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Abstract— This paper discusses the solution of AB equation 

using the homotopy perturbation method. The AB equation is a 

wave equation that improves the KdV wave equation. Unlike 

the KdV wave equation whose dispersion relation is non-exact, 

this AB equation has an exact dispersion relation. The AB 

equation is solved using the homotopy perturbation method up 

to the third order. The generated waves are monochromatic. 

The results show that in the first-order solution, the relation 

between the frequency and the wave number, referred to as the 

dispersion relation was obtained. In the second-order solution, 

we found that the frequency of the wave was two times larger 

than in the first-order solution. Nevertheless, it had less 

amplitude than in the first-order solution. Finally, the 

homotopy perturbation method also provided a good solution 

because of the absence of the need to specify the embedding 

parameters used.  

 
Keywords: AB equation, KdV equation, Homotopy 

Perturbation method, monochromatic wave. 

 

I. INTRODUCTION 

It is always interesting to study water wave equation. This is 

because not only is the earth covered by a large part of sea 

area, but the equations that form sea water waves are also 

increasingly varied. An example of this is how the KdV 

wave equation keeps on being improved. Originally, it is a 

wave equation for waves with a long enough wavelength and 

a low enough depth proposed for the first time by 

Korteweigh and De Vries in 1895[1]. Since some of the 

solutions of this equation, namely the soliton, are so 
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interesting, this equation has always been improved to 

produce equations that are more realistic and consistent with 

natural phenomena. Therefore, this equation has undergone 

several modifications such as those made by Groesen [2]. 

Furthermore, the equation was also improved by Groesen 

and Andonowati. The improvements were made by 

modifying the dispersive relation in the equation in such a 

way that the dispersive relation becomes exact and by using 

pseudo-differential operators in the equation so as to provide 

a much better description, especially for infinitesimal waves 

[3]. The latest equation proposed by Grosen and 

Andonowati is called AB equation. The AB equation in this 

paper is solved using the homotopy perturbation method to 

help solve its nonlinear terms and its pseudo differential 

operator. This paper is structured as follows. The research 

method is discussed in section 2. Then the mathematical 

model used is discussed in section 3. Furthermore, the 

solution of the AB equation is discussed in section 4. 

Finally, the paper is concluded with a conclusion.  

 

II. RESEARCH METHOD  

As its name suggests, the homotopy perturbation method is a 

combination of its two constituent methods, namely the 

homotopy and perturbation methods. This method was first 

proposed by He [4]. The method has been applied in the 

Duffing equation at an error value of less than 5.8% (see 

[5]). In addition, the homotopy perturbation method was also 

applied to the pendulum equation and the error value was 

not greater than 1.5% [6]. Both studies involved 

mathematical models in the form of nonlinear ordinary 

differential equations.  This is only logical since problems in 

nature are also often modeled with nonlinear partial 

differential equations. This method has also been applied to 

nonlinear partial differential equations and the results show 

that the homotopy perturbation method is highly effective 

and simple [7]. MohyudDin and Noor [8] also apply the 

homotopy perturbation method to nonlinear differential 

equations and find that this method are simpler than the 

adomian decomposition method [9].   

In this paper, we used the homotopy perturbation method to 

solve the wave model as described by the AB-equation.  

The basic idea of homotopy perturbation method for solving 

nonlinear differential equations is given as follows. 

Consider the following differential equations. 

     ( ) ( ) 0,                         A u f r r                                            (1) 

With a boundary condition 

      , 0,                                 
u

B u r
t

 
   

 
                                      (2) 
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 where A  is the general differential operator, ( )f r is 

known as the known function, u is the function to be 

determined, B  is the boundary operator,  is the boundary 

of the domain (Ω), and u

t




denotes the differential along the 

normal to . 

In general, operator A  is divided into two, namely L  and 

N , where L  is the linear operator, and N  is the 

nonlinear operator. Therefore, Equation (1) can be 

written as follows. 

