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Abstract— The (2+1) Boussinesq equation is
widely used in fluid dynamics, particularly in the s-
tudy of shallow water waves and other wave phenom-
ena. In this work, we utilize Hirota’s bilinear method
to explore soliton waves, breather waves and their dy-
namic mechanisms to (241)-dimensional Boussinesq
equation. These findings may contribute to a deep-
er understanding of high-dimensional nonlinear wave
phenomena.
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1 Introduction

Nonlinear evolution equations (NLEEs) are fundamen-
tal to understanding complex physical phenomena across
various disciplines, including physics, biology, chemistry,
and mechanics. Obtaining exact solutions to these N-
LEEs is essential for unraveling the underlying mecha-
nisms of such phenomena and has become one of the
most significant challenges in scientific research.

Exact wave solutions to NLEEs and their generalized
forms are indispensable for studying complex physical
phenomena and addressing nonlinear engineering prob-
lems [1}2]. Constructing these wave solutions is of great
importance for scientific and engineering applications.
Over time, numerous systematic methods have been es-
tablished to effectively tackle NLEEs. These methods in-
clude Lie group method [3|, Darboux transformation [4],
inverse scattering method [5], Backlund transformation
method [6], the Hirota bilinear method [7], KP hierar-
chy reduction method [8,9], and other advanced tech-
niques [10,|11]. These approaches have significantly ad-
vanced the ability to analyze and solve nonlinear system-
S.

In the present work, we explore the exact wave solu-
tions of the following (2+1)-dimensional Boussinesq e-
quation using Hirota bilinear method.

Ut — Ugy — Uyy — (uz)m =0. (1.1)

This study proceeds as follows: in section we ap-
ply the Hirota’s bilinear method to derive a new bilinear
form and construct soliton wave solutions. Section Blde-
votes to the construction of new breather wave solutions.
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In section we summarize the main findings of this s-
tudy and discuss their potential implications for future
research.

2 The soliton wave solutions
Based on the transformation v = 6(In f),., we get the
bilinear form of Eq.(1.1) as follows

(Df =D} =Dy = Dy)f - f=0,

where D represents the Hirota bilinear operator defined
as

(2.1)
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ou o) ow " a ) )

: a2(,ulv Vl)'u’:u,u’:zu (22)
where aj,ay € C(R?). TFollowing Hirota bilinear

method, the N-soliton wave solutions to Eq.(1.1) is ob-
tained by

DZIDZOQ Qg = (

u=06(nf),,
f: Z €xXp ZCzTh"' Z Cij 1]
¢=0,1 1<i<j<N

N = ai($+biy+0i ) + i,
i =ai +b; +1,

exp(Aij) = —C- =)
¥

(2.3)

where a;, b;,v;(i = 1,2,...,N) are arbitrary real con-
stants and Z —01 I8 the summatlon that takes over all
possible comblnatlons of (;,¢(; =0,1(4, =1,2,... N),

Bij = (ai — a;)* + (a; — aj)* + (aib; — a;b;)?
— (a;c — ajcj)Q,
Cij = (ai + ;)" + (ai + a;)* + (a;b; + a;b;)?

/-\,.\

aici + ajcj)?.
(2.4)

Let N=1, we gain the one-soliton solution of Eq.(1.1)
by
u=06(In(1+ "))z, (2.5)

where n = a1 (x + by + c1t) + 71, and aq, by, 71 are arbi-
trary constants.

Let N = 2, the two-soliton wave solution of Eq.(1.1)
is

= 6(111(1 + 6771 + 6772 + 6771+7]2+A12))xw’ (26)
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Figure 1: Single soliton solution with parameters: a; =
1,b1 = 1,")/1 = O,t =0.

where 7;(i = 1,2),exp(4;;)(i = 1,7 = 2) are are consis-
tent with the result in Eq.(2.3).

In the following, we represent these two soliton wave
solutions in Figs.1-6. In Figs.1-2, it is observed that the
amplitude and width of the one-soliton remain constant
during propagation. This suggests that there is neither
energy loss nor gain as the soliton moves, underscoring
its stability. The figures also illustrate that the ampli-
tudes of the excited states are constrained and nearly
equal across various spatial positions. This implies a u-
niform energy distribution of the excited states, which
is maintained by the stability of the soliton. Although
minor variations in the state of the soliton may occur
at different times and locations, its amplitude remain-
s predominantly consistent throughout the spatial do-
main, reinforcing the stability of the solution. In Fig.3,
the shape of the double soliton solution is depicted, with
the overhead view and contour plot shown in Figs.4-5.
Fig.6 displays the cross-sections of the two solitons at
different positions. The coordinates of the points cor-
responding to the amplitudes of the two solitons before
and after the collision are (-5.547, 0.375), (5.739, 0.375),
(-10.25, 0.539), and (11.006, 0.539), respectively. These
results confirm that both solitons preserve their ampli-
tudes during the collision process. The collision point
of the two solitons is located at (0, 1.012), indicating
that the amplitude at the collision point does not equal
the sum of the amplitudes of the two interacting soliton-
s. The configuration of the double soliton solutions for
t = —8 and t = 8 is represented in Figs.7-8, respective-
ly. It is evident from these figures that the structural
shape of the soliton waves remains consistent, with only
the position changing, thus illustrating the characteristic
behavior of soliton waves.
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Figure 2: Cross-sectional graphs at ¢ = —5,0, 5, respec-
tively.

