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Abstract—The main focus of this paper is to develop
the solutions for the higher order difference equations with
factorials and discrete exponential functions. Using these
concept, we get the unique solution for the trigonometric
exponential function for the initial valued problem. These
results are verified using the numerical calculations.
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I. INTRODUCTION

H IGHER-order difference equations play a vital role
in discrete modeling, capturing the dynamics of

systems that progress in distinct steps. Incorporating discrete
exponential functions into these equations provides an
effective framework for representing exponential growth
and decay in such systems. The author [1] studies the
finite-time stability of fractional delay difference equations
with a discrete Mittag-Leffler kernel. First, a new generalized
Gronwall inequality is established in the sense of the
Atangana-Baleanu fractional difference sum operator. Then,
using this inequality and the method of steps, the author
derives finite-time stability criteria and illustrates the
results with examples. The author[2] develops fundamental
theorems for higher-order difference equations using q,
q(α), and h symmetric difference operators. While most
existing works focus on summation forms, the author
emphasizes closed-form solutions, which offer improved
accuracy and computational efficiency. The results are
validated through examples and graphical analysis to
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demonstrate the stability of the proposed methods.The author
[3] introduce a generalized difference operator of the nth

kind, ∆`1,`2,...,`n , extending traditional difference operators.
They derive discrete analogues of classical results like
Leibnizs rule and Newtons formula. Applications are given
in summation formulas, polynomial factorials, and number
theory.

The author [4] extend the theory of the generalized
difference operator of the nth kind and apply it
to number-theoretic problems, deriving new summation
formulas and relationships between generalized factorials
and algebraic polynomials. They establish discrete analogues
of classical identities and novel results in additive number
theory. Numerous examples illustrate the applicability and
effectiveness of these new operators. The difference operator
is defined as ∆y(k) = ya+1− ya in the theory of difference
equations, where N denotes the set of natural numbers. The
potential outcomes on the generalized difference operator ∆`

were proposed by numerous writers [5], [6], [7], [9], [12],
[13], [14]. Basic features of ∆`, including the product and
quotient rules of ∆`, were established by the generalized
difference operator ∆`. Throughout this paper, we use the
notation Na and Nba as

Na = {a, a+ `, a+ 2` · · · s− `, s, s+ `, s+ 2` · · · }

Nba = {a, a+ `, a+ 2` · · · s− `, s, s+ `, s+ 2` · · · b}

where a, b ∈ R and b− a ∈ N.
The generalized Leibnitz theorem and Binomial theorem

obtained by the generalized difference operators of the
second, third, and nth kinds, are represented as ∆`,m,
∆`1,`2,`3 , and ∆`1,`2,`3,··· ,`n , respectively. Newton’s formula,
the inverse of the generalized operator ∆`1,`2,`3,··· ,`n , and
Stirling numbers of second kind are used to determine
the sum of the general partial sums of the nth powers
of an arithmetic and arithmetical-geometric progressions,
respectively. In addition to the delta operators, the authors
in [8], [10], [11] developed certain difference operator such
as alpha-delta operator. This paper focuses on constructing
and solving higher-order difference equations involving
discrete exponential functions, offering analytical tools
and identities that enhance the understanding of discrete
dynamical behaviors. We constructed some identities with
delta trigonometric exponential functions in this research
and used the higher order difference equations to solve the
exponential functions.

II. PRELIMINARIES

The fundamental definitions of the delta operator, falling
factorial functions, sine and their cosine functions, and more
are developed in this section.
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Definition II.1. Assume f : Nba → R and if ` ∈ R and
b > a, the forward difference operator ∆` is then defined by

∆`f(w) = f(w + `)− f(w) for w ∈ Nb−`a . (1)

Definition II.2. The falling polynomial factorial function for
any positive integer ’n’ can be defined as

w
(n)
` = w(w − `)(w − 2`) . . . (w − n+ `), (2)

where ` ∈ R and w(0)
` = 1.

