. We
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can clearly observe the phase separation process, which
eventually reaches a steady state.
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Fig. 2: Convergence and efficiency for ETDRKP-IF.

Fig. 3: The curves of the discrete energy.

Example 3. Firstly, the initial data is given by

u = tanh
(
|x + y| + |x − y| − 0.4

√
2ε

)
.

In this example, the evolution of a square bubble is simulated
with parameters T = 120, h = 1

120 , ε = 0.01,θ = 0.8, θc = 1
and τ = 0.01. Then, the dynamic evolution of the phase
variable u at t = 0, 20, 50, 60, 80, 120 is simulated in Fig. 5.

We can clearly observe that the square bubble evolves into
a stable circular bubble over time.

Fig. 4: The dynamical evolutionof the phase variable u at
t=0,20,100,150,200,500.

V. Conclusion

This paper employs a fourth-order exponential time-
differencing Runge-Kutta scheme with Padé approximation
and dimensional splitting (ETDRKP-IF) for solving the
Allen-Cahn equation with logarithmic Flory-Huggins poten-
tial. The method significantly improves computational effi-
ciency for solving the Allen-Cahn equation with logarithmic
Flory-Huggins potential. Theoretical analysis and numeri-
cal experiments demonstrate that the ETDRKP-IF scheme
achieves fourth-order accuracy in both time and space dimen-
sions, shows marked improvement in computational efficien-
cy compared to traditional strong-splitting methods, while
strictly maintaining energy dissipation properties. Notably,
the method effectively overcomes the singularity issues of
the logarithmic potential when the phase variable approaches
0 or 1, and ensures computational stability through high-
order boundary treatment techniques. Numerical simulation-
s clearly reproduce phase separation dynamics, including
pattern formation from random initial conditions and the
evolution of square bubbles to circular equilibrium states.
These results provide reliable tools for numerical studies
of complex phase-field systems. Future work will focus on
extending this method to three-dimensional problems and
further enhancing its ability to handle strong nonlinear terms
and complex boundary conditions.
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Fig. 5: The dynamical evolutionof the phase variable u at
t=0,20,50,60,80,120.
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