20 20

Figure 3: Double soliton solution with parameters: a; =
0.5,@2 = 0.6,()1 = 2,b2 = —1,’}/1 = O,’YQ = O,t =0.

3 Breather wave solutions

To get the two-order breather wave solution, the pre-
liminary assumption is

f=1+4e(ef +e82) 4 et (3])
where
§1=kiz +wiy + pit + @1,
§o = kox + way + pat + ¢o. (3.2)
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Figure 4: Density plot of double soliton solution.

Figure 5: Contour plot of double soliton solution.

Substituting Eq.(3.1) into Eq.(2.1), the coefficients of
each power of ¢ are set to zero, it yields

w? =p? — k2 —k}(i=1,2), (3.3)

where
E = (ky — ko)* + (k1 — ko) + (w1 — w2)? — (p1 — p2)?,
F = (k1 4 k2)* + (k1 + k2)® + (w1 + w2)® — (p1 + p2)*.

Extending the parameters to complex values, we study
the case of complex-conjugate pairs from the original real
parameters in (3.1) as follows

kl = k; = ik,p1 =pP2 =D, ¢1 = ¢2 = ¢7 (34)
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Figure 6: Cross-sectional graphs at x = —10,0, 10, re-

spectively.
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Figure 7: Double soliton solution with parameters: ¢t =
—8.

at this point, we have

w1y = we = w = \/p? + k2 — k4,
&1 = ikr + wy + pt + ¢,
§2 = —ikx +wy + py + &,

Volume 55, Issue 9, September 2025, Pages 3039-3044



TAENG International Journal of Applied Mathematics

20 20

Figure 8: Double soliton solution with parameters: ¢t =
8.

then, we can get

f =1+ ef1 + 652 4 e§1+52+A12
1 OIS (ke | omika) |y 2uubapih26 | Are

= ] 4 Qewytptte cos(kzx) + 2wy +2pt+26 | A1z
~ VH cosh(wy + pt + ¢ + In(VH)) + cos(kz), (3.6)

where

4k% —1

k2—-1"

Substituting Eq(3.6) into v = 6(In f);s,, we get the
breather wave solution as follows

H = 12 =

" _ 6k*cos(kx)  6k*sin(kz)?

G G? ’

(3.7)

where

In H
G = VH cosh(/—k* + k2 + p2y + pt + HT) + cos(kz).

Figs.9-11 depict the morphological structure of breather
waves, their overhead view, and contour plot, corre-
sponding to the parameters k = %, p=2andt =0,
respectively. The figures indicate that breather wave so-
lutions are localized. In addition, it is demonstrated that
breathers undergo periodic amplitude modulation either
in space or time, while maintaining their spatial confine-
ment. The configuration of the breather waves for t = —3
and t = 3 is represented in Figs.12-13, respectively. It
is evident from these figures that the structural shape
and amplitude of the breather waves remains consisten-
t, with only the position changing, thus illustrating the
characteristic behavior of breather waves.

The methodology outlined above naturally extends to
higher-order breather solutions. Beginning with an ex-

Figure 9: Breather-wave solution with parameters: k =
3 . _ —
§,p = 2, t=0.

Figure 10: Density plot of breather-wave solution.

tended e-expansion of f:

f =1+ 6(651 + 652 4 653) + 82(€§1+§2+A12 + €§1+§3+A13
+ 6§2+§3+A23) + €3e§1+€2+§3+A12+A13+A23 ..

(3.8)

Substituting Eq.(3.8) into Eq.(2.1) yields a sequence of
equations of different orders of ¢, whose solution is

(N) N
F= exp(>_GGA+ ) GE). (3.9
¢=0,1 i<j j=1
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Figure 11: Contour plot of breather-wave solution.

Figure 12: Breather-wave solution with parameters: k =
3 p=2,t=-3
29 p=41= .

where

& = kjz + wiy + pit + ¢;,
A M;;

e =

N’

wl=p? —kI—kii=12...), (3.10)

in which k;, p;, w;, ¢; are arbitrary complex constants,
Zg:o,l indicates summation over all possible combina-
tions of (1 = 0,1,& = 0,1,....¢v = 0,1; Y, ex-
tends over all distinct pairs (4,) where i < j, M;; =
(ki = k)t + (ki = kj)? + (wi — w;)? — (pi — p;)?, Nij =
(ki + k)" + (ki + k)% + (wi +w;)? = (pi + py)*.

As discussed in Ref. [12], by appropriate constraints

Figure 13: Breather-wave solution with parameters: k =
Sp=2t=3
2P ’ .

of ki, Wiy Piy ¢z in Eq. (38),
N =2n,wpyi = W, Pnti = Pi s ki = kI Gnyi = 95,
(3.11)
at the same time, k; must be pure imaginary numbers,
w; must be real numbers and these parameters satisfy
p? + kI — k} > 0, With these conditions, the n-order
breather wave solutions would be derived.

4 Conclusions

This study delves into the (2+1)-dimensional Boussi-
nesq equation, a fundamental model in fluid dynamics
crucial for representing shallow water waves and associ-
ated nonlinear phenomena. Utilizing the Hirota’s bilin-
ear method, we meticulously construct exact solution-
s, encompassing soliton and breather waves, and subse-
quently examine their interaction dynamics. Our find-
ings elucidate the propagation mechanisms and stabili-
ty attributes of these localized waves, providing a more
profound comprehension of energy localization and the
modulation instability in nonlinear systems.
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