( ) ( ) ( ) 0,                            L u N u f r r       (3) 

In the case of the nonlinear Equation (3), since it does not 

include small parameters, we can construct the homotopy 

equation as follows. 

 

0( , ) (1 )[ ( ) ( ] [ ( ) - ( )]=0H v p p L v L u p A v f r         (4)                              

( , ) : [0,1]v r p R   

 In Equation (4), [0,1]p  is the embedding parameter and 

0u  is the first approximation that satisfies the boundary 

conditions. 

From Equation (4), we have 

0( ,0) ( ) - ( ) 0H v L v L u   

( ,1) ( ) - ( ) 0H v A v f r  . 

The process of moving p from zero to one represents   

moving of ( , )v r p  from 0u to ru . In topology, this is called 

deformation and 0( ) ( )L v L u , ( ) ( )A v f r  are   the 

homotopy. 

We introduced the Embedding parameters p in a more 

natural way, i.e., not affected by artificial factors. 

Furthermore, we can consider p as a small parameter          

for 0 1p  . 

Therefore, it is reasonable to assume that the solution of 

Equation (4) can be expressed as 

               
2

0 1 2 ...v v pv p v                                    (5) 

Hence, the approximate solution of Equation (1) can be 

obtained as    

0 1 2
1

lim + ...  
p

v v v v


    

 

III. MATHEMATICAL MODEL 

The mathematical model used in this study was the AB 

equation. The model was an improvement of the KdV 

equation and could be interpreted as a higher-order KdV 

equation for wave above finite depth and in certain 

approximation it became the KdV equation. The nonlinear 

terms of the model were also improved to include   the 

effects of short wave interactions. The model could be used 

for all wave lengths and any depth (see [10]). As an 

improvement of the KdV equation, the disperse relation 

contained in the AB equation was an exact disperse relation. 

The AB equation is given as follows. 

 

         1 1 1 12 2[ ( ) ( ) ( ) ( ) ]
2 4 2 4

g A A A A B B B
t
                              (6) 

With  representing wave elevation, A
C

x

g


  and 

1
B  g C


  

being pseudo differential operator with symbol 
k

k
kC

)(
)(ˆ 
 ,  

0
0

0

tanh( )
( )

kh
k c k

kh
   , 0 0

c gh  with g and 0h being 

acceleration of gravitation  and the water depth respectively. 

In this paper, the AB equation was solved using the 

homotopy perturbation method. For further writing, we write 

the symbol Ĉ with C only. 

 

IV. RESULTS AND DISCUSSION  

Consider the AB equation (6). Using the homotopy 

perturbation method, the equation was built into a homotopy 

equation as follows. 

 

( , ) (1 ) ] [ ...

1 1 1 12 2
                ( ) ( ) ( ) ( ) 0

2 4 2 4

t tH p p g A p g A

A A A B B B

    

     

       

    

            (7) 

Next, assume the elevation ( , )x t  to be a power series in 

p. 

              (0) (1) (2) (3)2 3 ...p p p                                          (8) 

Substituting the series form (8) into the homotopy function 

(7), we obtained 

At order 
0p  (order one), the following equation is obtained. 

                          (0) (0)
0g A

t
                                            (9) 

The monochromatic waves taken and generated at the 

generating source were given in the form of 

 

              
(0) ( )

.
i kx t

ae c c





                              (10) 

 

With c.c being the complex conjugate of the complex 

function at the initial term. Furthermore, we obtained 

(0) (0) (0) (0)
0

C
g C

t x t xg
          

( ) 0i ii e i k e          With ( )kx t   Thus, at order one 

the following relationship is obtained. 

 

                                
tanh( )

0( )
0

0

kh
k c k

kh
                             (11) 

 

which represented the exact linear dispersion relation [2]. 

The relation between frequencies   for various wave 

numbers k and for 1 ( ), 2 (2 ), 3 (3 )k k k         is given in 

Fig 1. Fig 1 shows that the larger the wave number k, the 

larger the frequency  will be. 