Lemma II.3. For any real number ` and positive integer n,
then we have ∆`w

(n)
` = n`w

(n−1)
`

Proof: ∆`w
(n)
` = (w + `)

(n)
` − w(n)

` , n = 1, 2, 3 · · ·
Using the Definitions II.1 and II.2, we get the result.

Lemma II.4. Let f, g : Nba → R and ` ∈ R. Then,

∆`{f(w)g(w)} = f(w)∆`g(w) + g(w + `)∆`f(w). (3)

Proof: The proof completes by taking
f(w) = f(w)g(w) in (1) and then adding and subtracting
the term f(w)g(w + `).

Theorem II.5. Let `, n > 0 ∈ N and α ∈ R. Then

∆`(w + α)
(n)
` = n`(w + α)

(n−1)
` , (4)

∆`(α− w)
(n)
` = n`(α− w)

(n−1)
` (5)

Proof: Using Lemma II.3 we have
∆`(w + α)

(n)
` = (w + α+ `)

(n)
` − (w + α)

(n)
`

= (w + α+ `)(w + α) · · · (w + α− (n− 2)`)
− [(w + α)(w + α− `) · · · (w + α− (n− 1)`)]

= n`(w + α)
(n−1)
`

∆`(α− w)
(n)
` = (α− w + `)

(n)
` − (α− w)

(n)
`

= (α− w + `)(α− w) · · · (α− w − (n− 2)`)
− [(α− w)(α− w − `) · · · (α− w − (n− 1)`)]

= n`(α− w)
(n−1)
`

Corollary II.6. Let `, n > 0 ∈ N and α ∈ R. Then

∆−1` (w + α)
(n−1)
` =

(w + α)
(n)
`

n`
(6)

∆−1` (α− w)
(n−1)
` =

(α− w)
(n)
`

n`
(7)

Proof: By using Theorem II.5 we find (6),(7).

III. DELTA EXPONENTIAL FUNCTION

In discrete calculus on Na, where the exponential function
ejw, j ∈ R, where j is constant, and x(w) = ejw is the
unique solution to the IVP, the ∆` exponential function is
essential.

x′ = jx, x(0) = 1.
The regressive function is,
< = {j : Na → R such that 1 + j(w) 6= 0 for w ∈ Na}.
The ∆` exponential function j ∈ R, based at s ∈ Na, to be
the solution exists ej(w, s), of the IVP

∆`x(w) = j(w)x(w) (8)

x(s) = 1 (9)

Theorem III.1. If j ∈ < and y(w) = cej(w, a), then its
solution can be generalized by

∆`y(w) = j(w)y(w) (10)

for w ∈ Na, where c is arbitrary constant.

Proof: Let y(w) =

w−s
` −1∏
τ=0

(1+j(s+τ`)) where w ∈ Ns,
then by Definition II.1, we have

∆`y(w) =

w+`−s
` −1∏
τ=0

(1+j(s+τ`))−
w−s
` −1∏
τ=0

(1+j(s+τ`))

Using the Definition II.2, we get

∆`y(w) = (1 + j(s))(1 + j(s + `))(1 + j(s + 2`)) · · ·
(
1 + j(s +

(
w−s
`

− 1
)
`)
)

(
1 + j(s +

(
w+`−s

`
− 1

)
`)
)

−

w−s
`

−1∏
τ=0

(1 + j(s + τ`))

∆`y(w) =

w−s
`

−1∏
τ=0

(1 + j(s + τ`))
(
1 + j(s +

(
w+`−s

`
− 1

)
`)
)

−

w−s
`

−1∏
τ=0

(1 + j(s + τ`))

∆`y(w) =

w−s
`

−1∏
τ=0

(1 + j(s+ τ`))
(
j(s+

(
w+`−s

`
− 1
)
`) − 1

)
which implies

∆`y(w) = y(w)j(w).

For w ∈ Na, y(w) is a general solution of equation (10).