The wave profile of The first-order solution of AB can be 

seen in Fig 2. 

Then, at order
1p  we obtained 

 
(1) (0) (0) (1) (0) (0)

[ ] [ ...

1 1 1 1(0) (0) (0) 2 (0) (0) (0) 2
( ) ( ) ( ) ( ) ] 0

2 4 2 4

g A g A g At t t

A A A B B B

     

     

        

    

(12) 
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Fig 1. The relation between frequencies   for various wave 

numbers k 

 

 
Fig 2. The first-order solutions of AB equation at time      t = 

10s. 

 Furthermore, we obtained 
(1) (1)( ) ...

21 (2 ) ( ) 1 ( )2 2 2 2
( ) ( ) ( ) ...

2 4

2 212 2 2 2
0.

2(2 ) ( ) 4 ( )

i i i
t i ae i k ae g A i ae

k k ki i i
i k ae a e a e

g g

k ki i
g a e g a e

k k k

     

  

 

          

  
    

    

 

 
21 (2 ) ( ) 1 ( )(1) (1) 2 2 2 2

[ [ ( ) ( )
2 4

2 212 2 2 2                 ]
2(2 ) ( ) 4 ( )

2 22 (2 ) ( ) ( ) 4 ( ) (2 )2 2 2 2 2 2
              

24 4 (2 ) ( )

k k ki i
g A a e a et g g

k ki ig a e g a e
k k k

k k k k k ki i
a e gk gk a e

g k k

 
 

 

 

  
   

  
  

    


 

 

2 22 (2 ) ( ) ( ) 4 ( ) (2 )(1) (1) 2 2 2[
24 4 (2 ) ( )

k k k k k k ig A gk a e
t g k k

 
     
    
   

   (13) 

 

 

From the last equation (13), we could construct the solution 

in the form of 

 

                         
(1) 2 .ie c c                                    (14) 

 

Then, we obtained 

 

2 2(1) (1) 2 22 (2 ) ( ) ( ) 4 ( ) (2 ) 2[
24 4 (2 ) ( )

2 22 ( ) (2 )

2 22 (2 ) ( ) ( ) 4 ( ) (2 ) 2 2 2                                  
24 4 (2 ) ( )

      

ik k k k k k
g A gk a et g k k

i ii k e i k e

k k k k k k igk a e
g k k


 

  



 
        

 
  

    

     
 
   

2 22 (2 ) ( ) ( ) 4 ( ) (2 ) 2
24 4 (2 ) ( ) 2

        
( (2 ) 2 ( ))

k k k k k k
gk

g k k
a

i k k


     
 
   


  

 

 

 Where   represented the coefficient of the second-order 

solution (order 
1p ). Fig 3 shows the coefficient  at the 

order to wave number k. 

 

Fig 3. The relation between coefficients  for various wave 

numbers k. 

 

The second-order solutions of the AB equation at time t = 

10s, amplitude a = 0.5m, acceleration of gravitation g = 

9.8
2/m s , wave number k = 0.5 and the waterdepth 

0h  5m, is given in Fig 4. in Fig 4 the wave with frequency 

2 (2 )k  , the wave travels faster than the wave in the 

Fig 2, because the speed depends on the frequency. however, 

the amplitude is smaller than the solution on the first order, 

due to the use of the perturbation method. 
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 Fig 4. The second-order solutions of AB equation at time 

t=10s. 

 

 

Furthermore, at order 
2p , we obtained 

 
(2) (2) (1) (1) (1) (1)

[ ] [ ] [ ...

1 2(0) (1) (1) (0) (0) (1)
( )

2 4

1 1 2(0) (1) (1) (0) (0) (1)
[ ( ) ( ) ]] 0

2 2 4

g A g A g At t t

A A A A A

B B B B B B

     

     

     

         

   

  

  (15) 

 

By substituting (9) and (14) to the equation (9), we obtained 
1(2) (2) 2 2

] ( )
2

2 1 12 2 2
[ ( ) ( ) ...