Let y(w) =

s−w
` −1∏
τ=0

(1 + j(w + τ`))
−1 where w ∈ N

s−`−a
`

a

y(w) = (1 + j(w))−1 (1 + j(w + `))−1 · · · (1 + j(w + ( s−w` − 1)`))−1

Now, replacing w by (w + `), we get the above equation as
the form of

y(w + `) =

s−(w+`)
` −1∏
τ=0

(1 + j(w + `+ τ`))
−1

y(w + `) = (1 + j(w + `))−1 (1 + j(w + `+ `))−1 · · ·(
1 + j(w + `+

(
s−w−`

`
− 1
)
`)
)−1

Now, multiplying and dividing the term (1+j(w)), we obtain

y(w + `) = (1 + j(w)) (1 + j(w))
−1

(1 + j(w + `))
−1 · · ·(

1 + j(w +
(
s−w
` − 1

)
`)
)−1

which can be written in the form of
y(w + `) = (1 + j(w))y(w) = y(w) + j(w)y(w).
∆`y(w) = y(w + `) − y(w) = j(w)y(w). Hence y(w) is

general solution of equation (10) for w ∈ N( s−`−a` )
a .

Theorem III.2. For ⊕ on < by j ⊕ k := j + k + jk, then
(<, ⊕) is an abelian group.

Proof: We claim that (<, ⊕) is an abelian group.
i) Closure: If j, k ∈ <, then 1 + j(w) 6= 0 and

1 + k(w) 6= 0 for w ∈ Na, follows that
1 + (j ⊕ k)(w) = 1 + [j(w) + k(w) + j(w)k(w)]
= [1 + j(w)][1 + k(w)] 6= 0 for w ∈ Na.
Hence, j ⊕ k ∈ <.

ii) Associative: If j, k, t ∈ <, then (j ⊕ k)⊕ t
= j + k + jk + t+ jt+ kt+ jkt
= j ⊕ (k ⊕ t). Hence, j ⊕ (k ⊕ t) ∈ <.

iii) Identity: Here the 0 ∈ < as 1 + 0 = 1 6= 0.
Also, 0⊕ j = 0 + j + 0.j = j
for all j ∈ <. Hence, 0⊕ j ∈ <.

iv) Inverse: If j(w), k(w) ∈ <, then 1 + k(w)

= 1 +
−j(w)

1 + j(w)
=

1

1 + j(w)
6= 0, for w ∈ Na.

So, j ⊕ k = j ⊕ −j
1 + j

= j +
−j

1 + j
+
−j2

1 + j
= 0

k is the additive inverse of j.
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v) Commutative: If j, k ∈ <, then j ⊕ k = j + k + jk
= k ⊕ j ∈ <.

Hence, (<, ⊕) is abelian group on <.

Theorem III.3. If j, k ∈ < and ej(w, a) = ek(w, a), then
j = k for w ∈ Na .

Proof: Let j, k ∈ < and j(w)ej(w, a) = k(w)ek(w, a)
where w ∈ Na.
Hence the proof completes by ej(w, a) = ek(w, a).

Definition III.4. The definition of the circle minus scalar
multiplication 	 on <+ is

	 j =
−j

1 + j
. (11)

Definition III.5. The definition of the circle dot scalar
multiplication � on <+ is

α� j = (1 + j)α − 1. (12)

Theorem III.6. (<+,⊕, .) is a vector space, as
demonstrated by the set of positively regressive functions
<+ with ⊕ and scalar multiplication �.

Proof: To prove (<+,⊕) is Abelian.
i) Closure: If j, k ∈ <+, then j ⊕ k = j + k + jk
⇒ j ⊕ k ∈ <+.

ii) Associative: If j, k, t ∈ <+, then (j ⊕ k)⊕ t
= j ⊕ k + t+ (j ⊕ k)t
= j + k + t+ jk + (j + k + jk)t = j ⊕ (k ⊕ t).
This implies (j ⊕ k)⊕ t ∈ <+.

iii) Identity: The zero function 0 ∈ <+ as 1 + 0(t) > 0
for t ∈ Na, then 0⊕ j.
= 0 + j + 0 = j ∈ <+.

iv) Inverse: Let 	j be the additive inverse of j. Therefore,

	j =
−j

1 + j
∈ <+ and j ⊕ [	j] = j +

−j
1 + j

+
−j2

1 + j

= j +
−j

1 + j
[1 + j] = 0.

v) Commutative: If j, k ∈ <+, then j ⊕ k = j + k + jk
= k ⊕ j ∈ <+.

Hence (<+,⊕) is an abelian group.
Now, claim that (<+,⊕, .) is a vector space.

i) Let α, β ∈ R and j ∈ <+, then e(α+β)�j(w, a)

= eα+βj (w, a) = eαj (w, a)eβj (w, a)
= eα�j(w, a)eβ�j(w, a) = e(α�j)⊕(β�j)(w, a).

Thus,
(α+ β)� j = (α� j)⊕ (β � j)

ii) Let α ∈ R and j, k ∈ <+, then eα�(j⊕k)(w, a)
= eαj⊕k(w, a) = eαj (w, a)ek(w, a)
= eα�j(w, a)eα�k(w, a) = eα�⊕α�k(w, a).

Thus,
α� (j ⊕ k) = α� j ⊕ α� k

Hence (<+,⊕, .) is distributive.
iii) Let e1�j(w, a) = e1j (w, a), then 1� j = j ∈ <+.
iv) Here, eα�(β�j)(w, a) = eαβ�j(w, a) = eαβ�j(w, a).

This gives
α� (β � j) = αβ � j.

Hence (<+,⊕, .) is a vector space.

Theorem III.7. If j, k ∈ < and t, s, w ∈ Na, then
i) e0(w, s) = 1 and ej(w,w) = 1

ii) ej(w, s) 6= 0 for w ∈ Na
iii) if 1 + j > 0, then ej(w, s) > 0

iv) eσj (w, s) = ej(σ(w), s)

=

(
1 + j(s+

(
σ(w)− s

`
− 1

)
`)

)
ej(w, s)

v) ej(w, s)ej(s, t) = ej(w, t)

vi) ej(w, s)ek(w, s) = ej⊕k(w, s)

vii) e	j(w, s) =
1

ej(w, s)

viii)
ej(w, s)

ek(w, s)
= ej	k(w, s)

ix) ej(w, s) =
1

ej(s, w)

Proof: Let ej(w, s) =

w−s
` −1∏
τ=0

(1+j(s+τ`)) for w ∈ Na.

i) The proof of (i) completes by taking j = 0 and s = w.
ii) Since 1 + j(w) 6= 0, so that

ej(w, s) =

w−s
` −1∏
τ=0

(1 + j(s+ τ`)) 6= 0 where w ∈ Na.

iii) Since 1 + j(w) > 0, so that

ej(w, s) =

w−s
` −1∏
τ=0

(1 + j(s+ τ`)) > 0 where w ∈ Na.

iv) Let ej(σ(w), s) =

σ(w)−s
` −1∏
τ=0

(1 + j(s+ τ`)), w ∈ Na

= (1 + j(s))(1 + j(s+ `)) . . .
(

1 + j(s+
(
σ(w)−s

`
− 1
)
`)
)

=
(

1 + j(s+
(
σ(w)−s

` − 1
)
`)
) w−s

` −1∏
τ=0

(1 + j(s+ τ`))

ej(σ(w), s) =
(

1 + j(s+
(
σ(w)−s

` − 1
)
`)
)
ej(w, s)

v) Holds only t ≤ s ≤ w.

Let ej(w, s)ej(s, t) =

w−s
`

−1∏
τ=0

(1+ j(s+ τ`))

s−t
`

−1∏
τ=0

(1+ j(t+ τ`))

Since ej(w, s) and ej(s, t) is commutative, the above
equation can be written as
ej(w, s)ej(s, t) = ej(s, t)ej(w, s)

=

s−t
` −1∏
τ=0

(1 + j(t+ τ`))

w−s
` −1∏
τ=0

(1 + j(s+ τ`))

= ej(w, t).

vi) Let ej(w, s)ek(w, s) =

w−s
`

−1∏
τ=0

(1+j(s+τ`))

w−s
`

−1∏
τ=0

(1+k(s+τ`))

ej(w, s)ek(w, s) =

w−s
`

−1∏
τ=0

(1 + j(s+ τ`))(1 + k(s+ τ`))

ej(w, s)ek(w, s)=

w−s
`

−1∏
τ=0

(1 + j(s + τ`) + k(s + τ`) + j(s + τ`)k(s + τ`))