4 2 2

2 2
] 0

4

i i i i
g A A ae A e e Aaet

i i i i i i
Aae A e B ae B e B e Bae

i i
Bae B e

   
   

     
  

 


    

    

 

 

 
(2 ) (3 ) ( ) (2 )

( )
2(2) (2) 3[ ] 2 2 23 3

( )
(2 ) (3 ) 2 ( ) (3 ) ( ) (2 )

k k k k

g ig A a e
t k gk gk

g
k k k k k k

  

    
 
   
 
         

         (16) 

Furthermore, we assumed the solution of (16) as 

 

        (2) 3 .ie c c   ,                                                           (17) 

 

 

hence, we obtain  

 

3 3 3

2 2 2

(2 ) (3 ) ( ) (2
( )

2
[ 3 (3 ) ]

3 3
( )

(2 ) (3 ) 2 ( ) (3 ) ( ) (2 )

i i i

k k k k

g
i e i k e a e

k gk gk
g

k k k k k k

    

    
 
    
 
   

      

 

  

With the coefficient   being 

    

(2 ) (3 ) ( ) (2 )
( )

2
2 2 23 3

( )
(2 ) (3 ) 2 ( ) (3 ) ( ) (2 )

  
(3 ( ) (3 ))

k k k k

g

k gk gk
g

k k k k k k
ia

k k
 

    
 
 
 
         


 

          (18) 

   represent the coefficient of the third-order solution 

(order 
2p ) of AB equation. Fig 5 shows the coefficient   

at the order to wave number k. 

 

Fig  5. The coefficient of the third-order solution   for 

various wave numbers k 

 

The third-order solution of AB equation at time t = 10 is 

given in the Fig 6. 

 
Fig 6. The third-order solution of AB equation at time       

t = 10s. 

 

Comparison between wave profile of the first order solution 

and the second order solution is given in Fig 7. 
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Fig 7. Comparison between waves profiles of the first    

order solution and the second order solution.    

 

While, the comparison between waves profiles of the second 

order solution and the third order solution is given in Fig 8.  

 

 
Fig 8. Comparison between waves profiles of the second    

order solution and the third solution. 

 

 

From the Fig 7 and Fig 8, we obtained that the first order 

solution larger than the second and the second order solution 

larger than the third order solution and so on. This shows 

that the perturbation method has been satisfied.        

The wave profile of the total solution which is given as  

210   , at amplitude a = 0.5m, acceleration of 

gravitation g = 9.8
2/m s , wave number k = 0.5 and 

waterdepth 0h  5m, at time t=10s , is given in Fig 9. 

 
         Fig 9. The wave  profile of the total solution of AB 

equation.  

   

The comparison  between  waves  profiles of the leading 

solution( 0 ) and the total solution is given in Fig 10. 

 

 
Fig10. The comparison between waves profiles of the 

leading solution ( 0 ) and the total solution ( ) 

 

from Fig 10 we obtained that the influence of the second 

order, the  third order and so on to the first order on the 

increase in amplitude is very small only about 0.028m at 

time t = 10s 

  

V. CONCLUSION 

In this paper, we discussed the solution of AB equation, a 

water wave equation enhanced from the KdV equation. The 

solution of the AB equation was obtained by using the 

homotopy perturbation method. This method itself was a 

combination of two methods, namely the homotopy and 

perturbation methods. Using the method in the first-order 

solution, we obtained the dispersion relation of AB equation 
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we call it ( )k  . In the second order solution we 

obtained the frequency  2 (2 )k   and so on. The effect 

of this difference causes the solution in different waveforms. 

In the second-order solution the wave travels faster than in 

the first-order solution, in the third-order solution wave  

travels faster than the second-order and so on. The influence 

of the second order, the  third order and so on to the first 

order on the increase in amplitude is very small only about 

0.028m at time t = 10s    Using the method also allowed the 

solution to be obtained by taking the limit of elevation for 

embedding parameter to one.       
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