By Theorem III.2, we obtain

ej(w, s)ek(w, s) =

w−s
` −1∏
τ=0

(1 + j(s+ τ`)⊕ k(s+ τ`))

= ej⊕k(w, s).

vii) Let e	(w, s) =

w−s
` −1∏
τ=0

(1 +	j(s+ τ`))

=

w−s
` −1∏
τ=0

1− j(s+ τ`)

1 + j(s+ τ`)

e	(w, s) =
1

w−s
` −1∏
τ=0

1

1 + j(s+ τ`)
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=
1

w−s
` −1∏
τ=0

(1 + j(s+ τ`))

=
1

ej(w, s)
.

viii) Let
ej(w, s)

ek(w, s)
= ej(w, s)

[
1

ek(w, s)

]
. By (vii), we have

ej(w, s)

ek(w, s)
= ej(w, s)e	j(w, s) = ej⊕[	k](w, s)

= ej	k(w, s).
ix) From (v), we can easily find

ej(w, s)ej(s, w) = ej(w,w) = 1.

Therefore ej(w, s) =
1

ej(s, w)
.

Definition III.8. The hyperbolic sine and cosine functions
are defined as follows, assuming ±p ∈ <.

coshj(w, a) =
ej(w, a) + e−j(w, a)

2
,

sinhj(w, a) =
ej(w, a)− e−j(w, a)

2
for w ∈ Na.

Theorem III.9. Let ±j ∈ < and w ∈ Na. Next, the
hyperbolic sine and cosine functions for delta are provided
by

∆`coshj(w, a) = j(w)sinhj(w, a) (13)

∆`sinhj(w, a) = j(w)coshj(w, a). (14)

Proof: The proof completes by using the Definition
II.1 and Theorem III.1 by taking y(w) = sinhj(w, a) and

y(w) = coshj(w, a).

Definition III.10. Suppose that ±ij ∈ <. The sine and
cosine functions are defined as follows:

cosj(w, a) =
eij(w, a) + e−ij(w, a)

2
,

sinj(w, a) =
eij(w, a)− e−ij(w, a)

2i
for w ∈ Na.

Theorem III.11. Let ±ij ∈ < and w ∈ Na. Then,

∆`cosj(w, a) = −j(w)sinj(w, a) (15)

∆`sinj(w, a) = j(w)cosj(w, a) (16)

Proof: The proof is similar to Theorem III.9 by taking
y(w) = sinj(w, a) and y(w) = cosj(w, a).

Theorem III.12. Assume ±j ∈ < and w ∈ Na then
i) coshj(a, a) = 1 and sinhj(a, a) = 0.

ii) cosh2j (w, a)− sinh2j (w, a) = e−j2(w, a).
iii) ∆`coshj(w, a) = j(w)sinhj(w, a).
iv) ∆`sinhj(w, a) = j(w)coshj(w, a).
v) cosh−j(w, a) = coshj(w, a).

vi) sinh−j(w, a) = −sinhj(w, a).
vii) ej(w, a) = coshj(w, a) + sinhj(w, a).

Proof: Let ±j ∈ < and by Definition III.8, we have

i) coshj(a, a) =
ej(a, a) + e−j(a, a)

2
= 1,

sinhj(a, a) =
ej(a, a)− e−j(a, a)

2
= 0.

ii) cosh2j (w, a)− sinh2j (w, a)

=

[
ej(w, a) + e−j(a, a)

2

]2
−
[
ej(w, a)− e−j(a, a)

2

]2
,

which implies that
1

4
[4ej(w, a)e−j(w, a)] = ej⊕[−j](w, a) = e−j2(w, a).

iii) ∆`coshj(w, a) =
∆`ej(w, a) + ∆`e−j(w, a)

2
. Then by

Theorem III.1, we obtain ∆`coshj(w, a)

=
j(w)ej(w, a)− j(w)e−j(w, a)

2
= j(w)sinhj(w, a).

iv) The proof is similar to (iii).

v) cosh−j(w, a) =
e−j(w, a) + ej(w, a)

2
= coshj(w, a).

vi) sinh−j(w, a) = −ej(w, a)− e−j(w, a)

2
= −sinhj(w, a).

vii) coshj(w, a) + sinhj(w, a)

=
ej(w, a) + e−j(w, a) + ej(w, a)− e−j(w, a)

2
= ej(w, a).

Theorem III.13. Assume ±ij ∈ < and w ∈ Na then
i) cosj(a, a) = 1 and sinj(a, a) = 0.

ii) cos2j (w, a) + sin2j (w, a) = ej2(w, a).
iii) ∆`cosj(w, a) = −j(w)sinj(w, a).
iv) ∆`sinj(w, a) = j(w)cosj(w, a).
v) cos−j(w, a) = cosj(w, a).

vi) sin−j(w, a) = −sinj(w, a).
vii) eij(w, a) = cosj(w, a) + isinj(w, a).

Proof: Then the proof is similar to Theorem III.12 using
the Definition III.10.

Theorem III.14. Assume ±j ∈ < for w ∈ Na, then
i) sinij(w, a) = isinhj(w, a).

ii) cosij(w, a) = coshj(w, a).
iii) sinhij(w, a) = isinj(w, a).
iv) coshij(w, a) = cosj(w, a).

Proof: Using the Definition III.8 and Definition III.10,
we get

i) sinij(w, a) =
e−j(w, a)− ej(w, a)

2i
= isinhj(w, a).

ii) cosij(w, a) =
ej(w, a) + e−j(w, a)

2
= coshj(w, a).

iii) sinhij(w, a) =
i(eij(w, a)− e−ij(w, a))

2i
= isinj(w, a).

iv) coshij(w, a) =
eij(w, a) + e−ij(w, a)

2
= cosj(w, a).

A. Higher Order Difference equations

The non homogeneous higher order difference equations
is defined by

∆2
`y(w) + j(w)∆`y(w) +k(w)y(w) = f(w), w ∈ Na (17)

We assume that j(w) 6= k(w) + 1 for w ∈ Na.

∆2
`y(w) + j∆`y(w) + ky(w) = 0, w ∈ Na (18)

where we assume the constants j, k ∈ R satisfy j 6= 1 + k.

Theorem III.15. Assume that j, k, f : Na → R,
j(w) 6= 1 + k(w) and A,B ∈ R, then the solution of the
IVP will be of the form
∆2
`y(w) + j(w)∆`y(w) + k(w)y(w) = f(w),

y(w0) = A, y(w0 + `) = B (19)

has a unique solution y(w) on w ∈ Na.
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Proof: From Definition II.1, we find
∆`y(w) = y(w + `)− y(w) and also
∆2
`y(w) = y(w + 2`)− 2y(w + `) + y(w). Substituting the

∆`y(w) and ∆2
`y(w) values in equation (17), we obtain

y(w+2`) = [2−j(w)]y(w+`)−[1−j(w)+k(w)]y(w)+f(w)
(20)

and j(w) 6= 1 + k(w), w ∈ Na.
Now, equation (20) can be rewritten in the form of

y(w) =
2− j(w)

1− j(w) + k(w)
y(w + `)

− 1

1− j(w) + k(w)
y(w + 2`)− f(w)

1− j(w) + k(w)
. (21)

If we take w = w0 in (20), then equation (17) holds at
w = w0 if and only if

y(w0 +2`) = [2−j(w0)]B− [1−j(w0)+k(w0)]A+f(w0).

Thus the solution is reached at w + 2`. However, using
(20) evaluated at w = w0 + `, we can see that y(w0 + `)
and y(w0 + 2`) determines the values of w0 + 3`. We can
determine that IVP (19) is unique on Nw0

. In contrast, if
w0 > a, then w = w0 − ` with (21) is used. Therefore

y(w0 + `) =
1

1 − j(w0 − `) + k(w0 − `)
[(2 − j(w0 − `))A − B − f(w0 − `)]

The IVP (19) solution is thus uniquely found at w0 − `.
Proceeding in this manner (19) is uniquely determined on
Nw0
a .

Theorem III.16. Let j 6= 1+k. If the characteristic equation
of (18) is λ2+jλ+k = 0 and λ1 6= λ2 are distinct solutions
of (18), then the general solution is

y(w) = c1eλ1
(w, a) + c2eλ2

(w, a) (22)

Proof: Let us assume that
∆2
`y(w) + j∆`y(w) + ky(w) = 0 and w ∈ Na.

Taking y(w) =

w−s
` −1∏
τ=0

(1 + λ(τ)) where λ(τ), w ∈ Na, then

y(w) = (1 + λ)(
w−s
` ). (23)

Both sides of the equation (23) can be solved by applying
the ∆` operator, yielding

∆`y(w) = (1+λ)(
w+`−s

` )−(1+λ)(
w−s
` ) = (1+λ)(

w−s
` )(λ).

(24)
Returning to the equation (24) and using the ∆` operator
on both sides, we obtain
∆2
`y(w) = (1 + λ)(

w+`−s
` )(λ)− (1 + λ)(

w−s
` )(λ)

= (1 + λ)(
w−s
` )(λ2). (25)

From equation (24) and equation (25), we obtain

λ2 + jλ+ k = 0. (26)

Taking λ = m in equation (26), we get

m2 + jm+ k = 0. (27)

If m1,m2 are roots of (27), then λ1 = m1 and λ2 = m2

are the roots of (26).

Hence, y(w) = c1eλ1
(w, a) + c2eλ2

(w, a) is the general
solution of (18).

Theorem III.17. In the event when the characteristic values
are λ = α ± iβ, β > 0 and α 6= −1, then equation (18)’s
general solution is provided by

y(w) = c1eα(w, a)cosγ(w, a) + c2eα(w, a)sinγ(w, a),
(28)

where γ =
β

1 + α
.

Proof: Taking j = −2α, k = α2 +β2 and 1+k−j 6= 0
in equation (18), we get

∆2
`y(w)− 2α∆`y(w) + (α2 + β2)y(w) = 0. (29)

The characteristic equation of (29) is

λ2 − 2αλ+ (α2 + β2) = 0. (30)

The roots of the equation (30) is λ = α± iβ.
Let y(w) = eα+iβ(w, a) is complex valued solution using

α+ iβ = α⊕ i β

1 + α
= α+ iγ, we get y(w) = eα+iβ(w, a)

= eα⊕iγ(w, a) = eα(w, a)eiγ(w, a).

By Euler’s formula, y(w) = eα(w, a)eiγ(w, a)
= eα(w, a)[cosγ(w, a) + isinγ(w, a)]. Thus

y(w) = y1(w) + iy2(w).

To prove y1(w) = eα(w, a)cosγ(w, a) is a general solution
of equation (29), so that

y1(w) = eα(w, a)

[
eiγ(w, a) + e−iγ(w, a)

2

]
=
eα⊕iγ(w, a) + eα⊕−iγ(w, a)

2
.

∆`y1(w) =
(α+ iβ)eα+iβ(w, a) + (α− iβ)eα−iβ(w, a)

2
(31)

∆2
`y1(w) =

(α+ iβ)2eα+iβ(w, a) + (α− iβ)2eα−iβ(w, a)

2
(32)

[∆2
` − 2α∆` + (α2 + β2)cosγ(w, a)]eα(w, a)

= eiβ(w, a)
1

2
[(α+ iβ)2 − 2α(α+ iβ) + α2 + β2]

+e−iβ(w, a)
1

2
[(α−iβ)2−2α(α−iβ)+α2+β2],

which gives
eiβ [(α+ iβ)((α+ iβ)− 2α) + α2 + β2]

+e−iβ [(α− iβ)((α− iβ)−2α)+α2 +β2] = 0.
So, y1(w) is a solution of (29). Similarly, we can find y2(w)
is solution of (29).
Hence y(w) is general solution of equation (29).

Example III.18. For w ∈ Na, solve the difference equation

∆2
`y(w)− 2∆`y(w) + 2y(w) = 0. (33)

The characteristic equation is, λ2−2λ+2 = 0. Consequently,
the traits that are present are λ = 1± i. Now, by using the
Theorem (III.17), we get
y(w) = c1e1(w, a)cos 1

2
(w, a) + c2e1(w, a)sin 1

2
(w, a) is a

general solution of (33) on Na.

Theorem III.19. If −1 ± iβ, is the characteristic value of
(18), and β > 0, w ∈ Na is the general solution of (18), then

y(w) = c1β

(w − a
`

)
cos

(
π

2

(w − a)
`

)
+ c2β

(w − a
`

)
sin

(
π

2

(w − a)
`

)
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Proof: By Theorem(III.17), we assume −1 ± iβ is a
characteristic root of (18).
Let y(w) = e−1+iβ(w, a) is a complex valued solution of
(18), then

y(w) = e−1+iβ(w, a) = (iβ)w−a =

(
e
i
π

2 β

)w−a
The above equation can be written as

e−1+iβ(w, a) = β

(
w − a

`

)
cos

(
π

2

(w − a)

`

)
+ iβ

(
w − a

`

)
sin

(
π

2

(w − a)

`

)

It follows that, y1(w) = β

(
w − a
`

)
cos

(
π

2

(w − a)

`

)
,

y2(w) = β

(
w − a
`

)
sin

(
π

2

(w − a)

`

)
are the solutions of equation (18).
Given that these solutions on Na are linearly independent,

y(w) = c1β

(w − a
`

)
cos

(
π

2

(w − a)
`

)
+ c2β

(w − a
`

)
sin

(
π

2

(w − a)
`

)
is a general solution of (18).

Example III.20. For w ∈ N0, resolve the linear difference
equation for delta,

∆2
`y(w) + 2∆`y(w) + 5y(w) = 0. (34)

The characteristic equation is λ2 + 2λ+ 5 = 0,
So, λ = −1± 2i.

y(w) = c12wcos
(π

2
w
)

+ c22wsin
(π

2
w
)

is a general
solution on N0.

Theorem III.21. Assume λ1 = λ2 = t and j 6= 1 + k is the
characteristic equation (18)’s double root. Then, the general
solution is

y(w) = c1ew(w, a) + c2(w − a)ew(w, a). (35)

Proof: If λ1 = t is the characteristic value, then the
solution of (18) is

y1(w) = et(w, a). (36)

If λ1 = λ2 = t, then the characteristic equation for (18) is

(λ− t)2 = λ2 − 2tλ+ t2 = 0. (37)

To prove y2(w) = (w − a)et(w, a) is solution of equation
(18).
Applying the ∆` on y2(w), we arrive that
∆`y2(w) = ∆`[(w − a)et(w, a)] = ∆`[et(w, a)(w − a)].
Now, using the uv method, one can easily find
∆`y2(w) = et(w, a)∆`(w, a) + (w + `− a)∆`et(w, a)

= `et(w, a) + (w + `− a)tet(w, a). (38)

∆2
`y2(w) = `∆`et(w, a) + t∆`(w + `− a)et(w, a)

= et(w, a)[2t`+ (w + 2`− a)t2]. (39)

From equations (38) and (39), we have
[∆2

` − 2t∆` + t2]y2(w)
= (2t`+(t+2`−a)t2−2t(`+(w+`−a)t)+t2(w−a)) = 0.
So, y1(w) and y2(w) are the solutions of equation (18).
Hence the proof completes.

IV. CONCLUSION

In this research work, we explores the solutions
of higher-order difference equations involving discrete
exponential functions, emphasizing their effectiveness in
modeling discrete dynamical systems. By employing the
delta operator, we developed new identities and applied
them to trigonometric exponential functions, enriching the
theoretical framework. Several illustrative examples confirm
the validity and applicability of the proposed methods.
Overall, this study contributes to the advancement of discrete
analysis by combining delta operators with exponential
functions for solving complex difference equations.
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